首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以小麦叶肉细胞原生质体-激发子互作为研究体系,借助共聚焦激光扫描显微镜观察结合药物学试验,对激发子刺激后不同抗叶锈性小麦品种原生质体[Ca2+]cyt的动态变化和[Ca2+]cyt升高的钙来源进行了研究。结果表明:抗叶锈小麦品种‘洛夫林10’的原生质体在激发子处理后,[Ca2+]cyt明显升高,随后有所下降,但在试验检测时间范围内仍保持较高浓度水平;而感病品种‘郑州5389’经激发子处理后,[Ca2+]cyt只发生轻微的波动。使用质膜钙通道抑制剂抑制胞外钙离子流入胞内,再经激发子处理,原生质体[Ca2+]cyt虽也有升高,但升高幅度大大降低。这一结果表明,激发子刺激诱发的[Ca2+]cyt升高主要源于胞外钙离子内流。  相似文献   

2.
以小麦叶肉细胞原生质体-激发子互作为研究体系,通过免疫荧光标记和Ca~(2 )荧光染料的装载并结合药理学试验,借助激光共聚焦扫描显微镜观察,探讨小麦抵抗叶锈菌侵染过程中微管骨架和Ca~(2 )之间的内在联系。试验结果表明,激发子处理可引起抗性品种原生质体[Ca~(2 )]_(cyt)的升高并诱发微管骨架的解聚,预解聚微管骨架,再用激发子处理,可使抗性品种原生质体[Ca~(2 )]_(cyt)的升高幅度增加。  相似文献   

3.
以小麦叶肉细胞原生质体为材料,通过免疫荧光标记和Ca^2+荧光染料的装载并结合药物学试验,借助激光共聚焦扫描显微镜观察,探讨微管骨架和Ca^2+之间的内在联系。试验结果表明,[Ca^2+]cyt的升高能够诱发微管骨架的解聚;而微管骨架的解聚也会促使胞外Ca^2+内流,进而造成[Ca^2+]cyt的升高。  相似文献   

4.
以小麦叶肉细胞原生质体为材料,通过免疫荧光标记和Ca~(2 )荧光染料的装载并结合药物学试验,借助激光共聚焦扫描显微镜观察,探讨微管骨架和Ca~(2 )之间的内在联系。试验结果表明,[Ca~(2 )]_(cyt)的升高能够诱发微管骨架的解聚;而微管骨架的解聚也会促使胞外Ca~(2 )内流,进而造成[Ca~(2 )]_(cyt)的升高。  相似文献   

5.
以感染叶锈菌的小麦(Triticum aestivum)叶片细胞间隙液IWF-260作为激发子, 刺激小麦品种洛夫林10和郑州5389的悬浮细胞, 探讨由激发子引发悬浮细胞过敏性反应中Ca2+和NO的变化及相互作用。以荧光分子探针Fluo-3AM和DAF-FM DA分别对细胞内Ca2+和NO进行标记, 利用激光共聚焦扫描显微镜对其动态变化进行实时监测, 通过药物学实验对Ca2+和NO的产生机制及其可能存在的相互关系进行探讨。结果表明, 2个小麦品种悬浮细胞的[Ca2+]cyt水平对激发子刺激的反应表现出明显的差异, 对叶锈菌小种表现不亲和的洛夫林10悬浮细胞分别在激发子刺激后330秒和700秒出现2个钙峰; 而对该小种表现亲和的郑州5389悬浮细胞在激发子刺激后[Ca2+]cyt水平稍有波动但变化不明显。药物学实验证明, [Ca2+]cyt的升高依赖于胞外钙离子内流, 钙离子与激发子刺激诱发的过敏性防卫反应紧密相关。同样, 在激发子刺激后, 洛夫林10悬浮细胞出现1个NO峰, 而郑州5389悬浮细胞胞质NO变化不明显。药物学实验初步证明, NO的产生与胞外钙离子内流密切相关。由此推测, 在小麦悬浮细胞应答激发子刺激诱发的过敏性反应中, NO可能在钙的下游发挥作用。  相似文献   

