首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neurological mouse mutant dystonia musculorum exhibits bizarre appendicular and truncal dystonia without known cerebellar histopathology. We evaluated striatal dopamine and cerebellar norepinephrine metabolism in this mutant and compared the results with those obtained in wild-type BALB/c and B6C3 controls. Tyrosine hydroxylase activity and dopamine metabolite levels (homovanillic acid and 3,4-dihydroxyphenylacetic acid) in the striatum of the mutant were similar to controls. Tyrosine hydroxylase activity and the steady-state level of 3-methoxy-4-hydroxyphenethyleneglycol, a metabolite of norepinephrine, in the cerebellum were 38% and 42-66%, respectively, greater in the mutant. However, the level of norepinephrine was similar (approximately 350 ng/g). Further, a Purkinje cell-specific marker, cGMP-dependent protein kinase, was unchanged in the mutant and no Purkinje cell pathology was observed with light microscopy. The lack of Purkinje cell derangement and similar levels of cerebellar norepinephrine and cGMP-dependent protein kinase activity suggest that increased norepinephrine metabolism in the cerebellum of this mutant is not a morphological response to gross target cell loss during morphogenesis. The observed changes may be a reaction to abnormal impulse traffic or altered input/output pathways to the mutant cerebellum during its development.  相似文献   

2.
The levels of cAMP-dependent protein kinase (type I), or cGMP-dependent protein kinase, or protein I, and of a 23,000 MW substrate for the cGMP-dependent protein kinase were measured in cerebella from normal rats and in the cerebella from rats in which a selective loss of interneurons in the cerebellar cortex had been produced by X-irradiation. A decrease was observed in the concentrations of cAMP-dependent protein kinase and of protein I, whereas an increase was observed in the concentrations of cGMP-dependent protein kinase and of the 23,000 MW substrate. The data, taken together with the results of other studies, support the interpretation that cAMP-dependent protein kinase and protein I are distributed throughout the cerebellum, but that cGMP-dependent protein kinase and the 23,000 MW substrate are highly concentrated in Purkinje cells.  相似文献   

3.
The rat cerebellum contains a significant amount of cGMP-dependent protein kinase, cAMP-dependent and cyclic nucleotide-independent protein kinases, and a large concentration of protein kinase inhibitors. These inhibitors are thermostable proteins which can be separated by gel chromatography into two molecular forms: the type 1 and type 2 inhibitors of protein kinase (14). The type 1 inhibitor blocks the rat cerebellar cAMP-dependent protein kinase activity while the type 2 inhibitor blocks the cGMP-dependent protein kinase, the cAMP-dependent protein kinase, and the cyclic nucleotide-independent protein kinases. The activity of the type 2 inhibitor increased or decreased in opposite direction to changes of cerebellar cGMP content generated by injection of 10 mg/kg harmaline or 2.5 mg diazepam. No changes of type 1 inhibitor were observed under these conditions. The drug-induced shift of type 2 inhibitor of protein kinase was not mediated by changes in protein synthesis because it persisted after pretreatment with cycloheximide. These results are compatible with the hypothesis that cGMP modulates phosphorylation in cerebellum by changing the relationship between cGMP-dependent protein kinase and type 2 inhibitor content.  相似文献   

