首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asexual spores (conidia) are the infectious propagules of many pathogenic fungi, and the capacity to sense the host environment and trigger conidial germination is a key pathogenicity determinant. Germination of conidia requires the de novo establishment of a polarised growth axis and consequent germ tube extension. The molecular mechanisms that control polarisation during germination are poorly understood. In the dimorphic human pathogenic fungus Penicillium marneffei, conidia germinate to produce one of two cell types that have very different fates in response to an environmental cue. At 25 degrees C, conidia germinate to produce the saprophytic cell type, septate, multinucleate hyphae that have the capacity to undergo asexual development. At 37 degrees C, conidia germinate to produce the pathogenic cell type, arthroconidiating hyphae that liberate uninucleate yeast cells. This study shows that the p21-activated kinase pakA is an essential component of the polarity establishment machinery during conidial germination and polarised growth of yeast cells at 37 degrees C but is not required for germination or polarised growth at 25 degrees C. Analysis shows that the heterotrimeric G protein alpha subunit GasC and the CDC42 orthologue CflA lie upstream of PakA for germination at both temperatures, while the Ras orthologue RasA only functions at 25 degrees C. These findings suggest that although some proteins that regulate the establishment of polarised growth in budding yeast are conserved in filamentous fungi, the circuitry and downstream effectors are differentially regulated to give rise to distinct cell types.  相似文献   

2.
3.
4.
5.
Ras and Rho GTPases have been examined in a wide variety of eukaryotes and play varied and often overlapping roles in cell polarization and development. Studies in Saccharomyces cerevisiae and mammalian cells have defined some of the central activities of these GTPases. However, these paradigms do not explain the role of these proteins in all eukaryotes. Unlike yeast, but like more complex eukaryotes, filamentous fungi have Rac-like proteins in addition to Ras and Cdc42. To investigate the unique functions of these proteins and determine how they interact to co-ordinately regulate morphogenesis during growth and development we undertook a genetic analysis of GTPase function by generating double mutants of the Rho GTPases cflA and cflB and the newly isolated Ras GTPase rasA from the dimorphic pathogenic fungus, Penicillium marneffei. P. marneffei growth at 25 degrees C is as multinucleate, septate, branched hyphae which are capable of undergoing asexual development (conidiation), while at 37 degrees C, uninucleate pathogenic yeast cells which divide by fission are produced. Here we show that RasA (Ras) acts upstream of CflA (Cdc42) to regulate germination of spores and polarized growth of both hyphal and yeast cells, while also exhibiting CflA-independent activities. CflA (Cdc42) and CflB (Rac) co-ordinately control hyphal cell polarization despite also having unique roles in regulating conidial germination and polarized growth of yeast cells (CflA) and polarized growth of conidiophore cell types and hyphal branching (CflB).  相似文献   

6.
7.
Cytokinesis is essential for proliferative growth but also plays equally important roles during morphogenesis and development. The human pathogen Penicillium marneffei is capable of dimorphic switching in response to temperature, growing in a multicellular filamentous hyphal form at 25°C and in a unicellular yeast form at 37°C. P. marneffei also undergoes asexual development at 25°C to produce multicellular differentiated conidiophores. Thus, P. marneffei exhibits cell division with and without cytokinesis and division by budding and fission, depending on the cell type. The type II myosin gene, myoB, from P. marneffei plays important roles in the morphogenesis of these cell types. Deletion of myoB leads to chitin deposition defects at sites of cell division without perturbing actin localization. In addition to aberrant hyphal cells, distinct conidiophore cell types are lacking due to malformed septa and nuclear division defects. At 37°C, deletion of myoB prevents uninucleate yeast cell formation, instead producing long filaments resembling hyphae at 25°C. The ΔmyoB cells also often lyse due to defects in cell wall biogenesis. Thus, MyoB is essential for correct morphogenesis of all cell types regardless of division mode (budding or fission) and defines differences between the different types of growth.  相似文献   

