首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neural stem cells and neural progenitor cells (NPCs) exist throughout life and are mobilized to replace neurons, astrocytes and oligodendrocytes after injury. Stromal cell-derived factor 1 (SDF-1, now named CXCL12) and its receptor CXCR4, an α-chemokine receptor, are critical for NPC migration into damaged areas of the brain. Our previous studies demonstrated that immune activated and/or HIV-1-infected human monocyte-derived- macrophages (MDMs) induced a substantial increase of SDF-1 production by human astrocytes. However, matrix metalloproteinase (MMP)-2, a protein up-regulated in HIV-1-infected macrophages, is able to cleave four amino acids from the N-terminus of SDF-1, resulting in a truncated SDF-1(5-67). In this study, we investigate the diverse signaling and function induced by SDF-1 α and SDF-1(5-67) in human cortical NPCs. SDF-1(5-67) was generated by incubating human recombinant SDF-1α with MMP-2 followed by protein determination via mass spectrometry, Western blotting and ELISA. SDF-1α induced time-dependent phosphorylation of extracellular signal-regulated kinases (ERK) 1/2, Akt-1, and diminished cyclic adenosine monophosphate (cAMP). In contrast, SDF-1(5-67) failed to induce these signaling. SDF-1α activation of CXCR4 induced migration of NPCs, an effect that is dependent on ERK1/2 and Akt-1 pathways; whereas SDF-1(5-67) failed to induce NPC migration. This observation provides evidence that MMP-2 may affect NPC migration through post-translational processing of SDF-1α.  相似文献   

2.
3.
The migratory route of neural progenitor/precursor cells (NPC) has a central role in central nervous system development. Although the role of the chemokine CXCL12 in NPC migration has been described, the intracellular signaling cascade involved remains largely unclear. Here we studied the molecular mechanisms that promote murine NPC migration in response to CXCL12, in vitro and ex vivo. Migration was highly dependent on signaling by the CXCL12 receptor, CXCR4. Although the JAK/STAT pathway was activated following CXCL12 stimulation of NPC, JAK activity was not necessary for NPC migration in vitro. Whereas CXCL12 activated the PI3K catalytic subunits p110α and p110β in NPC, only p110β participated in CXCL12-mediated NPC migration. Ex vivo experiments using organotypic slice cultures showed that p110β blockade impaired NPC exit from the medial ganglionic eminence. In vivo experiments using in utero electroporation nonetheless showed that p110β is dispensable for radial migration of pyramidal neurons. We conclude that PI3K p110β is activated in NPC in response to CXCL12, and its activity is necessary for immature interneuron migration to the cerebral cortex.  相似文献   

4.
CXCL12/CXCR4 plays an important role in metastasis of gastric carcinoma. Rapamycin has been reported to inhibit migration of gastric cancer cells. However, the role of mTOR pathway in CXCL12/CXCR4-mediated cell migration and the potential of drugs targeting PI3K/mTOR pathway remains unelucidated. We found that CXCL12 activated PI3K/Akt/mTOR pathway in MKN-45 cells. Stimulating CHO-K1 cells expressing pEGFP-C1-Grp1-PH fusion protein with CXCL12 resulted in generation of phosphatidylinositol (3,4,5)-triphosphate, which provided direct evidence of activating PI3K by CXCL12. Down-regulation of p110β by siRNA but not p110α blocked phosphorylation of Akt and S6K1 induced by CXCL12. Consistently, p110β-specific inhibitor blocked the CXCL12-activated PI3K/Akt/mTOR pathway. Moreover, CXCR4 immunoprecipitated by anti-p110β antibody increased after CXCL12 stimulation and G(i) protein inhibitor pertussis toxin abrogated CXCL12-induced activation of PI3K. Further studies demonstrated that inhibitors targeting the PI3K/mTOR pathway significantly blocked the chemotactic responses of MKN-45 cells triggered by CXCL12, which might be attributed primarily to inhibition of mTORC1 and related to prevention of F-actin reorganization as well as down-regulation of active RhoA, Rac1, and Cdc42. Furthermore, rapamycin inhibited the secretion of CXCL12 and the expression of CXCR4, which might form a positive feedback loop to further abolish upstream signaling leading to cell migration. Finally, we found cells expressing high levels of cxcl12 were sensitive to rapamycin in its activity inhibiting migration as well as proliferation. In summary, we found that the mTOR pathway played an important role in CXCL12/CXCR4-mediated cell migration and proposed that drugs targeting the mTOR pathway may be used for the therapy of metastatic gastric cancer expressing high levels of cxcl12.  相似文献   

