首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optical electron paramagnetic resonance and M?ssbauer spectral properties of the two iron-sulfur centers present in milk xanthine oxidase have been reexamined. It is found in the case of the optical spectral change observed on reduction of the enzyme that the two centers contribute approximately equally, with a ratio of spectral contributions for Fe/S I and Fe/S II of 0.55:0.45. This conclusion is based both on the behavior of the spectral change at wavelengths where only the two iron-sulfur centers contribute to the spectral change (under experimental conditions minimizing the effect of flavin semiquinone) during reductive titrations and a comparison of the spectra of 1- and 2-electron reduced enzyme under different conditions. This very similar spectral weighting for the two centers applies throughout the visible region. In the case of the EPR spectra, it is found from computer simulation of the signals observed under nonsaturating conditions that iron-sulfur center II exhibits g values of 1.902, 1.991, and 2.110 and does not exhibit two g values above that for the free electron, as has been reported (Lowe, J., Lynden-Bell, R.M., and Bray, R. C. (1972) Biochem. J. 130, 239-249). The g values for iron-sulfur center I obtained from the simulations are 1.894, 1.932, and 2.022. Finally, M?ssbauer spectra of xanthine oxidase have been obtained, and it is found that while the two iron-sulfur centers are indistinguishable in the oxidized state, the ferrous iron in one of the reduced iron-sulfur centers exhibits an unusually large quadrupole coupling.  相似文献   

2.
Magnetic interaction between molybdenum and one of the iron-sulphur centres in milk xanthine oxidase [Lowe, Lynden-Bell & Bray (1972) Biochem. J. 130, 239-249] was studied further, with particular reference to the newly discovered Mo(V) e.p.r.(electron-paramagnetic-resonance) signal, Resting II [Lowe, Barber, Pawlik & Bray (1976) Biochem. J. 155, 81-85]. E.p.r. measurements at 35GHz near to 4.2K showed that the interaction has the same sign at all molybdenum orientations and is ferromagnetic. The predicted splitting of the e.p.r. signal from the reduced iron-sulphur centre, Fe/S I, was observed, Providing positive identification of this as the other interacting species. Chemical modification of the molybdenum environment in xanthine oxidase can change the size of the interaction severalfold, but interaction always remains approximately isotropic. The interaction in turkey liver xanthine dehydrogenase is indistinguishable from that in the oxidase. However, a bacterial xanthine dehydrogenase with different iron-sulphur centres shows rather larger interaction. Guanidinium chloride disturbs the iron-sulphur centres of the oxidase, and when this occurs there is a parallel and relatively small change in the interaction. Removal of flavin from the molecule, or raising the pH to 12.0, changes the interaction slightly without affecting the chromophores themselves. It is concluded that the Fe/S I centre and the Mo are at least 1.0nm and probably nearer 2.5nm apart, and that the conformation of the protein between them is relatively stable up to pH 12.  相似文献   

3.
Redox potentials for the various centres in the enzyme xanthine dehydrogenase (EC 1.2.1.37) from turkey liver determined by potentiometric titration in the presence of mediator dyes, with low-temperature electron-paramagnetic-resonance spectroscopy. Values at 25 degrees C in pyrophosphate buffer, pH 8.2, are: Mo(VI)/Mo(V)(Rapid),-350 +/- 20mV; Mo(V) (Rapid)/Mo(IV), -362 +/- 20mV; Fe-S Iox./Fe-S Ired., -295 +/- 15mV; Fe-S IIox./Fe-S IIred., -292 +/- 15mV; FAD/FADH,-359+-20mV; FADH/FADH2, -366 +/- 20mV. This value of the FADH/FADH2 potential, which is 130mV lower than the corresponding one for milk xanthine oxidase [Cammack, Barber & Bray (1976) Biochem. J. 157, 469-478], accounts for many of the differences between the two enzymes. When allowance is made for some interference by desulpho enzyme, then differences in the enzymes' behaviour in titration with xanthine [Barber, Bray, Lowe & Coughlan (1976) Biochem. J. 153, 297-307] are accounted for by the potentials. Increases in the molybdenum potentials of the enzymes caused by the binding of uric acid are discussed. Though the potential of uric acid/xanthine (-440mV) is favourable for full reduction of the dehydrogenase, nevertheless, during turnover, for kinetic reasons, only FADH and very little FADH2 is produced from it. Since only FADH2 is expected to react with O2, lack of oxidase activity by the dehydrogenase is explained. Reactivity of the two enzymes with NAD+ as electron acceptor is discussed in relation to the potentials.  相似文献   

