首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Fibromyalgia (FM) is a chronic musculoskeletal pain disorder, characterized by chronic widespread pain and bodily tenderness and is often accompanied by affective disturbances, however often with unknown etiology. According to recent reports, physical and psychological stress trigger FM. To develop new treatments for FM, experimental animal models for FM are needed to be development and characterized. Using a mouse model for FM including intermittent cold stress (ICS), we hypothesized that ICS leads to morphological alterations in skeletal muscles in mice.

Methods

Male and female ICS mice were kept under alternating temperature (4°C/room temperature [22°C]); mice constantly kept at room temperature served as control. After scarification, gastrocnemius and soleus muscles were removed and snap-frozen in liquid nitrogen–cooled isopentane or fixed for electron microscopy.

Results

In gastrocnemius/soleus muscles of male ICS mice, we found a 21.6% and 33.2% decrease of fiber cross sectional area (FCSA), which in soleus muscle concerns the loss of type IIa and IIx FCSA. This phenomenon was not seen in muscles of female ICS mice. However, this loss in male ICS mice was associated with an increase in gastrocnemius of the density of MIF+ (8.6%)-, MuRF+ (14.7%)-, Fbxo32+ (17.8%)-cells, a 12.1% loss of capillary contacts/muscle fiber as well as a 30.7% increase of damaged mitochondria in comparison with male control mice. Moreover, significant positive correlations exist among densities (n/mm2) of MIF+, MuRF+, Fbxo32+-cells in gastrocnemius/ soleus muscles of male ICS mice; these cell densities inversely correlate with FCSA especially in gastrocnemius muscle of male ICS mice.

Conclusion

The ICS-induced decrease of FCSA mainly concerns gastrocnemius muscle of male mice due to an increase of inflammatory and atrogenic cells. In soleus muscle of male ICS and soleus/gastrocnemius muscles of female ICS mice morphological alterations seem to occur not at all or delayed. The sex-specificity of findings, which is not easily reconciled with the epidemiology of FM (female predominance), implicate that gastrocnemius muscle of male ICS mice should preferentially be used for future investigations with FM. Moreover, we suggest to investigate morphological and/or molecular alterations at different time-points (up to two weeks) after ICS.  相似文献   

2.
Effect of cocaine on responses of mouse phrenic nerve-diaphragm preparation   总被引:1,自引:1,他引:0  
Effects of 5 to 40 microM cocaine on the compound action potential (AP) and tension responses of the mouse phrenic nerve-diaphragm preparation were monitored following nerve and muscle stimulation at 37 degrees C. Cocaine caused concentration dependent reduction in amplitude of the nerve AP, muscle AP, and tension response to a single nerve stimulus, and greater reduction in amplitude of these responses to repetitive nerve stimuli at 100 Hz for 0.5 sec. Cocaine caused similar reduction in the muscle AP and tension responses to direct muscle stimulation in the presence or absence of curare, and markedly reduced the overshoot, total potential, and maximum rate of rise and fall of intracellularly recorded muscle AP, without affecting the resting potential, or the contracture responses evoked by caffeine. These results indicate that cocaine reduces skeletal muscle function by reducing the excitability of muscle and nerve membranes, without significantly affecting neuromuscular transmission, excitation-contraction coupling or contractility.  相似文献   

3.
Transients of the change in the length of the soleus, gastrocnemius, and plantaris muscles of the hind limb of the cat during gradual changes in the frequency of distributed efferent stimulation were recorded under isotonic conditions. It is shown that the dynamics of the investigated system is essentially nonlinear: The values of the time constants of the transients depended on the amplitude and sign of the input actions. With transition from shortening to lengthening of the muscle the time constants decreased abruptly, with increase of the absolute value of the amplitude of the transient they also decreased. According to the results of many experiments in the range of small values of the amplitudes of transients (up to 35% of the maximum amplitude), the values of the time constants for the soleus muscle were 1.15±0.09 sec for shortening and 0.40±0.07 sec for lengthening and for the gastrocnemius and plantaris muscles respectively 0.51±0.08 and 0.21±0.04 sec. These values are closely related to the corresponding values of the time constants of the external load-muscle length transients investigated earlier. The functional significance of nonlinear dynamic properties of muscular contraction is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 4, pp. 468–475, July–August, 1985.  相似文献   