5.
The chemokine receptor CXCR4 and its cognate ligand, stromal cell-derived factor-1alpha (CXCL12), regulate lymphocyte trafficking and play an important role in host immune surveillance. However, the molecular mechanisms involved in CXCL12-induced and CXCR4-mediated chemotaxis of T-lymphocytes are not completely elucidated. In the present study, we examined the role of the membrane tyrosine phosphatase CD45, which regulates antigen receptor signaling in CXCR4-mediated chemotaxis and mitogen-activated protein kinase (MAPK) activation in T-cells. We observed a significant reduction in CXCL12-induced chemotaxis in the CD45-negative Jurkat cell line (J45.01) as compared with the CD45-positive control (JE6.1) cells. Expression of a chimeric protein containing the intracellular phosphatase domain of CD45 was able to partially restore CXCL12-induced chemotaxis in the J45.01 cells. However, reconstitution of CD45 into the J45.01 cells restored the CXCL12-induced chemotaxis to about 90%. CD45 had no significant effect on CXCL12 or human immunodeficiency virus gp120-induced internalization of the CXCR4 receptor. Furthermore, J45.01 cells showed a slight enhancement in CXCL12-induced MAP kinase activity as compared with the JE6.1 cells. We also observed that CXCL12 treatment enhanced the tyrosine phosphorylation of CD45 and induced its association with the CXCR4 receptor. Pretreatment of T-cells with the lipid raft inhibitor, methyl-beta-cyclodextrin, blocked the association between CXCR4 and CD45 and markedly abolished CXCL12-induced chemotaxis. Comparisons of signaling pathways induced by CXCL12 in JE6.1 and J45.01 cells revealed that CD45 might moderately regulate the tyrosine phosphorylation of the focal adhesion components the related adhesion focal tyrosine kinase/Pyk2, focal adhesion kinase, p130Cas, and paxillin. CD45 has also been shown to regulate CXCR4-mediated activation and phosphorylation of T-cell receptor downstream effectors Lck, ZAP-70, and SLP-76. Our results show that CD45 differentially regulates CXCR4-mediated chemotactic activity and MAPK activation by modulating the activities of focal adhesion components and the downstream effectors of the T-cell receptor.  相似文献   

6.
CXC chemokine receptor 4 (CXCR4) plays a role in the development of immune and central nervous systems as well as in cancer growth and metastasis. CXCR4-initiated signaling cascades leading to cell proliferation and chemotaxis are critical for these functions. The present study demonstrated that stimulation of CXCR4 by its ligand, CXCL12, induced transient translocation of cortactin from endosomal compartments to the cell periphery where it colocalized with CXCR4 followed by internalization of CXCR4 together with cortactin into endosomes. Cortactin was co-immunoprecipitated with CXCR4 in response to CXCL12 treatment in a time-dependent manner. Ligand stimulation induced phosphorylation of cortactin at tyrosine 421, and the phosphorylation was both c-Src- and dynamin-dependent. Cortactin overexpression promoted CXCR4 internalization and recycling. However, overexpression of a cortactin mutant in which tyrosine 421 was replaced with alanine (cortactin-Y421A) or knockdown of cortactin with RNA interference (RNAi) reduced CXCR4 internalization in response to CXCL12. CXCR4-mediated activation of extracellular signal-regulated kinases 1 and 2 was significantly prolonged by overexpression of wild-type cortactin but not by the cortactin-Y421A mutant and was inhibited by cortactin knockdown with RNAi. Moreover, CXCL12-induced chemotaxis was enhanced by cortactin overexpression, reduced by overexpression of the cortactin-Y421A mutant, and blocked by cortactin knockdown with RNAi. These data provide strong evidence for an important role of cortactin in CXCR4 signaling and trafficking as well in the receptor-mediated cell migration.  相似文献   

7.
HB Zhao  CL Tang  YL Hou  LR Xue  MQ Li  MR Du  DJ Li 《PloS one》2012,7(7):e38375

Introduction

Our previous study has demonstrated Cyclosporin A (CsA) promotes the proliferation of human trophoblast cells. Therefore, we further investigate the intracellular signaling pathway involved in the CsA-induced proliferation of human trophoblast cells.