4.
Xanthine dehydrogenase (XDH) from Pseudomonas putida 86, which was induced 65-fold by growth on hypoxanthine, was purified to homogeneity. It catalyzes the oxidation of hypoxanthine, xanthine, purine, and some aromatic aldehydes, using NAD+ as the preferred electron acceptor. In the hypoxanthine:NAD+ assay, the specific activity of purified XDH was 26.7 U (mg protein)(-1). Its activity with ferricyanide and dioxygen was 58% and 4%, respectively, relative to the activity observed with NAD+. XDH from P. putida 86 consists of 91.0 kDa and 46.2 kDa subunits presumably forming an alpha4beta4 structure and contains the same set of redox-active centers as eukaryotic XDHs. After reduction of the enzyme with xanthine, electron paramagnetic resonance (EPR) signals of the neutral FAD semiquinone radical and the Mo(V) rapid signal were observed at 77 K. Resonances from FeSI and FeSII were detected at 15 K. Whereas the observable g factors for FeSII resemble those of other molybdenum hydroxylases, the FeSI center in contrast to most other known FeSI centers has nearly axial symmetry. The EPR features of the redox-active centers of P. putida XDH are very similar to those of eukaryotic XDHs/xanthine oxidases, suggesting that the environment of each center and their functionality are analogous in these enzymes. The midpoint potentials determined for the molybdenum, FeSI and FAD redox couples are close to each other and resemble those of the corresponding centers in eukaryotic XDHs.  相似文献   

5.
An unprecedented [4Fe-4S] iron-sulfur cluster was found in RumA, the enzyme that methylates U1939 in Escherichia coli 23 S ribosomal RNA (Agarwalla, S., Kealey, J. T., Santi, D. V., and Stroud, R. M. (2002) J. Biol. Chem. 277, 8835-8840; Lee, T. T., Agarwalla, S., and Stroud, R. M. (2004) Structure 12, 397-407). Methyltransferase reactions do not involve a redox step. To understand the structural and functional roles of the cluster in RumA, we have characterized redox reactions of the iron-sulfur cluster. As isolated aerobically, RumA exhibits a visible absorbance maximum at 390 nm and is EPR silent. It cannot be reduced by anaerobic additions of dithionite. Photoreduction by deazariboflavin/EDTA gives EPR spectra, the quantity (56% of S = 1/2 species) and details (g(av) approximately 1.96-1.93) of which indicate a [4Fe-4S](1+) cluster in the reduced RumA. Oxidation of RumA by ferricyanide leads to loss of the 390-nm band and appearance of lower intensity bands at 444 and 520 nm. EPR spectra of ferricyanide-oxidized RumA show a fraction (<8%) of the FeS cluster trapped in the [3Fe-4S](1+) form (g(av) approximately 2.011) together with unusual radical-like spectrum (g' values 2.015, 2.00, and 1.95). RumA also reacts with nitric oxide to give EPR spectra characteristic of the protein-bound iron dinitrosyl species. Oxidation of the cluster leads to its decomposition and that could be a mechanism for regulating the activity of RumA under conditions of oxidative stress in the cell. Sequence data base searches revealed that RumA homologs are widespread in various kingdoms of life and contain a conserved and unique iron-sulfur cluster binding motif, CX(5)CGGC.  相似文献   

