首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To predict outbreaks of infectious disease and to prevent epidemics, it is essential not only to conduct pathological studies but also to understand the interactions between the environment, pathogen, host and humans that cause and spread infectious diseases. Outbreaks of mass mortality in carp caused by Cyprinid herpesvirus 3 (CyHV-3), formerly known as koi herpesvirus (KHV), disease have occurred worldwide since the late 1990s. We proposed an environment?CKHV?Ccarp?Chuman linkage as a conceptual model for ??environmental diseases?? and specify research subjects that might be necessary to construct and shape this linkage.  相似文献   

3.
This case report shows a genealogical study where a woman has limb hypertrophy and her son has an association of Sturge–Weber syndrome with Klippel–Trenaunay–Weber syndrome. The Sturge–Weber and Klippel–Trenaunay–Weber syndromes appear to be different manifestations of the same affliction. Familial aggregation exists and transmission may be almost imperceptible between generations. Identification of minor manifestations may prove to be a valuable contribution to genetic counseling of families and the prevention of new cases.  相似文献   

4.
5.
Electrospun nanofibrous scaffolds varying different materials are fabricated for tissue engineering. PLGA, silk fibroin, and collagen-derived scaffolds have been proved on good biocompatibility with neurons. However, no systematic studies have been performed to examine the PLGA-silk fibroin-collagen (PLGA-SF-COL) biocomposite fiber matrices for nerve tissue engineering. In this study, different weight ratio PLGA-SF-COL (50:25:25, 30:35:35) scaffolds were produced via electrospinning. The physical and mechanical properties were tested. The average fiber diameter ranged from 280 + 26 to 168 + 21 nm with high porosity and hydrophilicity; the tensile strength was 1.76 ± 0.32 and 1.25 ± 0.20 Mpa, respectively. The results demonstrated that electrospinning polymer blending is a simple and effective approach for fabricating novel biocomposite nanofibrous scaffolds. The properties of the scaffolds can be strongly influenced by the concentration of collagen and silk fibroin in the biocomposite. To assay the cytocompatibility, Schwann cells were seeded on the scaffolds; cell attachment, growth morphology, and proliferation were studied. SEM and MTT results confirmed that PLGA-SF-COL scaffolds particularly the one that contains 50% PLGA, 25% silk fibroin, and 25% collagen is more suitable for nerve tissue engineering compared to PLGA nanofibrous scaffolds.  相似文献   

6.
7.
The maternal separation (MS) animal model has been widely used to study early life stress and several psychiatric conditions such as depression and anxiety. In this study, we investigated the effect of acupuncture on anxiety-related behaviors and hypothalamic-pituitary-adrenal (HPA) system in MS-induced early life stress of Sprague-Dawley rat pups (14-21 postnatal days). For determining anxiety-related behaviors, the elevated plus-maze test was performed. The effects of acupuncture on the activation of stress were measured by assessing plasma levels of corticosterone (CORT) and adrenocorticotropin hormone (ACTH). The hypothalamic immunoreactivity (IR) of arginine vasopressin (AVP) was also examined. Acupuncture was conducted at acupoint HT7, which is used to treat mental disorders in Oriental medicine, for seven consecutive days. Acupuncture significantly decreased the frequencies of open arm entries and the amount of time spent in the open arms in MS rats. In addition, acupuncture reduced CORT and ACTH levels in plasma of MS rats, and AVP-IR in the hypothalamic paraventricular nucleus of MS rats. In conclusion, acupuncture reduced anxiety-related behaviors and modulated the HPA system. These findings suggest that acupuncture at HT7 may be useful as a therapeutic treatment in MS-induced early life stress.  相似文献   

8.
9.
Biogeochemistry is hosting this special thematic issue devoted to studies of land?Cwater interactions, as part of the Large-scale Biosphere?CAtmosphere Experiment in Amazônia (LBA). This compilation of papers covers a broad range of topics with a common theme of coupling land and water processes, across pristine and impacted systems. Findings highlighted that hydrologic flowpaths are clearly important across basin size and structure in determining how water and solutes reach streams. Land-use changes have pronounced impacts on flowpaths, and subsequently, on stream chemistry, from small streams to large rivers. Carbon is produced and transformed across a broad array of fluvial environments and wetlands. Surface waters are not only driven by, but provide feedback to, the atmosphere.  相似文献   

10.
Tuberculosis (TB) is a disease of antiquity. Yet TB today still causes more adult deaths than any other single infectious disease. Recent studies show that contrary to the common view postulating an animal origin for TB, Mycobacterium tuberculosis complex (MTBC), the causative agent of TB, emerged as a human pathogen in Africa and colonized the world accompanying the Out-of-Africa migrations of modern humans. More recently, evolutionarily ‘modern’ lineages of MTBC expanded as a consequence of the global human population increase, and spread throughout the world following waves of exploration, trade and conquest. While epidemiological data suggest that the different phylogenetic lineages of MTBC might have adapted to different human populations, overall, the phylogenetically ‘modern’ MTBC lineages are more successful in terms of their geographical spread compared with the ‘ancient’ lineages. Interestingly, the global success of ‘modern’ MTBC correlates with a hypo-inflammatory phenotype in macrophages, possibly reflecting higher virulence, and a shorter latency in humans. Finally, various human genetic variants have been associated with different MTBC lineages, suggesting an interaction between human genetic diversity and MTBC variation. In summary, the biology and the epidemiology of human TB have been shaped by the long-standing association between MTBC and its human host.  相似文献   