4.
Pheochromocytoma cells contain amine oxidase (flavin-containing), and convert dopamine and norepinephrine to deaminated metabolites. Dihydroxyphenylacetic acid is the major dopamine metabolite produced by the cells, whereas dihydroxyphenylglycol is the predominant metabolite of norepinephrine. Cells incubated under control conditions produce deaminated dopamine metabolites at a rate of about 30 pmol/min per mg protein, and dihydroxyphenylglycol at a rate of approx. 10 pmol/min per mg protein. Activation of tyrosine 3-monooxygenase increases the formation of dihydroxyphenylacetic acid, but does not greatly affect the production of dihydroxyphenylglycol. Inhibition of aromatic-L-amino-acid decarboxylase decreases the production of dihydroxyphenylacetic acid, but does not alter the production of dihydroxyphenylglycol. These results are consistent with the idea that newly synthesized dopamine represents the major source of cytoplasmic dopamine, whereas cytoplasmic norepinephrine is derived largely from catecholamine stores in secretory vesicles. The concentrations of dopamine and of norepinephrine in the cytoplasm of pheochromocytoma cells were estimated by measuring the substrate dependence of amine oxidase activity in extracts of these cells. By this method, the cytoplasmic concentrations of dopamine and of norepinephrine were estimated to be in the range of 0.5 to 1 microM. Incubation of the cells with extracellular norepinephrine or with reserpine results in an increase in the production of dihydroxyphenylglycol, and in inhibition of tyrosine 3-monoxygenase activity. Both of these effects are presumably mediated by a rise in the cytoplasmic norepinephrine concentration. Analysis of the relationship between norepinephrine metabolism and tyrosine 3-monooxygenase activity indicates that the apparent Ki of this enzyme for norepinephrine in intact cells is 10-15-times the basal cytoplasmic concentration of norepinephrine, or approx. 10 microM.  相似文献   

5.
It is known from the experimental data that at different cerebellar neurons there are voltage-dependent Ca2+ channels, NMDA receptors, metabotropic glutamate and GABAB receptors. This receptor arrangement ensures that activation of excitatory and inhibitory input results in changes in activity of protein kinases and phosphatases and subsequent modification of synaptic efficacy. The mechanism of synaptic plasticity is advanced that in accordance with the known experimental data concerning the modification of excitatory and inhibitory inputs to Purkinje cells, granule cells, and deep cerebellar nuclei cells. The mechanism is based on a postulate that phosphorylation/dephosphorylation of AMPA (GABAA) receptors on cerebellar cells causes the LTP/LTD of excitatory (LTD/LTP of inhibitory) transmission. It is assumed that modification rules for Purkinje cells, granule cells, and deep cerebellar nuclei cells, wherein cGMP-dependent protein kinase G is involved in synaptic plasticity, are distinct from those of hippocampal/neocortical cells, wherein cAMP-dependent protein kinase A is involved in synaptic plasticity, since cGMP (cAMP) concentration decreases (increases) with Ca2+ rise.  相似文献   

6.
The cerebellar hypoplasia induced by hereditary hyperbilirubinemia in the Gunn rat was analyzed neurochemically and immunohistochemically. The antiserum against myelin basic protein was used to visualize the arborization of the fibers in the cerebellum. Arborization was very scarce in the affected lobes of the homozygous (jj) cerebellum. Na,K-ATPase activity did not show significant differences between the jj and the control (Jj) cerebellum. The concentration of norepinephrine in the jj cerebellum was about 1.5 times that of the control. However, the activation ratio of the Na,K-ATPase by norepinephrine and other catecholamines such as dopamine and isoproterenol was about twice as high as the basal activity, and no significant difference was observed between the jj and the Jj cerebella. The glutamic acid decarboxylase activity of the jj cerebellum did not differ significantly from that of the control.  相似文献   

7.
(1) Tyrosine and tryptophan metabolism in brain and peripheral tissues were studied in hypothermic hibernating and normothermic nonhibernating 13-lined ground squirrels (Spermophilus tridecemlineatus). (2) In the hypothermic hibernating state, there were significant elevations of brain stem tyrosine, norepinephrine, and dopamine levels; forebrain norepinephrine and dopamine levels; and cerebellum norepinephrine and tyrosine levels. (3) On the other hand, plasma norepinephrine levels were significantly decreased in hypothermic hibernating squirrels while plasma tyrosine levels were increased. Kidney norepinephrine levels were significantly increased in hypothermic hibernating squirrels, while kidney tyrosine levels were decreased. Total plasma tryptophan and free plasma tryptophan were significantly reduced in hypothermic hibernating squirrels. Hepatic tyrosine aminotransferase Km and Vmax were decreased in hypothermic hibernating squirrels, while tryptophan 2,3-dioxygenase activity was not altered. Plasma and liver albumin were increased in hypothermic hibernating squirrels, while plasma and liver total protein were not altered. (4) These results demonstrate that significant changes in tyrosine and tryptophan metabolism occur in both central and peripheral tissues with concomitant alterations in metabolites during hypothermic hibernation in 13-lined ground squirrels.  相似文献   

