首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The replication of plasmids containing fragments of the T4 genome, but no phage replication origins, was analyzed as a possible model for phage secondary (recombination-dependent) replication initiation. The replication of such plasmids after T4 infection was reduced or eliminated by mutations in several phage genes (uvsY, uvsX, 46, 59, 39, and 52) that have previously been shown to be involved in secondary initiation. A series of plasmids that collectively contain about 60 kilobase pairs of the T4 genome were tested for replication after T4 infection. With the exception of those known to contain tertiary origins, every plasmid replicated in a uvsY-dependent fashion. Thus, there is no apparent requirement for an extensive nucleotide sequence in the uvsY-dependent plasmid replication. However, homology with the phage genome is required since the plasmid vector alone did not replicate after phage infection. The products of plasmid replication included long concatemeric molecules with as many as 35 tandem copies of plasmid sequence. The production of concatemers indicates that plasmid replication is an active process and not simply the result of passive replication after the integration of plasmids into the phage genome. We conclude that plasmids with homology to the T4 genome utilize the secondary initiation mechanism of the phage. This simple model system should be useful in elucidating the molecular mechanism of recombination-dependent DNA synthesis in phage T4.  相似文献   

2.
3.
Rolling-circle replication of bacterial plasmids.   总被引:24,自引:1,他引:23       下载免费PDF全文
Many bacterial plasmids replicate by a rolling-circle (RC) mechanism. Their replication properties have many similarities to as well as significant differences from those of single-stranded DNA (ssDNA) coliphages, which also replicate by an RC mechanism. Studies on a large number of RC plasmids have revealed that they fall into several families based on homology in their initiator proteins and leading-strand origins. The leading-strand origins contain distinct sequences that are required for binding and nicking by the Rep proteins. Leading-strand origins also contain domains that are required for the initiation and termination of replication. RC plasmids generate ssDNA intermediates during replication, since their lagging-strand synthesis does not usually initiate until the leading strand has been almost fully synthesized. The leading- and lagging-strand origins are distinct, and the displaced leading-strand DNA is converted to the double-stranded form by using solely the host proteins. The Rep proteins encoded by RC plasmids contain specific domains that are involved in their origin binding and nicking activities. The replication and copy number of RC plasmids, in general, are regulated at the level of synthesis of their Rep proteins, which are usually rate limiting for replication. Some RC Rep proteins are known to be inactivated after supporting one round of replication. A number of in vitro replication systems have been developed for RC plasmids and have provided insight into the mechanism of plasmid RC replication.  相似文献   

4.
In contrast to the universality of other central genetic mechanisms, the replication machinery of Bacteria is clearly different from those of Archaea and Eukaryotes. A large number of bacterial genes involved in DNA replication can also be found in plasmids and phages. Based on this, it has been recently proposed that the ancestral bacterial genes were displaced by non-orthologous replication genes from plasmids and phages, which would explain the profound difference between Bacteria and the other domains of life. The alternative hypothesis is that these DNA replication genes have been frequently transferred from bacterial hosts to the genomes of their plasmids and phages. The phylogenetic analysis of the bacterial DNA replication proteins most abundant in databases (replicative helicase DnaB, single-strand binding protein Ssb and topoisomerase TopB) presented here supports the latter hypothesis. Each protein tree shows that sequences from plasmids and phages branch close to their bacterial-specific hosts, suggesting multiple independent horizontal transfers. Therefore, there is no evidence so far for non-orthologous gene displacement of these genes.  相似文献   

5.
Richard Meyer 《Plasmid》2009,62(2):57-70
The IncQ plasmids have a broader host-range than any other known replicating element in bacteria. Studies on the replication and conjugative mobilization of these plasmids, which have mostly been focused on the nearly identical RSF1010 and R1162, are summarized with a view to understanding how this broad host-range is achieved. Several significant features of IncQ plasmids emerge from these studies: (1) initiation of replication, involving DnaA-independent activation of the origin and a dedicated primase, is strictly host-independent. (2) The plasmids can be conjugatively mobilized by a variety of different type IV transporters, including those engaged in the secretion of proteins involved in pathogenesis. (3) Stability is insured by a combination of high copy-number and modulated gene expression to reduce metabolic load.  相似文献   

6.
Bacterial plasmids with stringently regulated copy numbers have directly repeated DNA sequences, termed iterons, in the vicinity of their replication origins. These sequences bind a specific protein exerting a key role in the initiation of plasmid replication. Plasmids P1, pSC101 and RFS1010 have different iteron sequences and belong to three different incompatibility groups. Used as DNA probes each of these plasmids generates specific patterns in mammals similar to those obtained by the DNA fingerprinting technique. The iteron-containing regions were identified as the part of the plasmids responsible for those patterns by using polymerase chain reaction (PCR) amplified DNA segments that contained the iteron regions as probes.  相似文献   