Methods

Enzyme-linked immunosorbent assay (ELISA) was performed to evaluate the regulation of CsA on CXCL12 secretion in human trophoblast cells. Immunofluorescence analysis and western blotting analysis were used to investigate the role of CXCL12/CXCR4 axis in the CsA-induced epidermal growth factor receptor (EGFR) phosphorylation in human trophoblast cells. 5-bromo-2′-deoxyuridine (BrdU) cell proliferation assay was performed to analyze the involvement of EGFR and its downstream extracellular signal-regulated protein kinase (ERK) signaling pathway in the CsA-induced proliferation of human trophoblast cells.

Results

Low concentration of CsA promoted the secretion of CXCL12, and recombinant human CXCL12 promoted the phosphorylation of EGFR in primary human trophoblast cells and choriocarcinoma cell line JEG-3. The inhibition of CXCL12 or CXCR4 by either neutralizing antibodies or small interfering RNA (siRNA) could completely block the CsA-induced EGFR phosphorylation. The CsA-induced proliferation of human trophoblast cells was effectively abrogated by the EGFR inhibitor AG1478 as well as the ERK inhibitor U0126, but not by the PI3K/PKB inhibitor LY294002. CsA promoted the activation of ERK in JEG-3 cells, which was markedly abrogated in the presence of CXCL12 siRNA, or CXCR4 siRNA, or AG1478.

Conclusions

CsA may promote EGFR activation via CXCL12/CXCR4 axis, and EGFR downstream ERK signaling pathway may be involved in the CsA-induced proliferation of human trophoblast cells.  相似文献   

8.
CXCL12-induced chemotaxis and adhesion to VCAM-1 decrease as B cells differentiate in the bone marrow. However, the mechanisms that regulate CXCL12/CXCR4-mediated signaling are poorly understood. We report that after CXCL12 stimulation of progenitor B cells, focal adhesion kinase (FAK) and PI3K are inducibly recruited to raft-associated membrane domains. After CXCL12 stimulation, phosphorylated FAK is also localized in membrane domains. The CXCL12/CXCR4-FAK pathway is membrane cholesterol dependent and impaired by metabolic inhibitors of G(i), Src family, and the GTPase-activating protein, regulator of G protein signaling 1 (RGS1). In the bone marrow, RGS1 mRNA expression is low in progenitor B cells and high in mature B cells, implying developmental regulation of CXCL12/CXCR4 signaling by RGS1. CXCL12-induced chemotaxis and adhesion are impaired when FAK recruitment and phosphorylation are inhibited by either membrane cholesterol depletion or overexpression of RGS1 in progenitor B cells. We conclude that the recruitment of signaling molecules to specific membrane domains plays an important role in CXCL12/CXCR4-induced cellular responses.  相似文献   