4.
Action potentials (APs) were recorded from the extrajunctional membrane of surface fibers of the fast-twitch extensor digitorum longus (extensor) and the slow-twitch soleus muscles of adult rats. APs of the extensor muscle had a significantly faster rate of rise and fall, as well as a shorter duration, than those of the soleus. In addition, the overshoot of APs and the resting membrane potential was greater for the extensor. Whereas the soleus produced only one AP regardless of the stimulus duration, the number of extensor responses was directly proportional to the stimulus duration. This repetitive activity was greatly reduced by a concentration of tetrodotoxin (TTX) as low as 5 X 10(11) g/ml. Within 8 d after crush of the nerves to these two muscles, all differences in AP properties disappeared and both muscles became partially resistant to TTX. Reinnervation brought about a redifferentiation so that differences in AP were again significant at 22 d after nerve crush. However, the rate of rise of extensor APs did not attain normal values even as late as 60 d after nerve crush. APs were found to be the same for extensor and soleus muscles from 12-d-old rats. At 18 d after birth, rate of rise was equivalent to that of adult muscle for the soleus although 50--60 d were required before this parameter was fully mature for the extensor. Nevertheless, APs of the extensor and soleus were clearly differentiated within 25 d after birth. Differences in fast and slow muscle APs are discussed with regard to differences in ion gradients and sarcolemmal conductance.  相似文献   

5.
It has previously been shown that prolonged exercise of moderate intensity reduces the content of ceramide in each type of skeletal muscle. This was accompanied by a reduction in the activity of neutral, Mg++-dependent sphingomyelinase (the major enzyme responsible for ceramide formation from sphingomyelin) in the soleus and red gastrocnemius, but not in the white gastrocnemius (A. Dobrzyń and J. Górski, Am. J. Physiol.: Endorcinol. Metab. 282: E277 - E285, 2002). No other data on regulation of ceramide metabolism in contracting muscles are available. The aim of the present study was to examine the content of sphinganine (a key precursor of ceramide on the de novo synthesis route) and the content of sphingosine (the main product of ceramide catabolism) in different skeletal muscle types after two kinds of acute exercise. The experiments were carried out on 30 male Wistar rats, 250 - 280 g of body weight. The rats were divided equally into three groups: 1 - control, 2 - run until exhaustion (1200 m/h, +10 degree incline), 3 - a group in which the sciatic nerve was stimulated 10 min with tetanic pulses (60 pulses/min). Samples were taken of the soleus and of the red and white section of the gastrocnemius. These muscles are composed mostly of the slow-twitch oxidative, fast-twitch oxidative-glycolytic and fast-twitch glycolytic fibers, respectively. Lipids were extracted with chloroform/methanol. Sphinganine and sphingosine were quantified by high-performance liquid chromatography. At rest, the content of sphinganine in the soleus was higher than in the red gastrocnemius (p < 0.05), and in the latter, it was higher than in the white gastrocnemius (p < 0.01). Prolonged exercise increased the content of sphinganine approximately 6-fold in each muscle. The resting content of sphingosine in the soleus and in the red gastrocnemius was similar--higher than in the white gastrocnemius (p < 0.001 and p < 0.01, respectively). The content of sphingosine increased over 3-fold in the soleus and nearly 2-fold in the red and white sections of the gastrocnemius. Stimulation of the sciatic nerve increased the content of both compounds approximately 2-fold in each muscle. We conclude that acute exercise increases both de novo synthesis and catabolism of ceramide in skeletal muscles. Accumulation of sphingosine in contracting muscles may contribute to the development of fatigue.  相似文献   

6.
7.
Alkaline phosphatase (AP) activities are present in rat gastrocnemius:48.7, plantaris: 68.9, tibialis anterior: 69.1 and soleus: 96.7 nmol phenol. min-1. 100 mg muscles-1. These concentrations are one and two orders of magnitude lower than those observed in duodenum and placenta, but similar to those observed in liver. Response to activators/inhibitors and electrophoretic behaviour assign the muscle AP activities to the rat liver/placenta isoenzyme group. Motor denervation does not affect significantly the total muscle AP content within the first 30 postoperative days, however the concomitant variations in muscle weight are responsible for wide differences in AP concentrations between innervated, denervated and reinnervated muscles. Parallel determinations of radiophosphate uptake and AP activities failed to document a necessary link between the two variables, i.e. between enzyme concentration and phosphate ion transport.  相似文献   

