首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fungi play a crucial role in dead wood decay, being the major decomposers of wood and affecting microbiota associated with dead wood. We sampled dead wood from five deciduous tree species over more than forty years of decay in a natural European floodplain forest with high tree species diversity. While the assembly of dead wood fungal communities shows a high level of stochasticity, it also indicates clear successional patterns, with fungal taxa either specific for early or late stages of wood decay. No clear patterns of fungal biomass content over time were observed. Out of 220 major fungal operational taxonomic units, less than 8% were associated with a single tree species, most of them with Quercus robur. Tree species and wood chemistry, particularly pH, were the most important drivers of fungal community composition. This study highlights the importance of dead wood and tree species diversity for preserving the biodiversity of fungi.  相似文献   

2.
Natural decay resistance of teak wood grown in home-garden forestry and the factors influencing decay resistance were determined in comparison with that of a typical forest plantation. Accelerated laboratory tests were conducted on 1800 wood samples drawn from 15 trees of three planted sites. Analysis of variance based on a univariate mixed model showed that planted site, fungal species, and their interaction terms were important sources of variation in decay resistance. With increasing decay resistance from centre to periphery of the heartwood, radial position was a critical factor and the interaction effect of fungal species × radial position was significant in influencing the durability. No significant differences were found in decay resistance either between the opposite radii or due to the various possible interaction terms of radii with the site, fungal species and radial position. There were significant differences in decay resistance against brown-rot fungi between wet and dry sites of home-garden teak although differences against white-rot fungi were non-significant among the three planted sites. Polyporus palustris was the more aggressive brown-rot fungus than Gloeophyllum trabeum. The higher susceptibility of wet site home-garden teak to brown-rot decay was associated with a paler colour of the wood and lower extractive content.  相似文献   

3.
Wood-decaying fungi in the phylum Basidiomycota play a significant role in the global carbon cycle, as they decompose deadwood effectively. Fungi may compete for utilizable substrate and growth space by producing soluble metabolites and by releasing volatile organic compounds (VOCs). We determined the role of wood substrate (Scots pine or Norway spruce) on the generation of hyphal biomass, secreted metabolites and enzyme activities, wood decomposition rate, and fungal species-species interactions on VOC release. We studied one brown-rot species (Fomitopsis pinicola) and two white-rot species (Phlebia radiata and Trichaptum abietinum) cultivated individually or in combinations. Wood substrate quality influences VOC release by the wood-decaying fungi, with signature differences caused by the decomposition trait (brown rot or white rot) and species-species interactions. VOC release was higher in the cultures of Basidiomycota than in uncolonized sawdust. Fungal biomass, decomposition activity, iron reduction, enzyme activities, oxalate anion content, and oxalic acid production explained VOC release from decaying wood.  相似文献   

4.
Wood-inhabiting fungi include many molds, wood-staining fungi, and decay fungi. Most of these fungal species can result in economic losses to wood users. Studies on molds, staining fungi, and decay fungi are necessary to be able to control their growth on wood and wood products. In this study, wood-inhabiting fungi were isolated from logs of 3 major Canadian hardwood species: sugar maple, white birch, and yellow birch. Two media were used for isolation. From these 3 wood species, a total of 1198 fungal cultures were obtained from summer- and winter-harvested logs in dry storage and under water sprinkling. The results showed that most fungal species were not host specific and affected all of the wood species tested. Frequently isolated molds were Alternaria alternata, Trichoderma species, and Mucor/Rhizopus (Zygomycota) species, frequently isolated staining fungi were Ophiostoma piceae and Ophiostoma piliferum, a frequently isolated bark saprophyte was Nectria cinnabarina, and frequently isolated decay fungi were taxa of the phylum Basidiomycota. More fungal species were isolated from summer-harvested logs than from winter-harvested logs. Fewer fungal cultures, especially decay fungi, were isolated from logs in early storage than from logs in late storage.  相似文献   

5.
Decaying wood plays an important role in forest biodiversity, nutrient cycling and carbon balance. Community structure of wood-inhabiting fungi changes with mass loss of wood, but the relationship between substrate quality and decomposers is poorly understood. This limits the extent to which these ecosystem services can be effectively managed. We studied the fungal community and physico-chemical quality (stage of decay, dimensions, density, moisture, C : N ratio, lignin and water or ethanol extractives) of 543 Norway spruce logs in five unmanaged boreal forest sites of southern Finland. Fungi were identified using denaturing gradient gel electrophoresis and sequencing of DNA extracted directly from wood samples. Macroscopic fruiting bodies were also recorded. Results showed a fungal community succession with decreasing wood density and C : N ratio, and increasing moisture and lignin content. Fungal diversity peaked in the most decayed substrates. Ascomycetes typically colonized recently fallen wood. Brown-rot fungi preferred the intermediate decay stages. White-rot fungi represented approximately one-fifth of sequenced species in all decay phases excluding the final phase, where ectomycorrhizal (ECM) fungi became dominant. Lignin content of logs with white-rot fungi was low, and ECM fungi were associated with substrates containing abundant nitrogen. Macroscopic fruiting bodies were observed for only a small number of species detected with molecular techniques.  相似文献   