6.
Wang ZH  Hu QH  Zhong H  Deng FM  He F 《生理学报》2011,63(1):39-47
为了探讨小凹蛋白-1(caveolin-1,Cav-1)在人脐静脉内皮细胞(human umbilical vein endothelial cells,HUVECs)细胞外钙敏感受体(extracellular Ca2+-sensing receptor,CaR)介导Ca2+内流中的作用,本实验研究了细胞膜穴样凹陷(caveolae)结构破坏剂Filipin或Cav-1基因沉默后对CaR介导Ca2+内流的影响。Fura-2/AM负载检测细胞内Ca2+浓度(intracellular Ca2+ concentration,[Ca2+]i)。结果显示,HUVECs中CaR对不同浓度细胞外Ca2+刺激无反应。无论细胞外为零钙液或含钙液时,精胺(Spermine,2mmol/L)刺激CaR时均引起[Ca2+]i升高(P<0.05),其中细胞外液为含钙液时,[Ca2+]i升高较细胞外为零钙液时更明显(P<0.05),CaR的负性变构调节剂Calhex231(1μmol/L)均可完全阻断Spermine刺激引起的[Ca2+]i升高(P<0.05);相反,Spermine升高[Ca2+]i作用可被Filipin(1.5μ...  相似文献   

7.
应用激光共聚焦显微镜和全细胞膜片钳技术研究了微丝骨架解聚剂细胞松弛素B(CB)和稳定剂鬼笔环肽(PD)对梨花粉管细胞内钙离子浓度动态变化和尖端质膜上钙离子通道的影响。结果显示:CB处理能促进花粉管内胞质钙离子[Ca2+]i浓度增加,同时还能激活质膜上的钙离子通道;而PD处理对花粉管内[Ca2+]i浓度及钙离子通道几乎没有影响。研究表明,微丝骨架的解聚激活了花粉管质膜上的钙离子通道,使得胞外钙离子大量流入,胞内钙离子浓度升高,从而抑制花粉管生长。  相似文献   

8.
以小麦品种‘石麦15’和‘衡观35’为材料进行营养液水培试验,研究不同浓度硝态氮供应对小麦苗期根系形态、钙离子流特征及钙调蛋白(CaM)含量的影响。结果表明,与适宜浓度硝态氮处理(2.5mmol/L)相比,无外源硝态氮供应时小麦地上部鲜重、硝态氮含量均降低,侧根数量显著减少;高浓度硝态氮处理(50mmol/L)下两个小麦品种地上部硝态氮含量升高,根系总长度降低,‘石麦15’侧根数量减少。无硝态氮和高浓度硝态氮处理下,根系中钙调蛋白含量降低,且‘衡观35’的降低幅度大于‘石麦15’。无外源硝态氮供应时小麦根尖表现出较为明显的钙离子外流特征;与适宜浓度硝态氮处理相比,高硝态氮处理下小麦根尖Ca2+的内流速度显著下降。说明硝态氮供应不足和高浓度硝态氮供应会影响小麦根系生长,根系Ca2+外流或Ca2+内流速度下降,CaM含量减少,Ca2+/CaM可能介导硝态氮调控小麦根系生长发育。  相似文献   

9.
为明确亚油酸影响胰岛β细胞的胞浆游离钙水平([Ca2+]i)的作用和机制,本研究运用胶原酶灌注消化法原代培养大鼠胰岛细胞,使用钙离子荧光指示剂Fluo-3负载细胞后在共聚焦显微镜下观察Fluo-3荧光强度以反映[Ca2+]i变化,灌流给药观察亚油酸等药物的作用,记录结束后采用免疫细胞化学染色方法鉴定β细胞。结果显示,亚油酸(20μmol/L)刺激β细胞[Ca2+]i升高,表现为最初的峰型升高和随后的较为持久的平台期升高。平台期升高可被去除细胞外液中Ca2+所阻断,也可被瞬时受体电位(transient receptor potential,TRP)通道的阻断剂La3+所抑制,峰型升高和平台期升高均被耗竭细胞内钙库的Ca2+或者抑制磷脂酶C活性所阻断。结果表明,亚油酸通过刺激β细胞内钙库的Ca2+释放和激活TRP通道,导致[Ca2+]i升高。  相似文献   

10.
Chen LH  Liu XS  Liu F  Jin BQ 《生理学报》2003,55(3):355-359
为观察CD226单克隆抗体(mAb)对培养人脐静脉内皮细胞(HUVECs)胞质钙离子变化的影响,我们用Fluo-3作为钙指示剂,用激光共聚焦显微镜观测不同状态下CD226 mAb作用后HUVECs胞质钙离子[Ca2 ]i的变化。结果发现:(1)用Hanks液平衡,CD226 mAb作用后HUVECs[Ca2 ]i水平缓慢升高后回到原位;加入二抗(羊抗鼠IgG)交联后[Ca2 ]i水平有较大幅度的升高,随后回到原位,与此同时,细胞外液中[Ca2 ]。水平有一定程度的下降;(2)用D-Hanks液平衡,CD226 mAb作用后HUVECs[Ca2 ]i水平无显著变化,加入二抗发生交联作用后,[Ca2 ]:水平有较大幅度的下降;(3)用EGTA预处理后,CD226 mAb及其二抗交联对HUVECs[Ca2 ]i变化无显著影响。以上结果提示,CD226mAb及其二抗交联可诱导不同状态的HUVECs胞质钙离子水平发生不同程度的变化,从而参与一系列的生理和病理过程。  相似文献   