9.
The chemokine receptor CXCR4-mediated signaling cascades play an important role in cell proliferation and migration, but the underlying mechanisms by which the receptor signaling is regulated remain incompletely understood. Here, we demonstrate that CXCR4 was co-immunoprecipitated with cyclophilin A (CyPA) from the lysate of HEK293 cells stably expressing CXCR4. Although both the glutathione S-transferase-CXCR4 N- and C-terminal fusion proteins were associated with the purified CyPA, truncation of the C-terminal domain of CXCR4 robustly inhibited the receptor co-immunoprecipitation with CyPA in intact cells, thereby suggesting a critical role of the receptor C terminus in this interaction. Ligand stimulation of CXCR4 induced CyPA phosphorylation and nuclear translocation, both of which were inhibited by truncation of the C-terminal domain of CXCR4. CyPA was associated with transportin 1, and knockdown of transportin 1 by RNA interference (RNAi) blocked CXCL12-induced nuclear translocation of CyPA, thereby suggesting a transportin 1-mediated nuclear import of CyPA. CyPA formed a complex with heterogeneous nuclear ribonucleoprotein (hnRNP) A2, which underwent nuclear export in response to activation of CXCR4. Interestingly, the CXCR4-mediated nuclear export of hnRNP A2 was blocked by RNAi of CyPA. Moreover, CXCR4-evoked activation of extracellular signal-regulated kinase 1/2 (ERK1/2) was attenuated by CyPA RNAi, by overexpression of a PPIase-deficient mutant of CyPA (CyPA-R55A), and by pretreatment of the immunosuppressive drugs, cyclosporine A and sanglifehrin A. Finally, CXCL12-induced chemotaxis of HEK293 cells stably expressing CXCR4 or Jurkat T cells was inhibited by CyPA RNAi or CsA treatment.  相似文献   

10.
Presenilin 1 (PS1) regulates environmental enrichment (EE)-mediated neural progenitor cell (NPC) proliferation and neurogenesis in the adult hippocampus. We now report that transgenic mice that ubiquitously express human PS1 variants linked to early-onset familial Alzheimer's disease (FAD) neither exhibit EE-induced proliferation, nor neuronal lineage commitment of NPCs. Remarkably, the proliferation and differentiation of cultured NPCs from standard-housed mice expressing wild-type PS1 or PS1 variants are indistinguishable. On the other hand, wild-type NPCs cocultured with primary microglia from mice expressing PS1 variants exhibit impaired proliferation and neuronal lineage commitment, phenotypes that are recapitulated with mutant microglia conditioned media in which we detect altered levels of selected soluble signaling factors. These findings lead us to conclude that factors secreted from microglia play a central role in modulating hippocampal neurogenesis, and argue for non-cell-autonomous mechanisms that govern FAD-linked PS1-mediated impairments in adult hippocampal neurogenesis.  相似文献   

11.
Mice genetically deficient in the chemokine receptor CXCR4 or its ligand stromal cell-derived factor (SDF)-1/CXCL12 die perinatally with marked defects in vascularization of the gastrointestinal tract. The aim of this study was to define the expression and angiogenic functions of microvascular CXCR4 and SDF-1/CXCL12 in the human intestinal tract. Studies of human colonic mucosa in vivo and primary cultures of human intestinal microvascular endothelial cells (HIMEC) in vitro showed that the intestinal microvasculature expresses CXCR4 and its cognate ligand SDF-1/CXCL12. Moreover, SDF-1/CXCL12 stimulation of HIMEC triggers CXCR4-linked G proteins, phosphorylates ERK1/2, and activates proliferative and chemotactic responses. Pharmacological studies indicate SDF-1/CXCL12 evokes HIMEC chemotaxis via activation of ERK1/2 and phosphoinositide 3-kinase signaling pathways. Consistent with chemotaxis and proliferation, endothelial tube formation was inhibited by neutralizing CXCR4 or SDF-1/CXCL12 antibodies, as well as the ERK1/2 inhibitor PD-98059. Taken together, these data demonstrate an important mechanistic role for CXCR4 and SDF-1/CXCL12 in regulating angiogenesis within the human intestinal mucosa.  相似文献   