6.
Whether or not reducing equivalents are indispensable for the conversion of ferric alpha-hydroxyheme bound to heme oxygenase-1 to verdoheme remains controversial (Matera, K. M., Takahashi, S., Fujii, H., Zhou, H., Ishikawa, K., Yoshimura, T., Rousseau, D. L., Yoshida, T., and Ikeda-Saito, M. (1996) J. Biol. Chem. 271, 6618-6624; Liu, Y., Mo?nne-Loccoz, P., Loehr, T. M., and Ortiz de Montellano, P. R. (1997) J. Biol. Chem. 272, 6906-6917). To resolve this controversy, we have prepared a ferric alpha-hydroxyheme-heme oxygenase-1 complex and titrated the complex with O2 under strictly anaerobic conditions. The formation of verdoheme was monitored by optical and electron spin resonance spectroscopies. Electron spin resonance spectra of the complex showed that alpha-hydroxyheme exists as a mixture of resonance structures composed of the iron(III) porphyrin and the iron(II) porphyrin pi neutral radical. Upon addition of CO the latter species becomes dominant. The results obtained from these titration experiments indicate that alpha-hydroxyheme can be converted to verdoheme by an approximately equimolar amount of O2 without any requirement for exogenous electrons. The verdoheme formed from alpha-hydroxyheme was shown to be in the ferrous oxidation state by the addition of CO or potassium ferricyanide to the resultant verdoheme-heme oxygenase-1 complex.  相似文献   

7.
Xanthine dehydrogenase (XDH) from Pseudomonas putida 86, which was induced 65-fold by growth on hypoxanthine, was purified to homogeneity. It catalyzes the oxidation of hypoxanthine, xanthine, purine, and some aromatic aldehydes, using NAD+ as the preferred electron acceptor. In the hypoxanthine:NAD+ assay, the specific activity of purified XDH was 26.7 U (mg protein)−1. Its activity with ferricyanide and dioxygen was 58% and 4%, respectively, relative to the activity observed with NAD+. XDH from P. putida 86 consists of 91.0 kDa and 46.2 kDa subunits presumably forming an α4β4 structure and contains the same set of redox-active centers as eukaryotic XDHs. After reduction of the enzyme with xanthine, electron paramagnetic resonance (EPR) signals of the neutral FAD semiquinone radical and the Mo(V) rapid signal were observed at 77 K. Resonances from FeSI and FeSII were detected at 15 K. Whereas the observable g factors for FeSII resemble those of other molybdenum hydroxylases, the FeSI center in contrast to most other known FeSI centers has nearly axial symmetry. The EPR features of the redox-active centers of P. putida XDH are very similar to those of eukaryotic XDHs/xanthine oxidases, suggesting that the environment of each center and their functionality are analogous in these enzymes. The midpoint potentials determined for the molybdenum, FeSI and FAD redox couples are close to each other and resemble those of the corresponding centers in eukaryotic XDHs.  相似文献   

8.
The second order rate constants for the oxidation of high potential iron-sulfur protein (Hipip) of Chromatium vinosum by ferricyanide were determined as a function of ionic strength and pH. From the ionic strength results, calculations were done to correct the rate constant at each pH for the electrostatic interactions between Hipip and ferricyanide. The electrostatic corrections are necessary since the charge of the protein changes as a function of pH and can mask the ionization of mechanistically important amino acid residues. An apparent pKa 7 was obtained from electrostatically corrected rate-pH profile, indicating the possible participation of histidine. Perturbation difference spectroscopic studies of Hipip as a function of pH also gave apparent pKa values of 6.9 and 6.7 for the reduced and oxidized protein, respectively. That it was indeed His 42 (the only His in the polypeptide) that was responsible for the kinetic and spectroscopic pKa values was demonstrated by modification of His 42 of Hipip by the histidine selective reagent diethylpyrocarbonate. No modification of Tyr 19 could be detected. It is concluded that either deprotonation or modification of His 42 results in the destabilization of the reduced cluster and thus a faster rate of oxidation. This work provides the first experimental evidence of the ‘squeeze effect’ mechanism (Carter, C.W., Jr., Kraut, J., Freer, S.T. and Alden, R.A. (1974) J. Biol. Chem. 249, 6339–6346) in which the polypeptide directly modulates the stability of the iron-sulfur cluster.  相似文献   