11.
In non-excitable cells, one major route for Ca2+ influx is through store-operated Ca2+ channels in the plasma membrane. These channels are activated by the emptying of intracellular Ca2+ stores, and in some cell types store-operated influx occurs through Ca2+ release-activated Ca2+ (CRAC) channels. Here, we report that intracellular Ca2+ modulates CRAC channel activity through both positive and negative feedback steps in RBL-1 cells. Under conditions in which cytoplasmic Ca2+ concentration can fluctuate freely, we find that store-operated Ca2+ entry is impaired either following overexpression of a dominant negative calmodulin mutant or following whole-cell dialysis with a calmodulin inhibitory peptide. The peptide had no inhibitory effect when intracellular Ca2+ was buffered strongly at low levels. Hence, Ca2+-calmodulin is not required for the activation of CRAC channels per se but is an important regulator under physiological conditions. We also find that the plasma membrane Ca2+ATPase is the dominant Ca2+ efflux pathway in these cells. Although the activity of the Ca2+ pump is regulated by calmodulin, the store-operated Ca2+ entry is more sensitive to inhibition by the calmodulin mutant than by Ca2+ extrusion. Hence, these two plasmalemmal Ca2+ transport systems may differ in their sensitivities to endogenous calmodulin. Following the activation of Ca2+ entry, the rise in intracellular Ca2+ subsequently feeds back to further inhibit Ca2+ influx. This slow inactivation can be activated by a relatively brief Ca2+ influx (30-60 s); it reverses slowly and is not altered by overexpression of the calmodulin mutant. Hence, the same messenger, intracellular Ca2+, can both facilitate and inactivate Ca2+ entry through store-operated CRAC channels and through different mechanisms.  相似文献   

12.
Prevailing models postulate that high Ca2+ selectivity of Ca2+ release-activated Ca2+ (CRAC) channels arises from tight Ca2+ binding to a high affinity site within the pore, thereby blocking monovalent ion flux. Here, we examined the contribution of high affinity Ca2+ binding for Ca2+ selectivity in recombinant Orai3 channels, which function as highly Ca2+-selective channels when gated by the endoplasmic reticulum Ca2+ sensor STIM1 or as poorly Ca2+-selective channels when activated by the small molecule 2-aminoethoxydiphenyl borate (2-APB). Extracellular Ca2+ blocked Na+ currents in both gating modes with a similar inhibition constant (Ki; ∼25 µM). Thus, equilibrium binding as set by the Ki of Ca2+ blockade cannot explain the differing Ca2+ selectivity of the two gating modes. Unlike STIM1-gated channels, Ca2+ blockade in 2-APB–gated channels depended on the extracellular Na+ concentration and exhibited an anomalously steep voltage dependence, consistent with enhanced Na+ pore occupancy. Moreover, the second-order rate constants of Ca2+ blockade were eightfold faster in 2-APB–gated channels than in STIM1-gated channels. A four-barrier, three–binding site Eyring model indicated that lowering the entry and exit energy barriers for Ca2+ and Na+ to simulate the faster rate constants of 2-APB–gated channels qualitatively reproduces their low Ca2+ selectivity, suggesting that ion entry and exit rates strongly affect Ca2+ selectivity. Noise analysis indicated that the unitary Na+ conductance of 2-APB–gated channels is fourfold larger than that of STIM1-gated channels, but both modes of gating show a high open probability (Po; ∼0.7). The increase in current noise during channel activation was consistent with stepwise recruitment of closed channels to a high Po state in both cases, suggesting that the underlying gating mechanisms are operationally similar in the two gating modes. These results suggest that both high affinity Ca2+ binding and kinetic factors contribute to high Ca2+ selectivity in CRAC channels.  相似文献   