6.
Aquatic fungi are increasingly recognized for their contribution to carbon cycling in aquatic ecosystems, both as saprotrophs and parasites. Their quantification in mixed communities is crucial to assess their ecological significance but remains challenging. We characterized the phospholipid-derived fatty acid (PLFA) composition of fifteen aquatic fungal isolates from Chytridiomycota (chytrids) and Dikarya. Additionally, we identified PLFA patterns of chytrids infecting phytoplankton and their zoospores. PLFA composition of zoospores was highly similar among different taxa, but were distinct from their respective sporangial life-stage. Finally, we applied a fatty acid-based Bayesian mixed model (FASTAR) and tested its potential to quantify fungi in complex mixtures with bacteria and phytoplankton using PLFA profiles. While the quantification of chytrid biomass in low quantities was rather imprecise, the model predicted the contribution of filamentous fungi and other components with fair accuracy, supporting the suitability of this approach to quantify fungal biomass in aquatic environments.  相似文献   

7.
木腐真菌是微生物的一个重要类群, 主要以倒木为生长基质, 通过产生各种水解酶将倒木的纤维素、木质素和半纤维素分解为小分子物质, 对促进森林生态系统中的营养物质循环发挥着重要的生态功能。于2016年8月在浙江古田山国家级自然保护区开展的木腐真菌野外调查, 利用形态学和DNA序列分析对采集的标本进行了物种鉴定, 并分析了木腐真菌的物种组成和地理成分。在采集的158份标本中鉴定木腐真菌45属92种, 其中白腐真菌78种, 褐腐真菌14种。古田山的木腐真菌物种区系组成中, 热带-亚热带成分比例最高。在158份木腐真菌标本中, 97份标本采自直径大于10 cm的倒木或树桩上, 分属于76个种, 是木腐真菌生长的主要基质大小类型; 48份标本采自直径为2-10 cm的枝干上, 分属38个种; 13份标本采自直径小于2 cm的枝干上, 分属12种。不同腐烂等级倒木上生长的真菌数量和种类差异明显, 其中一级腐烂倒木上采集到9份标本(7种), 二级腐烂倒木上采集到86份标本(45种), 三级腐烂倒木上49份标本(29种), 四级腐烂倒木上14份标本(14种)。结果表明, 林分中倒木直径大小和腐烂程度是影响木腐真菌生长与分布的重要因子。  相似文献   

8.
In forest ecosystems, fungi are the key actors in wood decay. They have the capability to degrade lignified substrates and the woody biomass of coniferous forests, with brown rot fungi being common colonizers. Brown rots are typically involved in the earliest phase of lignocellulose breakdown, which therefore influences colonization by other microorganisms. However, few studies have focused on the impact of introducing decayed wood into forest environments to gauge successional colonization by natural bacterial and fungal communities following partial decay. This study aimed to address this issue by investigating the bacterial and fungal colonization of Norway spruce (Picea abies) wood, after intermediate and advanced laboratory-based, pre-decay, by the brown rot fungus Gloeophyllum trabeum. Using Illumina metabarcoding, the in situ colonization of the wood blocks was monitored 70 days after the blocks were placed on the forest floor and covered with litter. We observed significant changes in the bacterial and fungal communities associated with the pre-decayed stage. Further, the wood substrate condition acted as a gatekeeper by reducing richness for both microbial communities and diversity of fungal communities. Our data also suggest that the growth of some fungal and bacterial species was driven by similar environmental conditions.  相似文献   