8.
The purpose of this study was to verify the difference between carrying a load on the sacrum (LOS) and on the lumbar vertebrae (LOL) in oxygen uptake, muscle activities, heart rate, cadence, and subjective response. Nine males (26.7 +/- 3.1 years old), each carrying a 7.5 kg carrier frame and a 40 kg load, walked on a treadmill at a speed of 50 m/min. EMGs were recorded from the trapezius, rectus abdominis, erector spinae, vastus lateralis, rectus femoris, vastus medialis, biceps femoris long head, tibial anterior, soleus, medial head of gastrocnemius, and the lateral head of gastrocnemius. For each subject the integrated EMG (IEMG) was normalized by dividing the IEMG in the LOL and LOS by the IEMG in a no-load condition (NL) for each investigated muscle. The following was significantly higher in LOL than in LOS: oxygen uptake; IEMG of the tibial anterior, soleus, and medial head of gastrocnemius; cadence; and rated perceived exertion. However, IEMG of the erector spinae was significantly lower in LOL than in LOS. These results suggest that seita-fitting in LOS causes a decrease of leg muscle activities, which causes oxygen uptake to decrease beyond the increase of the erector spinae activity.  相似文献   

9.
A positive inotropic action by the sympathetic nervous system on skeletal muscles has been observed and investigated in animal and in vitro studies. This action provided a theoretical basis for the putative ergogenic action of catecholamines and adrenergic agonists, although there is no clear evidence of this effect in humans. The aim of this study was to investigate the occurrence of inotropic effects associated to physiological sympathetic activation in healthy subjects. The muscle force capacity was investigated in the tibialis anterior (n = 9 subjects) and in the soleus (n = 9) muscles electrically stimulated with single pulses and double pulses with variable interspike interval (4-1,000 ms) and short pulse trains (frequency: 5-14 Hz) before, during, and after sympathetic activation by the cold pressor test (CPT). CPT significantly decreased by 10.4 ± 7.2 and 10.6 ± 4.4% the force produced by single and double pulse stimulation, respectively, and produced smaller decreases in the force obtained by train stimulation in the tibialis anterior, while no significant changes were observed in either type of contraction in the soleus muscle. CPT failed to induce any increase in the force capacity of the investigated muscles. The prevalent decrease in force evidenced in this study supports the concept that the weakening sympathetic action on type I fiber, already shown to occur in humans, prevails over the putative potentiating action.  相似文献   

10.
In mice, certain proteins show a highly confined expression in specific muscle groups. Also, resting and exercise/contraction-induced phosphorylation responses are higher in rat skeletal muscle with low mitochondrial content compared to muscles with high mitochondrial content, possibly related to differential reactive oxygen species (ROS)-scavenging ability or resting glycogen content. To evaluate these parameters in humans, biopsies from soleus, gastrocnemius and vastus lateralis muscles were taken before and after a 45 min inclined (15%) walking exercise bout at 69% VO2(max) aimed at simultaneously activating soleus and gastrocnemius in a comparable dynamic work-pattern. Hexokinase II and GLUT4 were 46-59% and 26-38% higher (p<0.05) in soleus compared to the two other muscles. The type I muscle fiber percentage was highest in soleus and lowest in vastus lateralis. No differences were found in protein expression of signalling proteins (AMPK subunits, eEF2, ERK1/2, TBC1D1 and 4), mitochondrial markers (F1 ATPase and COX1) or ROS-handling enzymes (SOD2 and catalase). Gastrocnemius was less active than soleus measured as EMG signal and glycogen use yet gastrocnemius displayed larger increases than soleus in phosphorylation of AMPK Thr172, eEF2 Thr56 and ERK 1/2 Thr202/Tyr204 when normalised to the mean relative EMG-signal. In conclusion, proteins with muscle-group restricted expression in mice do not show this pattern in human lower extremity muscle groups. Nonetheless the phosphorylation-response is greater for a number of kinase signalling pathways in human gastrocnemius than soleus at a given activation-intensity. This may be due to the combined subtle effects of a higher type I muscle fiber content and higher training status in soleus compared to gastrocnemius muscle.  相似文献   