8.
Heterotrimeric Gα protein Pga1 of Penicillium chrysogenum controls vegetative growth, conidiation and secondary metabolite production. In this work we studied the role of Pga1 in spore germination and resistance to different stress conditions. Strains G203R-T (expressing the dominant inactivating pga1(G203R) allele) and Δpga1 (deleted pga1) showed a delayed and asynchronic germination pattern, and a decrease in the percentage of germination, which occurred in only 70-80% of the total conidia. In contrast, in strains expressing the dominant activating pga1(G42R) allele, germination occurred at earlier times and in 100% of conidia. In addition, strains with the pga1(G42R) allele were able to bypass the carbon source (glucose or sucrose) requirement for germination in about 64% of conidia. Thus Pga1 plays an important, but not essential, role in germination, mediating carbon source sensing. Regulation of germination by Pga1 is probably mediated by cAMP, as intracellular levels of this secondary messenger undergo a peak before the onset of germination only in strains with an active Pga1. Pga1 activity is also a determinant factor in the resistance to different stress conditions. Absence or inactivation of Pga1 allow growth on SDS-containing minimal medium, increase resistance of conidia to thermal and oxidative stress, and increase resistance of vegetative mycelium to thermal and osmotic stress. In contrast, constitutive activation of Pga1 causes a decrease in the resistance of conidia to thermal stress and of vegetative mycelium to thermal and osmotic stress. Together with our previously reported results, we show in this work that Pga1 plays a central role in the regulation of the whole growth-developmental program of this biotechnologically important fungus.  相似文献   

9.
We investigated expression, functionality and subcellular localization of C. albicans Bcy1p, the PKA regulatory subunit, in mutant strains having one BCY1 allele fused to a green fluorescent protein (GFP). DE-52 column chromatography of soluble extracts of yeast cells from strains bearing one BCY1 allele (fused or not to GFP) showed co-elution of Bcy1p and Bcy1p-GFP with phosphotransferase activity, suggesting that interaction between regulatory and catalytic subunits was not impaired by the GFP tag. Subcellular localization of Bcy1p-GFP supports our previous hypothesis on the nuclear localization of the regulatory subunit, which can thus tether the PKA catalytic subunit to the nucleus. Protein modeling of CaBcy1p, showed that the fusion of the GFP tag to Bcy1p C-terminus did not significantly disturb its proper folding. Bcy1p levels in mutant strains having one or both BCY1 alleles, led us to establish a direct correlation between the amount of protein and the number of alleles, indicating that deletion of one BCY1 allele is not fully compensated by overexpression of the other. The morphogenetic behavior of several C. albicans mutant strains bearing one or both BCY1 alleles, in a wild-type and in a TPK2 null genetic background, was assessed in N-acetylglucosamine (GlcNAc) liquid medium at 37 degrees C. Strains with one BCY1 allele tagged or not, behaved similarly, displaying pseudohyphae and true hyphae. In contrast, hyphal morphology was almost exclusive in strains having both BCY1 alleles, irrespective of the GFP insertion. It can be inferred that a tight regulation of PKA activity is needed for hyphal growth.  相似文献   

10.
Previous work showed that the GTP-binding protein Rho1p is required in the yeast, Saccharomyces cerevisiae, for activation of protein kinase C (Pkc1p) and for activity and regulation of beta(1-->3)glucan synthase. Here we demonstrate a hitherto unknown function of Rho1p required for cell cycle progression and cell polarization. Cells of mutant rho1(E45I) in the G1 stage of the cell cycle did not bud at 37 degrees C. In those cells actin reorganization and recruitment to the presumptive budding site did not take place at the nonpermissive temperature. Two mutants in adjacent amino acids, rho1(V43T) and rho1(F44Y), showed a similar behavior, although some budding and actin polarization occurred at the nonpermissive temperature. This was also the case for rho1(E45I) when placed in a different genetic background. Cdc42p and Spa2p, two proteins that normally also move to the bud site in a process independent from actin organization, failed to localize properly in rho1(E45I). Nuclear division did not occur in the mutant at 37 degrees C, although replication of DNA proceeded slowly. The rho1 mutants were also defective in the formation of mating projections and in congregation of actin at the projections in the presence of mating pheromone. The in vitro activity of beta(1-->3)glucan synthase in rho1 (E45I), although diminished at 37 degrees C, appeared sufficient for normal in vivo function and the budding defect was not suppressed by expression of a constitutively active allele of PKC1. Reciprocally, when Pkc1p function was eliminated by the use of a temperature-sensitive mutation and beta(1-->3)glucan synthesis abolished by an echinocandin-like inhibitor, a strain carrying a wild-type RHO1 allele was able to produce incipient buds. Taken together, these results reveal a novel function of Rho1p that must be executed in order for the yeast cell to polarize.  相似文献   