9.
10.
Wood decay under the microscope   总被引:3,自引:0,他引:3  
Many aspects of the interactions between host wood structure and fungal activity can be revealed by high resolution light microscopy, and this technique has provided much of the information discussed here. A wide range of different types of decay can result from permutations of host species, fungal species and conditions within wood. Within this spectrum, three main types are commonly recognised: brown rot, white rot and soft rot. The present review explores parts of the range of variation that each of these encompasses and emphasizes that degradation modes appear to reflect a co-evolutionary adaptation of decay fungi to different wood species or the lignin composition within more primitive and advanced wood cell types. One objective of this review is to provide evidence that the terms brown rot, white rot and soft rot may not be obsolete, but rigid definitions for fungi that are placed into these categories may be less appropriate than thought previously. Detailed knowledge of decomposition processes does not only aid prognosis of decay development in living trees for hazard assessment but also allows the identification of wood decay fungi that can be used for biotechnology processes in the wood industry. In contrast to bacteria or commercial enzymes, hyphae can completely ramify through solid wood. In this review evidence is provided that wood decay fungi can effectively induce permeability changes in gymnospermous heartwood or can be applied to facilitate the identification of tree rings in diffuse porous wood of angiosperms. The specificity of their enzymes and the mild conditions under which degradation proceeds is partly detrimental for trees, but also make wood decay fungi potentially efficient biotechnological tools.  相似文献   

11.
Wood-inhabiting fungi may affect soil fungal communities directly underneath decaying wood via their exploratory hyphae. In addition, differences in wood leachates between decaying tree species may influence soil fungal communities. We determined the composition of fungi in 4-yr old decaying logs of Larix kaempferi and Quercus rubra as well as in soil directly underneath and next to logs. Fungal community composition in soil covered by logs was different from that in wood and uncovered soil and was clearly influenced by the tree species. Soil fungal species richness under logs was lower than in uncovered soil but higher than in decaying wood. The amount of exploratory hyphae of log-inhabiting fungi was only high close to decaying logs. In conclusion, there is a small but significant effect of decaying coniferous and broadleaf logs on soil fungal communities directly underneath logs, likely affected by differences in wood chemistry and fungal preference between tree species.  相似文献   

12.
Dead wood is an important habitat for forest organisms, and wood decay fungi are the principal agents determining the dead wood properties that influence the communities of organisms inhabiting dead wood. In this study, we investigated the effects of wood decomposer fungi on the communities of myxomycetes and bryophytes inhabiting decayed logs. On 196 pine logs, 72 species of fungi, 34 species and seven varieties of myxomycetes, and 16 species of bryophytes were identified. Although white rot was the dominant decay type in sapwood and heartwood, brown and soft rots were also prevalent, particularly in sapwood. Moreover, white rot and soft rot were positively and brown rot negatively correlated with wood pH. Ordination analyses clearly showed a succession of cryptogam species during log decomposition and showed significant correlations of communities with the pH, water content, and decay type of wood. These analyses indicate that fungal wood decomposer activities strongly influence the cryptogam communities on dead wood.  相似文献   

13.
Fast-growing bacteria and fungi are expected to cause the initial stage of decomposition of woody fragments in and on soils, i.e. the respiration of sugars, organic acids, pectin and easily accessible cellulose and hemi-cellulose. However, little is known about the factors regulating initial wood decomposition. We examined the effect of wood fragment size, vertical position, nitrogen addition and soil origin on initial wood decay and on the relative importance of fungi and bacteria therein. Two fractions of birch wood were used in microcosm experiments, namely wood blocks (dimensions: 3 × 0.5 × 0.5 cm) and sawdust (dimensions: 0.5–2 mm). The woody fragments were enclosed in nylon bags and placed on top of- or buried in an abandoned arable soil and in a heathland soil. After 15, 25 and 40 weeks of incubation, fungal biomass was quantified (as ergosterol and chitin content) and bacterial numbers were determined. The results indicated that initial wood decay was mostly caused by fungi; bacteria were only contributing in sawdust in/on abandoned arable soil. Larger fragment size, burial of fragments and nitrogen addition positively influenced fungal biomass and activity. Fungal biomass and decay activities were much lower in woody fragments incubated in/on heathland soil than in those incubated in/on abandoned arable soil, indicating that soil origin is also an important factor determining initial wood decay.  相似文献   

14.
When lodgepole pines (Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson) that are killed by the mountain pine beetle (Dendroctonus ponderosae) and its fungal associates are not harvested, fungal decay can affect wood and fibre properties. Ophiostomatoids stain sapwood but do not affect the structural properties of wood. In contrast, white or brown decay basidiomycetes degrade wood. We isolated both staining and decay fungi from 300 lodgepole pine trees killed by mountain pine beetle at green, red, and grey stages at 10 sites across British Columbia. We retained 224 basidiomycete isolates that we classified into 34 species using morphological and physiological characteristics and rDNA large subunit sequences. The number of basidiomycete species varied from 4 to 14 species per site. We assessed the ability of these fungi to degrade both pine sapwood and heartwood using the soil jar decay test. The highest wood mass losses for both sapwood and heartwood were measured for the brown rot species Fomitopsis pinicola and the white rot Metulodontia and Ganoderma species. The sap rot species Trichaptum abietinum was more damaging for sapwood than for heartwood. A number of species caused more than 50% wood mass losses after 12 weeks at room temperature, suggesting that beetle-killed trees can rapidly lose market value due to degradation of wood structural components.  相似文献   