8.
The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18–19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22–23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation.  相似文献   

9.
A significant reduction in the content of two members of the sulfoglucuronyl-neolacto series of glycolipids (SGGLs), 3-sulfoglucuronyl-lacto-N-neotetraosylceramide (SGGL-1) and 3-sulfoglucuronyl lacto-N-norhexaosylceramide (SGGL-2), in the cerebellum of the Purkinje cell abnormality mutants, Purkinje cell degeneration (pcd/pcd), lurcher (Lc/+), and staggerer (sg/sg), was also confirmed in the mildly affected nervous (nr/nr) mutant. The expression of SGGLs was studied during development of the pcd/pcd mutant cerebellum, and it was shown that the rate of decline in the level of SGGLs practically coincided with the loss of Purkinje cell perikarya. This indicated that SGGLs are primarily localized in Purkinje cells and that initially, at least, there is no genetic defect in the biosynthesis of SGGLs in the mutant. The precursors of SGGLs, viz., lacto-N-neotetraosylceramide (paragloboside) and lacto-N-norhexaosylceramide, as well as other glycolipids derived from these precursors, such as X-determinant fucoglycolipids and disialosyllacto-N-neotetraosylceramide, were also present in normal cerebellum. Levels of paragloboside and its other derivatives, similar to SGGLs, were also significantly reduced in the Purkinje cell abnormality mutants pcd/pcd, sg/sg, Lc/+, and nr/nr but were normal in other cerebellar mutants, such as quaking (qk/qk), weaver (wv/wv), and reeler (rl/rl), where Purkinje cells are not involved. Thus, the entire paragloboside family of glycolipids is primarily associated with Purkinje cells in the cerebellum. Although levels of monoclonal antibody HNK-1-reactive glycolipids were reduced in the Purkinje cell abnormality mutants, HNK-1-reactive glycoproteins were not affected in these mutants.  相似文献   

10.
The cerebellum controls complex, coordinated, and rapid movements, a function requiring precise timing abilities. However, the network mechanisms that underlie the temporal organization of activity in the cerebellum are largely unexplored, because in vivo recordings have usually targeted single units. Here, we use tetrode and multisite recordings to demonstrate that Purkinje cell activity is synchronized by a high-frequency (approximately 200 Hz) population oscillation. We combine pharmacological experiments and modeling to show how the recurrent inhibitory connections between Purkinje cells are sufficient to generate these oscillations. A key feature of these oscillations is a fixed population frequency that is independent of the firing rates of the individual cells. Convergence in the deep cerebellar nuclei of Purkinje cell activity, synchronized by these oscillations, likely organizes temporally the cerebellar output.  相似文献   

11.
The intraocular transplantation technique was used to study the ingrowth of peripheral sympathetic adrenergic nerves from the iris into transplants of fetal rat cerebellum, and the possible function of these nerves. The transplants, grown in oculo for one-half to eight months, were analyzed by fluorescence histochemistry and electrophysiological techniques. Peripheral sympathetic adrenergic fibers from the iris were able to grow into the cerebellar transplants and arborize in a pattern similar to that in situ, appearing in all three cortical layers and the noncortical areas of the transplants. The density of visible nerves without pretreatment and after preincubation in 10(-6) or 10(-5) M alpha-methylnorepinephrine was comparable to mature rat cerebellum. The spontaneous discharge of the Purkinje cells in oculo was inhibited by microiontophoresis of norepinephrine (NE) and amphetamine in sympathetically innervated, as well as sympathectomized transplants denervated by ganglionectomy. The NE response was blocked by the adrenergic beta-receptor blocker MJ-1999. GABA also inhibited the Purkinje cell activity while glutamate accelerated the discharge. Parenteral amphetamine inhibited Purkinje cell activity in sympathetically innervated transplants, but was ineffective in denervated transplants. The Purkinje cell spontaneous activity was inhibited by electrical stimulation of the NE fiber input through the cervical sympathetic trunk. This inhibition could be antagonized by parenteral reserpine or the beta-adrenergic antagonist propranolol. The responses of the Purkinje cells within the transplants to drugs and transmitters mimic those of the adult rat in situ. In view of the fluorescence histochemical evidence for an ingrowth of peripheral sympathetic adrenergic fibers into the cerebellar transplants, and the results of stimulating the sympathetic trunk, it is suggested that peripheral adrenergic fibers may be able to establish functional connections with the Purkinje cells similar to the cerebellar adrenergic synapses normally formed in situ by fibers from the locus coeruleus.  相似文献   