11.
We examined whether electrical field stimulation with varying characteristics could excite isolated mammalian skeletal muscle through different sites. Supramaximal (20-V, 0.1-ms) pulse stimulation with transverse wire or parallel plate electrodes evoked similar forces in nonfatigued slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles from mice. d-tubocurarine shifted the twitch force-stimulation strength relationship toward higher pulse strengths with both electrode configurations in soleus muscle, suggesting that weaker pulses excite muscle via neuromuscular transmission. With wire stimulation, movement of the recording electrode along the muscle caused a delay between the stimulus artifact and the peak of the action potential, consistent with action potential propagation along the sarcolemma. TTX abolished all contractions evoked with 20-V, 0.1-ms pulses, suggesting that excitation occurred via voltage-dependent Na+ channels and, hence, muscle action potentials. TTX did not prevent force development with > or = 0.4-ms pulses in soleus or 1-ms pulses in EDL muscle. Furthermore, myoplasmic Ca2+ (i.e., the fura 2 ratio) and sarcomere shortening were greater during tetanic stimulation with 2.0-ms than with 0.5-ms pulses in flexor digitorum brevis fibers from rats. TTX prevented all shortening and Ca2+ release with 0.5-ms, but not 2.0-ms, pulses, indicating that longer pulses can directly trigger Ca2+ release. Hence, proper interpretation of mechanistic studies requires precise understanding of how muscles are excited; otherwise, incorrect conclusions can be made. Using this new understanding, we showed that disrupted propagation of action potentials along the surface membrane is a major cause of fatigue in soleus muscle that is focally and continuously stimulated at 125 Hz.  相似文献   

12.
Six groups of 5 male rats (starting body weight 109 g) were allowed free access to a conventional rat diet. At 4 hourly intervals, starting at 10.00 h muscle protein synthesis was measured. By relating the weights of the gastrocnemius and soleus muscles to the initial body weights of the animals (i.e., at 09.30, day 1), a linear increase in muscle weight throughout the day was demonstrated. The fractional rate of muscle protein synthesis varied from 16.8% per day to 20.3% per day in gastrocnemius muscle and from 17.9% per day and 22.1% per day in the soleus. It was calculated that the maximum error incurred in estimating daily muscle protein synthesis by extrapolation of the value at any one time was 6% in gastrocnemius and 9% in soleus. It is concluded that calculations of the average rate of muscle protein degradation based on the difference between the rates of synthesis and deposition are generally valid in rats allowed free access to an adequate diet.  相似文献   

13.
Voltage-dependent anion channels (VDACs) form the main pathway for metabolites across the mitochondrial outer membrane. The mouse vdac1 gene has been disrupted by gene targeting, and the resulting mutant mice have been examined for defects in muscle physiology. To test the hypothesis that VDAC1 constitutes a pathway for ADP translocation into mitochondria, the apparent mitochondrial sensitivity for ADP (Km(ADP)) and the calculated rate of respiration in the presence of the maximal ADP concentration (Vmax) have been assessed using skinned fibers prepared from two oxidative muscles (ventricle and soleus) and a glycolytic muscle (gastrocnemius) in control and vdac1(-/-) mice. We observed a significant increase in the apparent Km((ADP)) in heart and gastrocnemius, whereas the V(max) remained unchanged in both muscles. In contrast, a significant decrease in both the apparent Km((ADP)) and V(max) was observed in soleus. To test whether VDAC1 is required for creatine stimulation of mitochondrial respiration in oxidative muscles, the apparent Km((ADP)) and Vmax were determined in the presence of 25 mm creatine. The creatine effect on mitochondrial respiration was unchanged in both heart and soleus. These data, together with the significant increase in citrate synthase activity in heart, but not in soleus and gastrocnemius, suggest that distinct metabolic responses to altered mitochondrial outer membrane permeability occur in these different striated muscle types.  相似文献   

14.
1. The effects of hyperthyroidism and hypothyroidism on the concentrations of glutamine and other amino acids in the muscle and plasma and on the rates of glutamine and alanine release from incubated isolated stripped soleus muscle of the rat were investigated. 2. Hyperthyroidism decreased the concentration of glutamine in soleus muscle but was without effect on that in the gastrocnemius muscle or in the plasma. Hyperthyroidism also increased markedly the rate of release of glutamine from the incubated soleus muscle. 3. Hypothyroidism decreased the concentrations of glutamine in the gastrocnemius muscle and plasma but was without effect on that in soleus muscle. Hypothyroidism also decreased markedly the rate of glutamine release from the incubated soleus muscle. 4. Thyroid status was found to have marked effects on the rate of glutamine release by skeletal muscle per se, and may be important in the control of this process in both physiological and pathological conditions.  相似文献   