7.
Plasmids have cell cycle replication patterns that need to be considered in models of their replication dynamics. To compare current theories for control of plasmid replication with experimental data for timing of plasmid replication with the cell cycle, a Monte Carlo simulation of plasmid replication and partition was developed. High-copy plasmid replication was simulated by incorporating equations previously developed from the known molecular biology of ColE1-type plasmids into the cell-cycle simulation. Two types of molecular mechanisms for low-copy plasmid replication were tested: accumulation of an initiator protein in proportion to cell mass and binding of the plasmid origin to the cell membrane. The low-copy plasmids were partitioned actively, with a specific mechanism to mediate the transfer from mother to daughter cells, whereas the high-copy plasmids were partitioned passively with cell mass.The simulation results and experimental data demonstrate cell-cycle-specific replication for the low-copy F plasmid and cell-cycle-independent replication for the high-copy pBR322, ColBM, and R6K plasmids. The simulation results indicate that synchronous replication at multiple plasmid origins is critical for the cell-cycle-specific pattern observed in rapidly growing cells. Variability in the synchrony of initiation of multiple plasmid origins give rise to a cell-cycle-independent pattern and is offered as a plausible explanation for the controversy surrounding the replication pattern of the low-copy plasmids. A comparison of experimental data and simulation results for the low-copy F plasmid at several growth rates indicates that either initiation mechanism would be sufficient to explain the timing of replication with the cell cycle. The simulation results also demonstrate that, although cell-cycle-specific and cell-cycle independent replication patterns give rise to very different gene-expression patterns during short induction periods in age-selected populations, long-term expression of genes encoded on low-copy and high-copy plasmids in exponentially growing cells have nearly the same patterns. These results may be important for the future use of low-copy plasmids as expression vectors and validate the use of simpler models for high-copy plasmids that do not consider cell-cycle phenomena. (c) 1996 John Wiley & Sons, Inc.  相似文献   

8.
Plasmids, DNA (or rarely RNA) molecules which replicate in cells autonomously (independently of chromosomes) as non-essential genetic elements, play important roles for microbes grown under specific environmental conditions as well as in scientific laboratories and in biotechnology. For example, bacterial plasmids are excellent models in studies on regulation of DNA replication, and their derivatives are the most commonly used vectors in genetic engineering. Detailed mechanisms of replication initiation, which is the crucial process for efficient maintenance of plasmids in cells, have been elucidated for several plasmids. However, to understand plasmid biology, it is necessary to understand regulation of plasmid DNA replication in response to different environmental conditions in which host cells exist. Knowledge of such regulatory processes is also very important for those who use plasmids as expression vectors to produce large amounts of recombinant proteins. Variable conditions in large-scale fermentations must influence replication of plasmid DNA in cells, thus affecting the efficiency of recombinant gene expression significantly. Contrary to extensively investigated biochemistry of plasmid replication, molecular mechanisms of regulation of plasmid DNA replication in response to various environmental stress conditions are relatively poorly understood. There are, however, recently published studies that add significant data to our knowledge on relations between cellular stress responses and control of plasmid DNA replication. In this review we focus on plasmids derived from bacteriophage lambda that are among the best investigated replicons. Nevertheless, recent results of studies on other plasmids are also discussed shortly.  相似文献   

9.
Specificity of small multicopy colicinogenic plasmids ColA, ColD, ColE2 and ColK replication has been compared with the one of ColE1 plasmid. Copy number for these plasmids per host cell has been estimated under the normal conditions of cellular growth and under the conditions of chloramphenicol-inhibited growth. DNA polymerase I and dnaB protein, an obligatory component for elongation step in replication, have been shown to be necessary for the plasmids replication. Initiation of plasmids replication has been demonstrated to be independent of dnaA and dnaC proteins. Replication of plasmid ColE2, being similar in its main features to replication of other plasmids from this group, has an important distinction. It requires de novo protein synthesis implying that ColE2 replicon may be different from ColA, ColD, ColK, ColE1 replicons. Thus study of the inducible A, D, K, El colicin synthesis coded by the corresponding plasmids has revealed the similarity regulation of genes, determining the synthesis of each of the mentioned colicins.  相似文献   