15.
Eschen R  Hunt S  Mykura C  Gange AC  Sutton BC 《Fungal biology》2010,114(11-12):991-998
Foliar fungal endophytes are ubiquitous, but understudied symbionts of most plant species; relatively little is known about the factors affecting their occurrence, diversity and abundance. We tested the effects of soil nutrient content and arbuscular mycorrhizal (AM) colonization on the occurrence of foliar endophytic fungi in Cirsium arvense in two field studies. In the first study, we assessed relationships between soil moisture, organic matter, carbon and nitrogen content and plant water, nitrogen and carbon content and AM colonization and the occurrence of foliar endophytic fungal species. In the second study, we manipulated soil nutrient content and AM colonization of potted seedlings and identified differences in endophytic fungal species composition of the leaves and stems. The results reveal that endophytes can occur either more or less frequently, depending on soil nutrient and plant water content and AM colonization. We propose that these patterns were the result of differences in fungal growth responses to nutrient availability in the leaves, which can be affected by resources obtained from the soil or symbiotic fungi in the roots.  相似文献   

16.
Throughout evolution, wood-decaying fungi have adapted to different woody plants, resulting in wide species diversity. Dacrymycetes, which are brown-rot fungi and include host-recurrent species, are useful for studying fungal adaptation to host trees. When estimating the decay abilities of basidiomycetes, the nuclear phases of the mycelium should be considered, since dikaryons are thought to be more efficient wood-decayers than monokaryons; however, the difference in their physiological performances remains largely untested. In this study, we verified the decay capabilities of dikaryotic and monokaryotic mycelia and tested the hypothesis that the host tree-recurrence of wood-decaying fungi results from their resource utilization in each host wood. The mass loss caused by eight dacrymycetous species from wood of four tree species was investigated in pure cultures. The decomposition ability of dikaryons was greater than that of monokaryons in these experiments. Dikaryotization is expected to raise certain physiological parameters, such as the quantity and variety of wood-decomposing enzymes, thus enhancing the decomposition rate of wood decomposers. The high decomposition ability of dikaryons suggests their superiority over monokaryons to survive under natural conditions. All dacrymycetous strains caused high mass loss from Pinus wood, the main host tree of Dacrymycetes. However, most of the individual tested strains did not cause the greatest mass loss from the wood of their original host group. This result suggested that host-recurrence can be partly explained by resource utilization, but it is likely that other micro-organisms and abiotic factors also affect host-recurrence in the field environment.  相似文献   

17.
The absolute amount of microbial biomass and relative contribution of fungi and bacteria are expected to vary among types of organic matter (OM) within a stream and will vary among streams because of differences in organic matter quality and quantity. Common types of benthic detritus [leaves, small wood, and fine benthic organic matter (FBOM)] were sampled in 9 small (1st-3rd order) streams selected to represent a range of important controlling factors such as surrounding vegetation, detritus standing stocks, and water chemistry. Direct counts of bacteria and measurements of ergosterol (a fungal sterol) were used to describe variation in bacterial and fungal biomass. There were significant differences in bacterial abundance among types of organic matter with higher densities per unit mass of organic matter on fine particles relative to either leaves or wood surfaces. In contrast, ergosterol concentrations were significantly greater on leaves and wood, confirming the predominance of fungal biomass in these larger size classes. In general, bacterial abundance per unit organic matter was less variable than fungal biomass, suggesting bacteria will be a more predictable component of stream microbial communities. For 7 of the 9 streams, the standing stock of fine benthic organic matter was large enough that habitat-weighted reach-scale bacterial biomass was equal to or greater than fungal biomass. The quantities of leaves and small wood varied among streams such that the relative contribution of reach-scale fungal biomass ranged from 10% to as much as 90% of microbial biomass. Ergosterol concentrations were positively associated with substrate C:N ratio while bacterial abundance was negatively correlated with C:N. Both these relationships are confounded by particle size, i.e., leaves and wood had higher C:N than fine benthic organic matter. There was a weak positive relationship between bacterial abundance and streamwater soluble reactive phosphorus concentration, but no apparent pattern between either bacteria or fungi and streamwater dissolved inorganic nitrogen. The variation in microbial biomass per unit organic matter and the relative abundance of different types of organic matter contributed equally to driving differences in total microbial biomass at the reach scale.  相似文献   