12.
13.
Chemokine receptor-initiated signaling plays critical roles in cell differentiation, proliferation, and migration. However, the regulation of chemokine receptor signaling under physiological and pathological conditions is not fully understood. In the present study, we demonstrate that the CXC chemokine receptor 4 (CXCR4) formed a complex with ferritin heavy chain (FHC) in a ligand-dependent manner. Our in vitro binding assays revealed that purified FHC associated with both the glutathione S-transferase-conjugated N-terminal and C-terminal domains of CXCR4, thereby suggesting the presence of more than one FHC binding site in the protein sequence of CXCR4. Using confocal microscopy, we observed that stimulation with CXCL12, the receptor ligand, induced colocalization of the internalized CXCR4 with FHC into internal vesicles. Furthermore, after CXCL12 treatment, FHC underwent time-dependent nuclear translocation and phosphorylation at serine residues. By contrast, a mutant form of FHC in which serine 178 was replaced by alanine (S178A) failed to undergo phosphorylation, suggesting that serine 178 is the major phosphorylation site. Compared with the wild type FHC, the FHC-S178A mutant exhibited reduced association with CXCR4 and constitutive nuclear translocation. We also found that CXCR4-mediated extracellular signal-regulated kinase 1/2 (ERK1/2) activation and chemotaxis were inhibited by overexpression of wild type FHC but not FHC-S178A mutant, and were prolonged by FHC knockdown. In addition to CXCR4, other chemokine receptor-initiated signaling appeared to be similarly regulated by FHC, because CXCR2-mediated ERK1/2 activation was also inhibited by FHC overexpression and prolonged by FHC knockdown. Altogether, our data provide strong evidence for an important role of FHC in chemokine receptor signaling and receptor-mediated cell migration.  相似文献   

14.
Chemokines are important mediators of chemotaxis, cell adherence, and proliferation and exert specific functions in bone remodeling. Despite the potential intriguing role of chemokines in the regulation of osteoclast (OC) functions, little is known about the expression of chemokines and their receptors in human OCs at different stages of differentiation. Therefore, we analyzed the expression of CXC chemokine receptors (CXCR1, CXCR2, CXCR3, CXCR4 and CXCR5) and ligands (CXCL8, CXCL10, CXCL12 and CXCL13) both at molecular and protein levels, in human OCs grown on plastic or calcium phosphate-coated slides at different stages of differentiation. Real-time PCR showed that CXCR1, CXCR2, CXCR3, CXCR4, CXCR5 and CXCL8 were expressed in undifferentiated cells and significantly decreased during OC differentiation. By contrast, CXCL10 and CXCL12 were strongly upregulated from day 0 to day 8 in cells grown on calcium phosphate-coated slides. Immunocytochemistry showed that OCs grown on plastic expressed CXCR3, CXCR4, CXCR5, CXCL8 and CXCL12, while they were negative for CXCR1, CXCR2 and CXCL10. Interestingly, both at molecular and protein levels CXCL10 and CXCL12 significantly increased only when cells were differentiated on calcium phosphate-coated slides. These data suggest that the selection of a substrate that better mimics the tridimensional structure of bone tissue, thus favoring OC maturation and differentiation, may be necessary when studying osteoclastogenesis in vitro.  相似文献   

15.
The chemokine receptors, CXCR1 and CXCR2, couple to Gαi to induce leukocyte recruitment and activation at sites of inflammation. Upon activation by CXCL8, these receptors become phosphorylated, desensitized, and internalized. In this study, we investigated the role of different G protein-coupled receptor kinases (GRKs) in CXCR1- and CXCR2-mediated cellular functions. To that end, short hairpin RNA was used to inhibit GRK2, 3, 5, and 6 in RBL-2H3 cells stably expressing CXCR1 or CXCR2, and CXCL8-mediated receptor activation and regulation were assessed. Inhibition of GRK2 and GRK6 increased CXCR1 and CXCR2 resistance to phosphorylation, desensitization, and internalization, respectively, and enhanced CXCL8-induced phosphoinositide hydrolysis and exocytosis in vitro. GRK2 depletion diminished CXCR1-induced ERK1/2 phosphorylation but had no effect on CXCR2-induced ERK1/2 phosphorylation. GRK6 depletion had no significant effect on CXCR1 function. However, peritoneal neutrophils from mice deficient in GRK6 (GRK6(-/-)) displayed an increase in CXCR2-mediated G protein activation but in vitro exhibited a decrease in chemotaxis, receptor desensitization, and internalization relative to wild-type (GRK6(+/+)) cells. In contrast, neutrophil recruitment in vivo in GRK6(-/-) mice was increased in response to delivery of CXCL1 through the air pouch model. In a wound-closure assay, GRK6(-/-) mice showed enhanced myeloperoxidase activity, suggesting enhanced neutrophil recruitment, and faster wound closure compared with GRK6(+/+) animals. Taken together, the results indicate that CXCR1 and CXCR2 couple to distinct GRK isoforms to mediate and regulate inflammatory responses. CXCR1 predominantly couples to GRK2, whereas CXCR2 interacts with GRK6 to negatively regulate receptor sensitization and trafficking, thus affecting cell signaling and angiogenesis.  相似文献   