15.
Twitch speeds and potentiating capacities have been determined for human medial and lateral gastrocnemius and soleus muscles. The experiments involved and application of submaximal stimuli to the respective muscle bellies, with monitoring of the evoked compound action potentials (M-waves) during repetitive stimulation. Contrary to an earlier report, the lateral gastrocnemius was found to have a significantly shorter mean contraction time (100.0 +/- 10.8 ms) than the soleus (156.5 +/- 14.7 ms) and this value was also significantly different from that of the medial gastrocnemius (113.7 +/- 19.6 ms). The mean half-relaxation time for each muscle also differed significantly from those for the other two muscles. A further contrast between the muscles was that potentiation of the twitch, following a 3-s tetanus at 50 Hz, was significantly greater in the lateral gastrocnemius than in soleus (mean values 60.4 +/- 43.1% and 2.6 +/- 3.3% respectively.  相似文献   

16.
Only few data are available on the effect of training on phospholipid metabolism in skeletal muscles. The aim of the present study was to examine the effect of 6 weeks of endurance training on the content of particular phospholipid fractions and on the incorporation of blood-borne [14C]-palmitic acid into the phospholipids in different skeletal muscles (white and red sections of the gastrocnemius, the soleus and the diaphragm) of the rat. Lipids were extracted from the muscles and separated using thin-layer chromatography into the following fractions: sphingomyelin, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, cardiolipin and neutral lipids (this fraction being composed mostly of triacylglycerols). It was found that training did not affect the content of any phospholipid fraction in soleus muscle. It increased the content of sphingomyelin in white gastrocnemius muscle, cardiolipin and phosphatidylethanolamine in red gastrocnemius muscle and phosphatidylinositol in white gastrocnemius muscle and diaphragm. The total phospholipid content in red gastrocnemius muscle of the trained group was higher than in the control group. Training reduced the specific activity of sphingomyelin and cardiolipin in all muscles, phosphatidylcholine in soleus, red, and white gastrocnemius muscles, phosphatidylserine in all muscles, phosphatidylinositol in all except the soleus muscle, and phosphatidylethanolamine in hindleg muscles, but not in the diaphragm compared to the corresponding values in the sedentary group. It was concluded that endurance training affects skeletal muscle phospholipid content and the rate of incorporation of the blood-borne [14C]palmitic acid into the phospholipid moieties.  相似文献   

17.
Hypotheses were tested that the deficit in maximum isometric force normalized to muscle cross-sectional area (i.e., specific Po, N/cm2) of hypertrophied muscle would return to control value with time and that the rate and magnitude of adaptation of specific force would not differ between soleus and plantaris muscles. Ablation operations of the gastrocnemius and plantaris muscles or the gastrocnemius and soleus muscles were done to induce hypertrophy of synergistic muscle left intact in female Wistar rats (n = 47) at 5 wk of age. The hypertrophied soleus and plantaris muscles and control muscles from other age-matched rats (n = 22) were studied from days 30 to 240 thereafter. Po was measured in vitro at 25 degrees C in oxygenated Krebs-Ringer bicarbonate. Compared with control values, soleus muscle cross-sectional area increased 41-15% from days 30 to 240 after ablation, whereas Po increased 11 and 15% only at days 60 and 90. Compared with control values, plantaris muscle cross-sectional area increased 52% at day 30, 40% from days 60 through 120, and 15% at day 240. Plantaris muscle Po increased 25% from days 30 to 120 but at day 240 was not different from control value. Changes in muscle architecture were negligible after ablation in both muscles. Specific Po was depressed from 11 to 28% for both muscles at all times. At no time after the ablation of synergistic muscle did the increased muscle cross-sectional area contribute fully to isometric force production.  相似文献   