13.
Characterization of the putative Ca2+-gated Ca2+ channel of sarcoplasmic reticulum, which is thought to mediate Ca2+-induced Ca2+ release, was carried out in order to elucidate the mechanism of Ca2+-induced Ca2+ release. Heavy and light fractions of fragmented sarcoplasmic reticulum isolated from rabbit skeletal muscle were loaded passively with Ca2+, and then passive Ca2+ efflux was measured under various conditions. The fast phase of the Ca2+ efflux depended on the extravesicular free Ca2+ concentration and was assigned to the Ca2+ efflux through the Ca2+-gated Ca2+ channel. Vesicles with the Ca2+-gated Ca2+ channels comprised about 85% of the heavy fraction and about 40% of the light fraction. The amount of Ca2+ loaded in FSR was found to be much larger than that estimated on the basis of vesicle inner volume and the equilibration of intravesicular with extravesicular Ca2+, indicating Ca2+ binding inside FSR. Taking this fact into account, the Ca2+ efflux curve was quantitatively analyzed and the dependence of the Ca2+ efflux rate constant on the extravesicular free Ca2+ concentration was determined. The Ca2+ efflux was maximal, with the rate constant of 0.75 s-1, when the extravesicular free Ca2+ was at 3 microM. Caffeine increased the affinity for Ca2+ of Ca2+-binding sites for opening the channel with only a slight change in the maximum rate of Ca2+ efflux. Mg2+ inhibited the Ca2+ binding to the sites for opening the channel while procaine seemed to inhibit the Ca2+ efflux by blocking the ionophore moiety of the channel.  相似文献   

14.
STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx   总被引:15,自引:0,他引:15  
Ca(2+) signaling in nonexcitable cells is typically initiated by receptor-triggered production of inositol-1,4,5-trisphosphate and the release of Ca(2+) from intracellular stores. An elusive signaling process senses the Ca(2+) store depletion and triggers the opening of plasma membrane Ca(2+) channels. The resulting sustained Ca(2+) signals are required for many physiological responses, such as T cell activation and differentiation. Here, we monitored receptor-triggered Ca(2+) signals in cells transfected with siRNAs against 2,304 human signaling proteins, and we identified two proteins required for Ca(2+)-store-depletion-mediated Ca(2+) influx, STIM1 and STIM2. These proteins have a single transmembrane region with a putative Ca(2+) binding domain in the lumen of the endoplasmic reticulum. Ca(2+) store depletion led to a rapid translocation of STIM1 into puncta that accumulated near the plasma membrane. Introducing a point mutation in the STIM1 Ca(2+) binding domain resulted in prelocalization of the protein in puncta, and this mutant failed to respond to store depletion. Our study suggests that STIM proteins function as Ca(2+) store sensors in the signaling pathway connecting Ca(2+) store depletion to Ca(2+) influx.  相似文献   

15.
Ca(2+)-induced Ca(2+) release (CICR) from the sarcoplasmic reticulum (SR) occurs in smooth muscle as spontaneous SR Ca(2+) release or Ca(2+) sparks and, in some spiking tissues, as Ca(2+) release that is triggered by the activation of sarcolemmal Ca(2+) channels. Both processes display spatial localization in that release occurs at a higher frequency at specific subcellular regions. We have used two-photon flash photolysis (TPFP) of caged Ca(2+) (DMNP-EDTA) in Fluo-4-loaded urinary bladder smooth muscle cells to determine the extent to which spatially localized increases in Ca(2+) activate SR release and to further understand the molecular and biophysical processes underlying CICR. TPFP resulted in localized Ca(2+) release in the form of Ca(2+) sparks and Ca(2+) waves that were distinguishable from increases in Ca(2+) associated with Ca(2+) uncaging, unequivocally demonstrating that Ca(2+) release occurs subsequent to a localized rise in [Ca(2+)](i). TPFP-triggered Ca(2+) release was not constrained to a few discharge regions but could be activated at all areas of the cell, with release usually occurring at or within several microns of the site of photolysis. As expected, the process of CICR was dominated by ryanodine receptor (RYR) activity, as ryanodine abolished individual Ca(2+) sparks and evoked release with different threshold and kinetics in FKBP12.6-null cells. However, TPFP CICR was not completely inhibited by ryanodine; Ca(2+) release with distinct kinetic features occurred with a higher TPFP threshold in the presence of ryanodine. This high threshold release was blocked by xestospongin C, and the pharmacological sensitivity and kinetics were consistent with CICR release at high local [Ca(2+)](i) through inositol trisphosphate (InsP(3)) receptors (InsP(3)Rs). We conclude that CICR activated by localized Ca(2+) release bears essential similarities to those observed by the activation of I(Ca) (i.e., major dependence on the type 2 RYR), that the release is not spatially constrained to a few specific subcellular regions, and that Ca(2+) release through InsP(3)R can occur at high local [Ca(2+)](i).  相似文献   