11.
Penicillium marneffei is an opportunistic fungal pathogen of humans and the only dimorphic species identified in its genus. At 25 degrees P. marneffei exhibits true filamentous growth, while at 37 degrees P. marneffei undergoes a dimorphic transition to produce uninucleate yeast cells that divide by fission. Members of the STE12 family of regulators are involved in controlling mating and yeast-hyphal transitions in a number of fungi. We have cloned a homolog of the S. cerevisiae STE12 gene from P. marneffei, stlA, which is highly conserved. The stlA gene, along with the A. nidulans steA and Cryptococcus neoformans STE12alpha genes, form a distinct subclass of STE12 homologs that have a C2H2 zinc-finger motif in addition to the homeobox domain that defines STE12 genes. To examine the function of stlA in P. marneffei, we isolated a number of mutants in the P. marneffei-type strain and, in combination with selectable markers, developed a highly efficient DNA-mediated transformation procedure and gene deletion strategy. Deletion of the stlA gene had no detectable effect on vegetative growth, asexual development, or dimorphic switching in P. marneffei. Despite the lack of a detectable function, the P. marneffei stlA gene complemented the sexual defect of an A. nidulans steA mutant. In addition, substitution rate estimates indicate that there is a significant bias against nonsynonymous substitutions. These data suggest that P. marneffei may have a previously unidentified cryptic sexual cycle.  相似文献   

12.
A screen for temperature-sensitive mutants of Saccharomyces cerevisiae defective in nucleocytoplasmic trafficking of poly(A)+ RNA has identified an allele of the NUP145 gene, which encodes an essential nucleoporin. NUP145 was previously identified by using a genetic synthetic lethal screen (E. Fabre, W. C. Boelens, C. Wimmer, I. W. Mattaj, and E. C. Hurt, Cell 78:275-289, 1994) and by using a monoclonal antibody which recognizes the GLFG family of vertebrate and yeast nucleoporins (S. R. Wente and G. Blobel, J. Cell Biol. 125:955-969, 1994). Cells carrying the new allele, nup145-10, grew at 23 and 30 degrees C but were unable to grow at 37 degrees C. Many cells displayed a modest accumulation of poly(A)+ RNA under permissive growth conditions, and all cells showed dramatic and rapid nuclear accumulation of poly(A)+ RNA following a shift to 37 degrees C. The mutant allele contains a nonsense codon which truncates the 1,317-amino-acid protein to 698 amino acids. This prompted us to examine the role of the carboxyl half of Nup145p. Several additional alleles that encode C-terminally truncated proteins or proteins containing internal deletions of portions of the carboxyl half of Nup145p were constructed. Analysis of these mutants indicates that some sequences between amino acids 698 and 1095 are essential for RNA export and for growth at 37 degrees C. In these strains, nuclear accumulation of poly(A)+ RNA and fragmentation of the nucleolus occurred rapidly following a shift to 37 degrees C. Constitutive defects in nuclear pore complex distribution and nuclear structure were also seen in these strains. Although cells lacking Nup145p grew extremely slowly at 23 degrees C and did not grow at 30 degrees C, efficient growth at 23 or 30 degrees C occurred as long as cells produced either the amino 58% or the carboxyl 53% of Nup145p. Strains carrying alleles of NUP145 lacking up to 200 amino acids from the carboxy terminus were viable at 37 degrees C but displayed nucleolar fragmentation and some nuclear accumulation of poly(A)+ RNA following a shift to 37 degrees C. Surprisingly, these strains grew efficiently at 37 degrees C in spite of a reduction in the level of synthesis of rRNAs to approximately 25% of the wild-type level.  相似文献   

13.
《The Journal of cell biology》1995,131(6):1677-1697
To identify genes involved in the export of messenger RNA from the nucleus to the cytoplasm, we used an in situ hybridization assay to screen temperature-sensitive strains of Saccharomyces cerevisiae. This identified those which accumulated poly(A)+ RNA in their nuclei when shifted to the non-permissive temperature of 37 degrees C. We describe here the properties of yeast strains carrying mutations in the RAT2 gene (RAT - ribonucleic acid trafficking) and the cloning of the RAT2 gene. Only a low percentage of cells carrying the rat2-1 allele showed nuclear accumulation of poly(A)+ RNA when cultured at 15 degrees or 23 degrees C, but within 4 h of a shift to the nonpermissive temperature of 37 degrees C, poly(A)+ RNA accumulated within the nuclei of approximately 80% of cells. No defect was seen in the nuclear import of a reporter protein bearing a nuclear localization signal. Nuclear pore complexes (NPCs) are distributed relatively evenly around the nuclear envelope in wild-type cells. In cells carrying either the rat2-1 or rat2-2 allele, NPCs were clustered together into one or a few regions of the nuclear envelope. This clustering was a constitutive property of mutant cells. NPCs remained clustered in crude nuclei isolated from mutant cells, indicating that these clusters are not able to redistribute around the nuclear envelope when nuclei are separated from cytoplasmic components. Electron microscopy revealed that these clusters were frequently found in a protuberance of the nuclear envelope and were often located close to the spindle pole body. The RAT2 gene encodes a 120-kD protein without similarity to other known proteins. It was essential for growth only at 37 degrees C, but the growth defect at high temperature could be suppressed by growth of mutant cells in the presence of high osmolarity media containing 1.0 M sorbitol or 0.9 M NaCl. The phenotypes seen in cells carrying a disruption of the RAT2 gene were very similar to those seen with the rat2-1 and rat2-2 alleles. Epitope tagging was used to show that Rat2p is located at the nuclear periphery and co-localizes with yeast NPC proteins recognized by the RL1 monoclonal antibody. The rat2-1 allele was synthetically lethal with both the rat3-1/nup133-1 and rat7- 1/nup159-1 alleles. These results indicate that the product of this gene is a nucleoporin which we refer to as Rat2p/Nup120p.  相似文献   