10.
Structurally stable Bacillus subtilis cloning vectors   总被引:29,自引:0,他引:29  
L Jannière  C Bruand  S D Ehrlich 《Gene》1990,87(1):53-61
Cloning of long DNA segments (greater than 5 kb) in Bacillus subtilis is often unsuccessful when naturally occurring small (less than 10 kb) plasmids are used as vectors. In this work we show that vectors derived from the large (26.5 kb) plasmids pAM beta 1 and pTB19 allow efficient cloning and stable maintenance of long DNA segments (up to 33 kb). The two large plasmids differ from the small ones in several ways. First, replication of the large plasmids does not lead to accumulation of detectable amounts of ss DNA, whereas the rolling-circle replication typical for small plasmids does. In addition, the replication regions of the two large plasmids share no sequence homology with the corresponding regions of the known small plasmids, which are highly conserved. Taken together, these observations suggest that the mode of replication of the large plasmids is different from that of small plasmids. Second, short repeated sequences recombine much less frequently when carried on large than on small plasmids. This indicates that large plasmids are structurally much more stable than small ones. We suggest that the high structural stability of large plasmids is a consequence of their mode of replication and that plasmids which do not replicate as rolling circles should be used whenever it is necessary to clone and maintain long DNA segments in any organism.  相似文献   

11.
We have examined the DNA homology in the replication regions of 10 IncP plasmids independently isolated from several different countries. Two regions of RK2, the best-studied plasmid of this group, are required for vegetative DNA replication: the origin of replication (oriV) and the trfA region, which codes for a gene product necessary for replication. Six of nine IncP plasmids studied were identical to RK2 in the oriV and trfA regions as shown by Southern hybridization. Three P plasmids, R751, R772, and R906, showed weaker homology with the RK2 trfA, region and hybridized to different-sized HaeII fragments than the other six plasmids. R751, R772, and R906 hybridized to the region of the RK2 replication origin which expresses P incompatibility but differed markedly from RK2 and the other six plasmids in the GC-rich region of the origin required for replication. These data indicate that the P-group plasmids can be divided into two subgroups: IncP alpha, which includes the RK2-like plasmids, and IncP beta which includes the R751-like plasmids.  相似文献   

12.
Porcine reproductive and respiratory syndrome (PRRS) is an important disease, which leads to severe economic losses in swine-producing areas of the world. However, current antiviral strategies cannot provide highly effective protection. In this study, three theoretically effective interference target sites (71–91, 144–164, 218–238) targeting the nucleocapsid (N) gene of PRRSV were designed and selected, and then three siRNA-expressing plasmids were constructed, respectively named p2.1-N71, p2.1-N144, and p2.1-N218. The recombinant siRNA-expressing plasmids were transfected into Marc-145 cells; then the cells were infected with PRRSV (JL07SW strain); finally, after incubation for 48 h, the antiviral activity of those siRNA-expressing plasmids in Marc-145 cells was assessed by cytopathic effects, virus titers, indirect immunofluorescence, and quantitative real-time PCR. Experimental results demonstrated that these three siRNA-expressing plasmids could effectively and significantly inhibit the replication of PRRSV by 93.2%, 83.6%, and 89.2% in Marc-145 cells, respectively. Among these three siRNA-expressing plasmids, p2.1-N71 was found to be most effective, while p2.1-N144 and p2.1-N218 displayed relatively weak inhibition of virus replication. The results indicated that siRNA-expressing plasmids targeting the N gene of PRRSV could significantly inhibit PRRSV replication in Marc-145 cells. Based on our experimental results and previous reports, the 71–91, 179–197, and 234–252 sites of the N gene are good choices to effectively inhibit the replication of PRRSV, and this RNA interference technique can be a potential anti-PRRSV strategy.  相似文献   

13.
14.
The efficiency of replication of plasmids containing the control region of polyomavirus DNA including one, two, or all three of the strong binding sites for large T antigen was measured in COP 8 cells which provide polyomavirus T antigen in trans. It was found that plasmids carrying only binding site A (the one closest to the origin core region) exhibited only 10% of the replication competence of plasmids with binding sites A and B or A and C. Plasmids containing all three binding sites, A, B, and C, did not replicate more efficiently than those with only two strong T-antigen-binding sites. We conclude, therefore, that optimal T-antigen-dependent replication of polyomavirus DNA requires two high-affinity T-antigen-binding sites.  相似文献   

15.
16.
Plasmids containing the nontranscribed central and terminal, but not the coding, regions of the extrachromosomal ribosomal deoxyribonucleic acid (rDNA) of Tetrahymena thermophila are capable of autonomous replication in Saccharomyces cerevisiae. These plasmids transform S. cerevisiae at high frequency; transformants are unstable in the absence of selection, and plasmids identical to those used for transformation were isolated from the transformed yeast cells. One plasmid contains a 1.85-kilobase Tetrahymena DNA fragment which includes the origin of bidirectional replication of the extrachromosomal rDNA. The other region of Tetrahymena rDNA allowing autonomous replication of plasmids in S. cerevisiae is a 650-base pair, adenine plus thymine-rich segment from the rDNA terminus. Neither of these Tetrahymena fragments shares obvious sequence homology with the origin of replication of the S. cerevisiae 2-microns circle plasmid or with ars1, an S. cerevisiae chromosomal replicator.  相似文献   