16.
L-type Ca2+ channels in Ca2+ channelopathies   总被引:3,自引:0,他引:3  
Voltage-gated L-type Ca2+ channels (LTCCs) mediate depolarization-induced Ca2+ entry in electrically excitable cells, including muscle cells, neurons, and endocrine and sensory cells. In this review we summarize the role of LTCCs for human diseases caused by genetic Ca2+ channel defects (channelopathies). LTCC dysfunction can result from structural aberrations within pore-forming alpha1 subunits causing incomplete congenital stationary night blindness, malignant hyperthermia sensitivity or hypokalemic periodic paralysis. However, studies in mice revealed that LTCC dysfunction also contributes to neurological symptoms in Ca2+ channelopathies affecting non-LTCCs, such as Ca(v)2.1 alpha1 in tottering mice. Ca2+ channelopathies provide exciting molecular tools to elucidate the contribution of different LTCC isoforms to human diseases.  相似文献   

17.
Using a new fluorescence imaging technique, LAMP, we recently reported that Ca2+ influx through store operated Ca2+ channels (SOCs) strongly inhibits cell coupling in primary human fibroblasts (HF) expressing Cx43. To understand the mechanism of inhibition, we studied the involvement of cytosolic pH (pHi) and Ca2+([Ca2+]i) in the process by using fluorescence imaging and ion clamping techniques. During the capacitative Ca2+ influx, there was a modest decline of pHi measured by BCECF. Decreasing pHi below neutral using thioacetate had little effect by itself on cell coupling, and concomitant pHi drop with thioacetate and bulk [Ca2+i rise with ionomycin was much less effective in inhibiting cell coupling than Ca2+ influx. Moreover, clamping pHi with a weak acid and a weak base during Ca2+ influx largely suppressed bulk pHi drop, yet the inhibition of cell coupling was not affected. In contrast, buffering [Ca2+i with BAPTA, but not EGTA, efficiently prevented cell uncoupling by Ca2+ influx. We concluded that local Ca2+ elevation subjacent to the plasma membrane is the primary cause for closing Cx43 channels during capacitative Ca2+ influx. To assess how Ca2+ influx affects junctional coupling mediated by other types of connexins, we applied the LAMP assay to Hela cells expressing Cx26. Capacitative Ca2+ influx also caused a strong reduction of cell coupling, suggesting that the inhibitory effect by Ca2+ influx may be a more general phenomenon.  相似文献   

18.
Thecoupling mechanism between depletion of Ca2+ stores in theendoplasmic reticulum and plasma membrane store-operated ion channelsis fundamental to Ca2+ signaling in many cell types and hasyet to be completely elucidated. Using Ca2+release-activated Ca2+ (CRAC) channels in RBL-2H3 cells asa model system, we have shown that CRAC channels are maintained in theclosed state by an inhibitory factor rather than being opened by theinositol 1,4,5-trisphosphate receptor. This inhibitory role can befulfilled by the Drosophila protein INAD (inactivation-noafter potential D). The action of INAD requires Ca2+ andcan be reversed by a diffusible Ca2+ influx factor. Thusthe coupling between the depletion of Ca2+ stores and theactivation of CRAC channels may involve a mammalian homologue of INADand a low-molecular-weight, diffusible store-depletion signal.

  相似文献   

19.
Yamashita M  Sugioka M  Ogawa Y 《The FEBS journal》2006,273(15):3585-3597
Ca2+ release from Ca2+ stores is a 'quantal' process; it terminates after a rapid release of stored Ca2+. To explain the quantal nature, it has been supposed that a decrease in luminal Ca2+ acts as a 'brake' on store release. However, the mechanism for the attenuation of Ca2+ efflux remains unknown. We show that Ca2+ release is controlled by voltage- and Ca2+-activated potassium channels in the Ca2+ store. The potassium channel was identified as the big or maxi-K (BK)-type, and was activated by positive shifts in luminal potential and luminal Ca2+ increases, as revealed by patch-clamp recordings from an exposed nuclear envelope. The blockage or closure of the store BK channel due to Ca2+ efflux developed lumen-negative potentials, as revealed with an organelle-specific voltage-sensitive dye [DiOC5(3); 3,3'-dipentyloxacarbocyanine iodide], and suppressed Ca2+ release. The store BK channels are reactivated by Ca2+ uptake by Ca2+ pumps regeneratively with K+ entry to allow repetitive Ca2+ release. Indeed, the luminal potential oscillated bistably by approximately 45 mV in amplitude. Our study suggests that Ca2+ efflux-induced store BK channel closures attenuate Ca2+ release with decreases in counter-influx of K+.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号