16.
CXCL12 (stromal cell-derived factor-1, SDF-1) is a potent chemokine for homing of CXCR4+ fibrocytes to injury sites of lung tissue, which contributes to pulmonary fibrosis. Overexpression of connective tissue growth factor (CTGF) plays a critical role in pulmonary fibrosis. In this study, we investigated the roles of Rac1, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CXCL12-induced CTGF expression in human lung fibroblasts. CXCL12 caused concentration- and time-dependent increases in CTGF expression and CTGF-luciferase activity. CXCL12-induced CTGF expression was inhibited by a CXCR4 antagonist (AMD3100), small interfering RNA of CXCR4 (CXCR4 siRNA), a dominant negative mutant of Rac1 (RacN17), a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor (PD98059), a JNK inhibitor (SP600125), a p21-activated kinase inhibitor (PAK18), c-Jun siRNA, and an AP-1 inhibitor (curcumin). Treatment of cells with CXCL12 caused activations of Rac1, Rho, ERK, and c-Jun. The CXCL12-induced increase in ERK phosphorylation was inhibited by RacN17. Treatment of cells with PD98059 and SP600125 both inhibited CXCL12-induced c-Jun phosphorylation. CXCL12 caused the recruitment of c-Jun and c-Fos binding to the CTGF promoter. Furthermore, CXCL12 induced an increase in α-smooth muscle actin (α-SMA) expression, a myofibroblastic phenotype, and actin stress fiber formation. CXCL12-induced actin stress fiber formation and α-SMA expression were respectively inhibited by AMD3100 and CTGF siRNA. Taken together, our results suggest that CXCL12, acting through CXCR4, activates the Rac/ERK and JNK signaling pathways, which in turn initiates c-Jun phosphorylation, and recruits c-Jun and c-Fos to the CTGF promoter and ultimately induces CTGF expression in human lung fibroblasts. Moreover, overexpression of CTGF mediates CXCL12-induced α-SMA expression.  相似文献   

17.
18.
Neuroblastoma (NB) is a typical childhood and heterogeneous neoplasm for which efficient targeted therapies for high-risk tumors are not yet identified. The chemokine CXCL12, and its receptors CXCR4 and CXCR7 have been involved in tumor progression and dissemination. While CXCR4 expression is associated to undifferentiated tumors and poor prognosis, the role of CXCR7, the recently identified second CXCL12 receptor, has not yet been elucidated in NB. In this report, CXCR7 and CXCL12 expressions were evaluated using a tissue micro-array including 156 primary and 56 metastatic NB tissues. CXCL12 was found to be highly associated to NB vascular and stromal structures. In contrast to CXCR4, CXCR7 expression was low in undifferentiated tumors, while its expression was stronger in matured tissues and specifically associated to differentiated neural tumor cells. As determined by RT-PCR, CXCR7 expression was mainly detected in N-and S-type NB cell lines, and was slightly induced upon NB cell differentiation in vitro. The relative roles of the two CXCL12 receptors were further assessed by overexpressing CXCR7 or CXCR4 receptor alone, or in combination, in the IGR-NB8 and the SH-SY5Y NB cell lines. In vitro functional analyses indicated that, in response to their common ligand, both receptors induced activation of ERK1/2 cascade, but not Akt pathway. CXCR7 strongly reduced in vitro growth, in contrast to CXCR4, and impaired CXCR4/CXCL12-mediated chemotaxis. Subcutaneous implantation of CXCR7-expressing NB cells showed that CXCR7 also significantly reduced in vivo growth. Moreover, CXCR7 affected CXCR4-mediated orthotopic growth in a CXCL12-producing environment. In such model, CXCR7, in association with CXCR4, did not induce NB cell metastatic dissemination. In conclusion, the CXCR7 and CXCR4 receptors revealed specific expression patterns and distinct functional roles in NB. Our data suggest that CXCR7 elicits anti-tumorigenic functions, and may act as a regulator of CXCR4/CXCL12-mediated signaling in NB.  相似文献   