12.
Cerebellar deficient folia (cdf) is a recently identified mouse mutation causing ataxia and cerebellar abnormalities including lobulation defects and abnormal placement of a specific subset of Purkinje cells. To understand the etiology of the cerebellar defects in cdf mutant mice, we examined postnatal development of the cdf/cdf cerebellum. Our results demonstrate that Purkinje cell ectopia and foliation defects are apparent at birth, suggesting the cdf mutation disrupts the positioning of many, but not all, Purkinje cells during development. In addition to cerebellar abnormalities, we observed lamination defects in the hippocampus of cdf mutant mice, although neocortical defects were not seen. Furthermore, ectopic Purkinje cells in cdf/cdf mice express an increased level of Dab1 protein, as previously observed in mice with mutations in genes in the reelin signaling pathway. Lastly, analysis of cdf <-->ROSA26 chimeric mice demonstrated that the cdf mutation is intrinsic to Purkinje cells. We suggest that the cdf gene product is required in a subset of Purkinje cells, possibly to respond to Reelin signals.  相似文献   

13.
Benzodiazepine receptor binding was measured in cerebellar cortex of 15 patients with dominantly inherited olivopontocerebellar atrophy (OPCA). The majority of these patients had a moderate to marked Purkinje cell loss, as judged by the lowered levels of dentate nucleus gamma-aminobutyric acid (GABA), a marker of Purkinje cells. Despite the reduction in Purkinje cell number cerebellar cortical benzodiazepine receptor density was either normal or slightly elevated in the OPCA patients. These results are in contrast to the findings in a mutant strain of mice deficient in Purkinje cells in which the concentration of benzodiazepine receptors in cerebellum is greatly reduced. Our data indicate that in the human, cerebellar cortical benzodiazepine receptors are either not significantly associated with Purkinje cells or that in OPCA Purkinje cell loss triggers a de novo synthesis of extra benzodiazepine binding sites. It is concluded that, in contrast with the rodent, in the human benzodiazepine receptor binding may not serve as a marker for cerebellar Purkinje cells.  相似文献   

14.
Phosphorylation of ATXN1 at Ser776 in the cerebellum   总被引:1,自引:1,他引:0  
Spinocerebellar ataxia type 1 (SCA1) is one of nine inherited neurodegenerative disorders caused by a mutant protein with an expanded polyglutamine tract. Phosphorylation of ataxin-1 (ATXN1) at serine 776 is implicated in SCA1 pathogenesis. Previous studies, utilizing transfected cell lines and a Drosophila photoreceptor model of SCA1, suggest that phosphorylating ATXN1 at S776 renders it less susceptible to degradation. This work also indicated that oncogene from AKR mouse thymoma (Akt) promotes the phosphorylation of ATXN1 at S776 and severity of neurodegeneration. Here, we examined the phosphorylation of ATXN1 at S776 in cerebellar Purkinje cells, a prominent site of pathology in SCA1. We found that while phosphorylation of S776 is associated with a stabilization of ATXN1 in Purkinje cells, inhibition of Akt either in vivo or in a cerebellar extract-based phosphorylation assay did not decrease the phosphorylation of ATXN1-S776. In contrast, immunodepletion and inhibition of cyclic AMP-dependent protein kinase decreased phosphorylation of ATXN1-S776. These results argue against Akt as the in vivo kinase that phosphorylates S776 of ATXN1 and suggest that cyclic AMP-dependent protein kinase is the active ATXN1-S776 kinase in the cerebellum.  相似文献   