17.
The replication origins of three large Bacillus thuringiensis plasmids, derived from B. thuringiensis HD263 subsp. kurstaki, have been cloned in Escherichia coli and sequenced. The replication origins, designated ori 43, ori 44, and ori 60, were isolated from plasmids of 43, 44, and 60 MDa, respectively. Each cloned replication origin exhibits incompatibility with the resident B. thuringiensis plasmid from which it was derived. Recombinant plasmids containing the three replication origins varied in their ability to transform strains of B. thuringiensis, Bacillus megaterium, and Bacillus subtilis. Analysis of the derived nucleotide and amino acid sequences indicates that the replication origins are nonhomologous, implying independent derivations. No significant homology was found to published sequences of replication origins derived from the single-stranded DNA plasmids of gram-positive bacteria, and shuttle vectors containing the three replication origins do not appear to generate single-stranded DNA intermediates in B. thuringiensis. The replication origin regions of the large plasmids are each characterized by a single open reading frame whose product is essential for replication in B. thuringiensis. The putative replication protein of ori 60 exhibits partial homology to the RepA protein of the Bacillus stearothermophilus plasmid pTB19. The putative replication protein of ori 43 exhibits weak but extensive homology to the replication proteins of several streptococcal plasmids, including the open reading frame E replication protein of the conjugative plasmid pAM beta 1. The nucleotide sequence of ori 44 and the amino acid sequence of its putative replication protein appear to be nonhomologous to other published replication origin sequences.  相似文献   

18.
Chromosome replication initiates without sequence specificity at average intervals of approximately 10 kb during the rapid cell cycles of early Xenopus embryos. If the distribution of origins were random, some inter-origin intervals would be too long to be fully replicated before the end of S phase. To investigate what ensures rapid completion of DNA replication, we have examined the replication intermediates of plasmids of various sizes (5.3-42.2 kbp) in Xenopus egg extracts by two-dimensional gel electrophoresis and electron microscopy. We confirm that replication initiates without sequence specificity on all plasmids. We demonstrate for the first time that multiple initiation events occur on large plasmids, but not on small (<10 kb) plasmids, at average intervals of approximately 10 kb. Origin interference may prevent multiple initiation events on small plasmids. Multiple initiation events are neither synchronous nor regularly spaced. Bubble density is higher on later than on earlier replication intermediates, showing that initiation frequency increases throughout S phase, speeding up replication of late intermediates. We suggest that potential origins are abundant and randomly distributed, but that the increase of initiation frequency during S phase, and possibly origin interference, regulate origin activation to ensure rapid completion of replication.  相似文献   

19.
We previously identified the origin of replication of p703/5, a small cryptic plasmid from the KBL703 strain of Enterococcus faecalis. The origin of replication contains putative regulatory cis-elements required for replication and a replication initiator (RepA) gene. The replicon of p703/5 is similar in its structural organization to theta-type plasmids, and RepA is homologous to a family of Rep proteins identified in several plasmids from Gram-positive bacteria. Here, we report molecular interactions between RepA and the replication origin of p703/5. DNase I footprinting using recombinant RepA together with electrophoretic mobility shift assays confirmed the binding of RepA to the replication origin of p703/5 via iterons and an inverted repeat. We also demonstrated the formation of RepA dimers and the different binding of RepA to the iteron and the inverted repeat using gel filtration chromatographic analysis, a chemical crosslinking assay, and electrophoretic mobility shift assays in the presence of guanidine hydrochloride. Our results suggest that RepA plays a regulatory role in the replication of the enterococcal plasmid p703/5 via mechanisms similar to those of typical iteron-carrying theta-type plasmids.  相似文献   

20.
Bacillus mycoides, a member of the Bacillus cereus group of bacteria, can be easily distinguished from close species because of colony shape, made by filaments of cells, resembling fungal hyphae, curving clock- or counterclockwise depending on the strain. Two plasmids, one from a strain curving to the right (pDx14.2), the other from a strain curving to the left (pSin9.7), were sequenced and analyzed for gene content and replication mode. Rolling-circle replication modules and mobilization proteins were found, very similar to those of other plasmids of the B. cereus group bacilli, mostly Bacillus thuringiensis living in the same ecosystem, suggesting active plasmid exchange in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号