14.
The npgA1 mutation causes defects in the outer layer of the cell wall resulting in a colorless colony. In this study, a temperature-sensitive suppressor of npgA1 named snpA was isolated by UV mutagenesis. The suppressing mutant showed pleiotropic phenotypes in cellular structure and developmental processes when incubated at a temperature of 37 degrees C or above. At 37 degrees C, multiple germ tubes emerged from germinating conidia. Moreover, at 42 degrees C conidia germination was delayed more than 12h and hyphal growth was strongly inhibited. The suppressor allele, snpA6, is recessive and maps to the linkage group III. A gene complementing the mutation was identified employing the chromosome III-specific cosmid library. Sequencing analysis revealed that the snpA gene encodes the eukaryotic polypeptide release factor, eRF1. The snpA6 allele contains a G-A mutation resulting in SnpA(E117K), which may allow read-through of the nonsense mutation in the npgA1 allele in a similar manner to the yeast omni-potent suppressor SUP45 and SUP35.  相似文献   

15.
whiK was one of five new whi loci identified in a recent screen of NTG-induced whi mutants and was defined by three mutants, R273, R318 and R655. R273 and R318 produce long, tightly coiled aerial hyphae with frequent septation. In contrast, R655 shows a more severe phenotype; it produces straight, undifferentiated aerial hyphae with very rare short chains of spores. Subcloning and sequencing showed that whiK encodes a member of the FixJ subfamily of response regulators, with a C-terminal helix-turn-helix DNA-binding domain and an apparently typical N-terminal phosphorylation pocket. Unexpectedly, a constructed whiK null mutant failed to form aerial mycelium, showing that different alleles of this locus can arrest Streptomyces coelicolor development at very distinct stages. As a consequence of the null mutant phenotype, whiK was renamed bldM. The bldM null mutant fits into the extracellular signalling cascade proposed for S. coelicolor and is a member of the bldD extracellular complementation group. The three original NTG-induced mutations that defined the whiK/bldM locus each affected the putative phosphorylation pocket. The mutations in R273 and in R318 were the same, replacing a highly conserved glycine (G-62) with aspartate. The more severe mutant, R655, carried a C-7Y substitution adjacent to the highly conserved DD motif at positions 8-9. However, although bldM has all the highly conserved residues associated with the phosphorylation pocket of conventional response regulators, aspartate-54, the putative site of phosphorylation, is not required for bldM function. Constructed mutant alleles carrying either D-54N or D-54A substitutions complemented the bldM null mutant in single copy in trans, and strains carrying the D-54N or the D-54A substitution at the native chromosomal bldM locus sporulated normally. bldM was not phosphorylated in vitro with either of the small-molecule phosphodonors acetyl phosphate or carbamoyl phosphate under conditions in which a control response regulator protein, NtrC, was labelled efficiently.  相似文献   

16.
Members of the APSES protein group are basic helix-loop-helix (bHLH) proteins that regulate processes such as mating, asexual sporulation and dimorphic growth in fungi. Penicillium marneffei is a human pathogen and is the only member of its genus to display a dimorphic growth transition. At 25 degrees C, P. marneffei grows with a filamentous morphology and produces asexual spores from multicellular con-idiophores. At 37 degrees C, the filamentous morphology is replaced by yeast cells that reproduce by fission. We have cloned and characterized an APSES protein-encoding gene from P. marneffei that has a high degree of similarity to Aspergillus nidulans stuA. Deletion of stuA in P. marneffei showed that it is required for metula and phialide formation during conidiation but is not required for dimorphic growth. This suggests that APSES proteins may control processes that require budding (formation of the metulae and phialides, pseudohyphal growth in Saccharomyces cerevisiae and dimorphic growth in Candida albicans) but not those that require fission (dimorphic growth in P. marneffei). The A. nidulans DeltastuA mutant has defects in both conidiation and mating. The P. marneffei stuA gene was capable of complementing the conidiation defect but could only inefficiently complement the sexual defects of the A. nidulans mutant. This suggests that the P. marneffei gene, which comes from an asexual species, has diverged significantly from the A. nidulans gene with respect to sexual but not asexual development.  相似文献   