15.
By DNA cloning, we have identified the BSRP (brain-specific receptor-like proteins) family of three members in mammalian genomes. BSRPs were predominantly expressed in the soma and dendrites of neurons and localized in the endoplasmic reticulum (ER). Expression levels of BSRPs seemed to fluctuate greatly during postnatal cerebellar maturation. Triple-knockout mice lacking BSRP members exhibited motor discoordination, and Purkinje cells (PCs) were often innervated by multiple climbing fibers with different neuronal origins in the mutant cerebellum. Moreover, the phosphorylation levels of protein kinase Calpha (PKCalpha) were significantly downregulated in the mutant cerebellum. Because cerebellar maturation and plasticity require metabotropic glutamate receptor signaling and resulting PKC activation, BSRPs are likely involved in ER functions supporting PKCalpha activation in PCs.  相似文献   

16.
Abstract— Slices of cerebellum from Purkinje cell-deficient, neurologically mutant 'nervous' mice or normal littermates synthesized cyclic AMP and cyclic GMP during in vitro incubations. Resting levels of cyclic AMP were the same in the two groups, but accumulations in the presence of kainic acid, a glutamic acid analogue, or norepinephrine were significantly greater in the 'nervous' mice. Resting levels of cyclic GMP were lower in the 'nervous' mice, but the elevations produced by kainic acid were the same in both groups. Adenylate and guanylate cyclase activities in the cerebellum were not affected by the mutation. These findings indicate that cyclic nucleotide synthesis in the cerebellum does not occur solely in the Purkinje cell population.  相似文献   

17.
The beta isoforms of phospholipase C (PLCbetas) are thought to mediate signals from metabotropic glutamate receptor subtype 1 (mGluR1) that is crucial for the modulation of synaptic transmission and plasticity. Among four PLCbeta isoforms, PLCbeta4 is one of the two major isoforms expressed in cerebellar Purkinje cells. The authors have studied the roles of PLCbeta4 by analyzing PLCbeta4 knockout mice, which are viable, but exhibit locomotor ataxia. Their cerebellar histology, parallel fiber synapse formation, and basic electrophysiology appear normal. However, developmental elimination of multiple climbing fiber innervation is clearly impaired in the rostral portion of the cerebellar vermis, where PLCbeta4 mRNA is predominantly expressed in the wild-type mice. In the adult, long-term depression is deficient at parallel fiber to Purkinje cell synapses in the rostral cerebellum of the PLCbeta4 knockout mice. The impairment of climbing fiber synapse elimination and the loss of long-term depression are similar to those seen in mice defective in mGluR1, Galphaq, or protein kinase C. Thus, the authors' results strongly suggest that PLCbeta4 is part of a signaling pathway, including the mGluR1, Galphaq and protein kinase C, which is crucial for both climbing fiber synapse elimination in the developing cerebellum and long-term depression induction in the mature cerebellum.  相似文献   

18.
A protein that exhibits greater substrate specificity for cGMP-dependent protein kinase than for cAMP-dependent protein kinase has been purified 8,000-fold from cytosol of rabbit cerebellum to apparent homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The protein, termed G-substrate, is a monomer of 23,000 daltons. It is heterogeneous on isoelectric focusing, exhibiting three isoelectric forms over the pH range of 5.2-5.6 cGMP-dependent protein kinase catalyzes the incorporation of 2 mol of phosphate/mol of G-substrate, both into threonine residues. The protein has a high content of aspartate, glutamate, and proline. The hydrodynamic properties, heat stability, and acid solubility of this protein are consistent with an unfolded, nonglobular structure. G-substrate is localized primarily in the cytosol of cerebellum, although low concentrations of a phosphorylated protein with a similar molecular weight are detected in other brain regions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号