18.
Objective: To understand the role of hyperinsulinemia in intramyocellular (imc) triglyceride (TG) accumulation and in regulating imcTG turnover. Research Methods and Procedures: imcTG was first prelabeled by continuous infusion of [U‐14C]glycerol (pulse), and then the rate of label loss from the prelabeled imcTG pool (turnover) in gastrocnemius, tibialis anterior, and soleus muscle of awake, high‐fat‐fed obese rats during the subsequent hyperinsulinemic‐euglycemic clamp experiments (chase) was determined. Results: Post‐absorptive basal fractional imcTG turnover rate in soleus was 0.010 ± 0.001/min, significantly lower than that in gastrocnemius (0.026 ± 0.002/min, p < 0.001) or tibialis anterior (0.030 ± 0.002/min, p < 0.0001), a pattern reciprocal to their imcTG pool size. Insulin infusion at 25 pmol/kg per minute resulted in pathophysiological hyperinsulinemia (5‐fold increase over the baseline value). This caused an increase in imcTG turnover by 3‐fold in soleus (0.029 ± 0.006/min, p = 0.002) but a decrease in gastrocnemius (0.012 ± 0.003/min, p = 0.001) and in tibialis anterior (0.0064 ± 0.001/min, p < 0.0001). Pathophysiological hyperinsulinemia suppressed hormone‐sensitive lipase activity in heart (p = 0.01) and mesenteric fat (p = 0.05) but not in skeletal muscle (p > 0.05). The pool size of imcTG was not affected by hyperinsulinemia. Discussion: The results demonstrated muscle‐type dependence in the response of imcTG turnover to hyperinsulinemia in the obesity model. The reciprocal insulin effects on imcTG turnover in oxidative vs. oxidative‐glycolytic muscle indicated a possibility that oxidative muscle contributes more to insulin resistance under hyperinsulinemia if imcTG‐fatty acid oxidation is a function of turnover. imcTG turnover does not seem to regulate imcTG pool size acutely.  相似文献   

19.
The purpose of this study was to determine the time course of flow-induced vasodilation in soleus and gastrocnemius muscle arterioles and the mechanisms that underlie vasodilatory responses to an increase in intraluminal flow. Vasodilation was assessed during 20 min of continuous exposure to intraluminal flow. Both soleus and gastrocnemius muscle arterioles dilated in response to flow, although the magnitude of vasodilation was greater in arterioles from the gastrocnemius muscle. Neither blockade of nitric oxide synthase with N(G)-nitro-L-arginine methyl ester (L-NAME) nor blockade of cyclooxygenase with indomethacin inhibited the initial vasodilation (0-2 min) in arterioles from either muscle. In contrast, vasodilation to sustained exposure to flow (2-20 min) was eliminated by treatment with L-NAME in arterioles from both muscles. Both depolarization with 40 mM KCl and blockade of Ca(2+)-activated K(+) channels inhibited the initial flow-induced dilation, and the inhibition was greater in gastrocnemius muscle arterioles than soleus muscle arterioles. In the presence of L-NAME, prolonged exposure to flow resulted in constriction in soleus and gastrocnemius muscle arterioles. This constriction was abolished by endothelin receptor blockade. These results indicate that the time course and magnitude of flow-induced vasodilation differs between arterioles from soleus and gastrocnemius muscles. The immediate response to increased flow is greater in gastrocnemius muscle arterioles and involves activation of K(+) channels. In arterioles from both soleus and gastrocnemius muscles, vasodilation to sustained flow exposure occurs primarily through production of nitric oxide. In the absence of nitric oxide, sustained exposure to flow results in pronounced constriction that is mediated by endothelin.  相似文献   

20.
The purpose of this study was to test the endurance of the soleus muscle, and to examine the joint position at which it is most active, while simultaneously suppressing the activity of the gastrocnemius. Ten young males performed maximum isometric contraction of the triceps surae for 100 s, and the endurance and plantar flexion torque of this muscle were measured at various angles of the knee and ankle joints. The electromyogram was measured simultaneously and subsequently converted into integrated electromyogram (IEMG) values. With the knee flexed at 130 degrees, the rate of change in IEMG values for the soleus (0.454% x s(-1)) with the ankle in a neutral position was significantly higher than that for the medial and lateral gastrocnemius. Both with the ankle dorsiflexed at 10 degrees and in the neutral position, the rate of change in IEMG for the soleus was significantly higher with the knee flexed at 90 degrees and 130 degrees than with the knee fully extended. With the knee flexed at 90 degrees and 130 degrees, the IEMG activity of the soleus during the initial (5-10 s) and final 5 s tended to be higher than those for the medial and lateral gastrocnemius, regardless of the ankle joint position. We conclude that the position in which the soleus acts most selectively during a sustained maximum isometric contraction of the triceps surae is with the ankle in a neutral position and the knee flexed at 130 degrees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号