11.
12.
13.
14.
Although protein–RNA interactions (PRIs) are involved in various important cellular processes, compiled data on PRIs are still limited. This contrasts with protein–protein interactions, which have been intensively recorded in public databases and subjected to network level analysis. Here, we introduce PRD, an online database of PRIs, dispersed across several sources, including scientific literature. Currently, over 10,000 interactions have been stored in PRD using PSI-MI 2.5, which is a standard model for describing detailed molecular interactions, with an emphasis on gene level data. Users can browse all recorded interactions and execute flexible keyword searches against the database via a web interface. Our database is not only a reference of PRIs, but will also be a valuable resource for studying characteristics of PRI networks.

Availability

PRD can be freely accessed at http://pri.hgc.jp/  相似文献   

15.

Background

Some of the most exciting advances in pollination biology have resulted from interdisciplinary research combining ecological and evolutionary perspectives. For example, these two approaches have been essential for understanding the functional ecology of floral traits, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant–pollinator interactions. However, as research in these and other areas has progressed, many pollination biologists have become more specialized in their research interests, focusing their attention on either evolutionary or ecological questions. We believe that the continuing vigour of a synthetic and interdisciplinary field like pollination biology depends on renewed connections between ecological and evolutionary approaches.

Scope

In this Viewpoint paper we highlight the application of ecological and evolutionary approaches to two themes in pollination biology: (1) links between pollinator behaviour and plant mating systems, and (2) generalization and specialization in pollination systems. We also describe how mathematical models and synthetic analyses have broadened our understanding of pollination biology, especially in human-modified landscapes. We conclude with several suggestions that we hope will stimulate future research. This Viewpoint also serves as the introduction to this Special Issue on the Ecology and Evolution of Plant–Pollinator Interactions. These papers provide inspiring examples of the synergy between evolutionary and ecological approaches, and offer glimpses of great accomplishments yet to come.Key words: Floral traits, generalization and specialization, global change, male fitness, mating systems, multiple paternity, plant–pollinator networks, pollen and gene dispersal, pollinator behaviour, pollination syndromes, pollination webs, self-fertilization  相似文献   

16.
In yeast, endosomal sorting of monoubiquitylated transmembrane proteins is performed by a subset of the 19 "class E vacuolar protein sorting" proteins. The core machinery consists of 11 proteins that are organised in three complexes termed ESCRT I-III (endosomal sorting complex required for transport I-III) and is conserved in eukaryotic cells. While the pathway is well understood in yeast and animals, the plant ESCRT system is largely unexplored. At least one sequence homolog for each ESCRT component can be found in the Arabidopsis genome. Generally, sequence conservation between yeast/animals and the Arabidopsis proteins is low. To understand details about participating proteins and complex organization we have performed a systematic pairwise yeast two hybrid analysis of all Arabidopsis proteins showing homology to the ESCRT core machinery. Positive interactions were validated using bimolecular fluorescence complementation. In our experiments, most putative ESCRT components exhibited interactions with other ESCRT components that could be shown to occur on endosomes suggesting that despite their low homology to their yeast and animal counterparts they represent functional components of the plant ESCRT pathway.  相似文献   

17.
18.
19.
Faithful chromosome segregation in meiosis is crucial to form viable, healthy offspring and in most species, it requires programmed recombination between homologous chromosomes. In fission yeast, meiotic recombination is initiated by Rec12 (Spo11 homolog) and generates single Holliday junction (HJ) intermediates, which are resolved by the Mus81–Eme1 endonuclease to generate crossovers and thereby allow proper chromosome segregation. Although Mus81 contains the active site for HJ resolution, the regulation of Mus81–Eme1 is unclear. In cells lacking Nse5–Nse6 of the Smc5–Smc6 genome stability complex, we observe persistent meiotic recombination intermediates (DNA joint molecules) resembling HJs that accumulate in mus81Δ cells. Elimination of Rec12 nearly completely rescues the meiotic defects of nse6Δ and mus81Δ single mutants and partially rescues nse6Δ mus81Δ double mutants, indicating that these factors act after DNA double-strand break formation. Likewise, expression of the bacterial HJ resolvase RusA partially rescues the defects of nse6Δ, mus81Δ and nse6Δ mus81Δ mitotic cells, as well as the meiotic defects of nse6Δ and mus81Δ cells. Partial rescue likely reflects the accumulation of structures other than HJs, such as hemicatenanes, and an additional role for Nse5–Nse6 most prominent during mitotic growth. Our results indicate a regulatory role for the Smc5–Smc6 complex in HJ resolution via Mus81–Eme1.  相似文献   

20.
Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity–ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH4-N into the water column, but no effect of species richness on the release of PO4-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号