18.
丰林国家级自然保护区木腐真菌多样性与寄主倒木的关系   总被引:1,自引:0,他引:1  
木腐真菌是一类以木材为生长基质的大型真菌, 通过分泌各种水解酶全部或部分降解木材中的木质素、纤维素和半纤维素, 促进森林生态系统的物质循环, 具有重要的生态功能。本研究调查了丰林国家级自然保护区固定样地中木腐真菌的多样性和倒木特征, 并进行了木腐真菌的物种多样性和数量与倒木的种类、数量、腐朽程度、直径大小等的相关性分析。结果显示: 在样地内共采集木腐真菌标本295份, 经鉴定为93种, Shannon多样性指数为3.86, Simpson指数为0.96。相关性分析发现木腐真菌的数量和种类与直径为2-5 cm和5-10 cm的倒木、2级腐烂的倒木和红松倒木均显著相关。样地中优势倒木寄主分别为槭属(Acer)、榛属(Corylus)、云杉属(Picea)和松属(Pinus), 这4类倒木上生长的木腐真菌种类组成具有明显的差异, 槭属和榛属倒木上的共有优势种主要是三色拟迷孔菌(Daedaleopsis tricolor)、云芝(Trametes versicolor)和桦附毛孔菌(Trichaptum pargamenum), 而松属和云杉属的共有优势种主要有白囊耙齿菌(Irpex lacteus)、云芝、冷杉附毛孔菌(Trichaptum abietinum)和褐紫附毛孔菌(T. fuscoviolaceum)。倒木产生真菌子实体的概率研究表明, 同一类寄主倒木上发生木腐真菌子实体的概率在调查面积增加到0.36 ha后趋于一个定值, 松属倒木中仅有10.2%产生真菌子实体, 槭属和云杉属分别是12.9%和13.4%, 榛属最高, 达到53.7%。本研究结果对于预测森林生态系统中木腐真菌的发生具有重要理论意义。  相似文献   

19.
Most Boletaceae form ectomycorrhizas but species in two sister groups (subfamily Chalciporoideae and the genus Pseudoboletus) have unclear trophic modes and are putatively mycoparasitic. Chalciporoideae is the earliest diverging lineage in Boletaceae and includes Chalciporus and Buchwaldoboletus. Buchwaldoboletus species fruit on wood and were thought to be saprobes, but the type species Buchwaldoboletus lignicola is mycoparasitic on the wood decay fungus Phaeolus schweinitzii. However, the nutritional mode and host range of B. lignicola and other Buchwaldoboletus remain unclear. We obtained fresh collections and axenic cultures of B. lignicola, B. hemichrysus and B. sphaerocephalus from the southeastern USA. We use cultures to examine the phylogenetic relationships among taxa in Chalciporoideae, elucidate the trophic mode of Buchwaldoboletus species and test the effect that Buchwaldoboletus species have on wood decay. Our analysis supports the hypothesis that the Chalciporus lineage is sister to all other Boletaceae but suggests that Buchwaldoboletus is not monophyletic. Confrontation experiments on agar suggest that Buchwaldoboletus species might parasitize a wide range of decay fungi. Buchwaldoboletus hemichrysus and B. sphaerocephalus produce abundant conidia in culture whereas the more distantly related B. lignicola produces sclerotia. Wood decay assays show that Buchwaldoboletus species did not have a significant effect on the decay caused by wood decay fungi. Interestingly, when B. lignicola or B. hemichrysus were inoculated alone on wood both species decayed wood, producing a brown rot that can cause 35–65% mass loss over 6 months. Our results suggest that Buchwaldoboletus species have a dual trophic mode as saprobes and mycoparasites.  相似文献   

20.
《Fungal Biology Reviews》2007,21(2-3):67-74
Sufficient biodiversity is required for ecosystem functions. The question is how we can assess required biodiversity if we are able to recognize only a fraction of diversity, and/or unable to place a known species into a trophic level or into their niche dimensions. The species diversity of higher plants and animals usually can be assessed in most terrestrial environments. In contrast, microbial diversity is often ignored although the number and genetic diversity of microbes is enormous, and are profoundly important as plant and animal mutualists, pathogens, parasites and saprobes. Thus, one of the biggest challenges when disentangling relevant diversity to ecosystem functions is to reveal composition of focal microbial assemblage and the place of the key groups of them in the food web. In this review I focus on ubiquitous but poorly understood group of foliar fungi, asymptomatic endophytic fungi, of woody plants emphasizing how geographic, age and genetic structure of forest might affect endophyte-plant interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号