17.
Serum induces Candida albicans to make a rapid morphological change from the yeast cell form to hyphae. Contrary to the previous reports, we found that serum albumin does not play a critical role in this morphological change. Instead, a filtrate (molecular mass, <1 kDa) devoid of serum albumin induces hyphae. To study genes controlling this response, we have isolated the RAS1 gene from C. albicans by complementation. The Candida Ras1 protein, like Ras1 and Ras2 of Saccharomyces cerevisiae, has a long C-terminal extension. Although RAS1 appears to be the only RAS gene present in the C. albicans genome, strains homozygous for a deletion of RAS1 (ras1-2/ras1-3) are viable. The Candida ras1-2/ras1-3 mutant fails to form germ tubes and hyphae in response to serum or to a serum filtrate but does form pseudohyphae. Moreover, strains expressing the dominant active RAS1(V13) allele manifest enhanced hyphal growth, whereas those expressing a dominant negative RAS1(A16) allele show reduced hyphal growth. These data show that low-molecular-weight molecules in serum induce hyphal differentiation in C. albicans through a Ras-mediated signal transduction pathway.  相似文献   

18.
Escherichia coli cells that produce only plasmid-encoded wild-type or mutant GroEL were generated by bacteriophage P1 transduction. Effects of mutations that affect the allosteric properties of GroEL were characterized in vivo. Cells containing only GroEL(R197A), which has reduced intra-ring positive cooperativity and inter-ring negative cooperativity in ATP binding, grow poorly upon a temperature shift from 25 to 42 degrees C. This strain supports the growth of phages T4 and T5 but not phage lambda and produces light at 28 degrees C when transformed with a second plasmid containing the lux operon. In contrast, cells containing only GroEL(R13G, A126V) which lacks negative cooperativity between rings but has intact intra-ring positive cooperativity grow normally and support phage growth but do not produce light at 28 degrees C. In vitro refolding of luciferase in the presence of this mutant is found to be less efficient compared with wild-type GroEL or other mutants tested. Our results show that allostery in GroEL is important in vivo in a manner that depends on the physiological conditions and is protein substrate specific.  相似文献   

19.
Under appropriate conditions, haploid Cryptococcus neoformans cells can undergo a morphological switch from a budding yeast form to develop hyphae and viable basidiospores, which resemble those produced by mating. This process, known as haploid fruiting, was previously thought to occur only in MATalpha strains. We identified two new strains of C. neoformans var. neoformans serotype D that are MATa type and are able to haploid fruit. Further, a MATa reference strain, B-3502, also produced hyphae and fruited after prolonged incubation on filament agar. Over-expression of STE12a dramatically enhanced the ability of all MATa strains tested to filament. Segregation analysis of haploid fruiting ability confirmed that haploid fruiting is not MATalpha-specific. Our results indicate that MATa cells are intrinsically able to haploid fruit and previous observations that they do not were probably biased by the examination of a small number of genetically related isolates that have been maintained in the laboratory for many years.  相似文献   

20.
The cloning and propagation of large fragments of DNA on yeast artificial chromosomes (YACs) has become a routine and valuable technique in genome analysis. Unfortunately, many YAC clones have been found to undergo rearrangements or deletions during the cloning process. The frequency of transformation-associated alterations and mitotic instability can be reduced in a homologous recombination-deficient yeast host strain such as a rad52 mutant. RAD52 is one member of an epistatic group of genes required for the recombinational repair of double-strand breaks in DNA. rad52 mutants grow more slowly and transform less efficiently than RAD + strains and are therefore not ideal hosts for YAC library construction. We have investigated the ability of both null and temperature-sensitive alleles of RAD54 , another member of the RAD52 epistasis group, to prevent rearrangements of human YAC clones containing tandemly repeated DNA sequences. Our results show that the temperature-sensitive rad54-3 allele blocks mitotic recombination between tandemly repeated DYZ3 satellite sequences and significantly stabilizes a human DYZ5 satellite-containing YAC clone. Yeast carrying the rad54-3 mutation can undergo meiosis, have growth and transformation rates comparable with RAD + strains, and therefore represent improved YAC cloning hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号