19.
To evaluate the role of CXC chemokines CXCL8 (IL8), CXCL10 (IP-10), CXCL12 (SDF-1), and CXCL13 (BCA-1) in bone remodeling, we analyzed their effects on osteoblasts (OBs) obtained from subchondral trabecular bone tissue of osteoarthritis (OA) and post-traumatic (PT) patients. The expression of CXC receptors/ligands (CXCR1/CXCL8, CXCR2/CXCL8, CXCR3/CXCL10, CXCR4/CXCL12, and CXCR5/CXCL13) was analyzed in cultured OBs by flow cytometry and immunocytochemistry. Functional assays on CXC chemokine-treated-OBs in the presence or absence of their specific inhibitors were performed to analyze cellular proliferation and the enzymatic response to chemokine activation. The expression of chemokine ligands/receptors was also confirmed in bone tissue samples by immunohistochemical analysis. Collagen type I and alkaline phosphatase mRNA expression were analyzed on CXCL12- and CXCL13-treated OBs by real-time PCR. OBs from both OA and PT patients expressed high levels of CXCR3 and CXCR5 and lower amounts of CXCR1 and CXCR4. CXCL12 and CXCL13, only in OBs from OA patients, induced a significant proliferation that was also confirmed by specific blocking experiments. Moreover, OBs from OA patients released a higher amount of CXCL13 than those of PT patients while no differences were found for CXCL12. In the remodeling area of bone tissue samples, immunohistochemical analysis confirmed that OBs expressed CXCL12/CXCR4 and CXCL13/CXCR5 both in OA and PT samples. CXCL12 and CXCL13 upregulated collagen type I mRNA expression in OBs from OA patients. These data suggest that CXCL12 and CXCL13 may directly modulate cellular proliferation and collagen type I in OA patients, so contributing to the remodeling process that occurs in the evolution of this disease.  相似文献   

20.
In the human neoplastic cell lines 5637 and HeLa, recombinant CXCL12 elicited, as expected, downstream signals via both G-protein-dependent and β-arrestin-dependent pathways responsible for inducing a rapid and a late wave, respectively, of ERK1/2 phosphorylation. In contrast, the structural variant [N33A]CXCL12 triggered no β-arrestin-dependent phosphorylation of ERK1/2, and signaled via G protein-dependent pathways alone. Both CXCL12 and [N33A]CXCL12, however, generated signals that transinhibited HER1 phosphorylation via intracellular pathways. 1) Prestimulation of CXCR4/HER1-positive 5637 or HeLa cells with CXCL12 modified the HB-EGF-dependent activation of HER1 by delaying the peak phosphorylation of tyrosine 1068 or 1173. 2) Prestimulation with the synthetic variant [N33A]CXCL12, while preserving CXCR4-related chemotaxis and CXCR4 internalization, abolished HER1 phosphorylation. 3) In cells knockdown of β-arrestin 2, CXCL12 induced a full inhibition of HER1 like [N33A]CXCL12 in non-silenced cells. 4) HER1 phosphorylation was restored as usual by inhibiting PCK, calmodulin or calcineurin, whereas the inhibition of CaMKII had no discernable effect. We conclude that both recombinant CXCL12 and its structural variant [N33A]CXCL12 may transinhibit HER1 via G-proteins/calmodulin/calcineurin, but [N33A]CXCL12 does not activate β-arrestin-dependent ERK1/2 phosphorylation and retains a stronger inhibitory effect. Therefore, we demonstrated that CXCL12 may influence the magnitude and the persistence of signaling downstream of HER1 in turn involved in the proliferative potential of numerous epithelial cancer. In addition, we recognized that [N33A]CXCL12 activates preferentially G-protein-dependent pathways and is an inhibitor of HER1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号