9.
The entire polypeptide of Clostridium pasteurianum ferredoxin (Fd) with a site-substituted tyrosine-2----histidine-2 was synthesized using standard t-Boc procedures, reconstituted to the 2[4Fe-4S] holoprotein, and compared to synthetic C. pasteurianum and native Fds. Although histidine-2 is commonly found in thermostable clostridial Fds, the histidine-2 substitution into synthetic C. pasteurianum Fd did not significantly increase its thermostability. The reduction potential of synthetic histidine-2 Fd was -343 and -394 mV at pH 6.4 and 8.7, respectively, versus standard hydrogen electrode. Similarly, Clostridium thermosaccharolyticum Fd which naturally contains histidine-2 was previously determined to have a pH-dependent reduction potential [Smith, E.T., & Feinberg, B.A. (1990) J. Biol. Chem. 265, 14371-14376]. An electrostatic model was used to calculate the observed change in reduction potential with pH for a homologous ferredoxin with a known X-ray crystal structure containing a hypothetical histidine-2. In contrast, the reduction potential of both native C. pasteurianum Fd and synthetic Fd with the C. pasteurianum sequence was -400 mV versus standard hydrogen electrode and was pH-independent [Smith, E.T., Feinberg, B.A., Richards, J.H., & Tomich, J.M. (1991) J. Am. Chem. Soc. 113, 688-689]. On the basis of the above results, we conclude that the observed pH-dependent reduction potential for both synthetic and native ferredoxins that contain histidine-2 is attributable to the electrostatic interaction between histidine-2 and iron-sulfur cluster II which is approximately 6 A away.  相似文献   

10.
The enzyme ThiI is common to the biosynthetic pathways leading to both thiamin and 4-thiouridine in tRNA. We earlier noted the presence of a motif shared with sulfurtransferases, and we reported that the cysteine residue (Cys-456 of Escherichia coli ThiI) found in this motif is essential for activity (Palenchar, P. M., Buck, C. J., Cheng, H., Larson, T. J., and Mueller, E. G. (2000) J. Biol. Chem. 275, 8283-8286). In light of that finding and the report of the involvement of the protein IscS in the reaction (Kambampati, R., and Lauhon, C. T. (1999) Biochemistry 38, 16561-16568), we proposed two mechanisms for the sulfur transfer mediated by ThiI, and both suggested possible involvement of the thiol group of another cysteine residue in ThiI. We have now substituted each of the cysteine residues with alanine and characterized the effect on activity in vivo and in vitro. Cys-108 and Cys-202 were converted to alanine with no significant effect on ThiI activity, and C207A ThiI was only mildly impaired. Substitution of Cys-344, the only cysteine residue conserved among all sequenced ThiI, resulted in the loss of function in vivo and a 2700-fold reduction in activity measured in vitro. We also examined the possibility that ThiI contains an iron-sulfur cluster or disulfide bonds in the resting state, and we found no evidence to support the presence of either species. We propose that Cys-344 forms a disulfide bond with Cys-456 during turnover, and we present evidence that a disulfide bond can form between these two residues in native ThiI and that disulfide bonds do form in ThiI during turnover. We also discuss the relevance of these findings to the biosynthesis of thiamin and iron-sulfur clusters.  相似文献   

11.
The major UV-B photoproduct in DNA is the cyclobutane pyrimidine dimer (CPD). CPD-photolyases repair this DNA damage by a light-driven electron transfer. The chromophores of the class II CPD-photolyase from Arabidopsis thaliana, which was cloned recently [Taylor, R., Tobin, A. & Bray, C. (1996) Plant Physiol. 112, 862; Ahmad, M., Jarillo, J.A., Klimczak, L.J., Landry, L.G., Peng, T., Last, R.L. & Cashmore, A.R. (1997) Plant Cell 9, 199-207], have not been characterized so far. Here we report on the overexpression of the Arabidopsis CPD photolyase in Escherichia coli as a 6 x His-tag fusion protein, its purification and the analysis of the chromophore composition and enzymatic activity. Like class I photolyase, the Arabidopsis enzyme contains FAD but a second chromophore was not detectable. Despite the lack of a second chromophore the purified enzyme has photoreactivating activity.  相似文献   

12.
The periplasmic nitrate reductase from Paracoccus denitrificans is a soluble two-subunit enzyme which binds two hemes (c-type), a [4Fe-4S] center, and a bis molybdopterin guanine dinucleotide cofactor (bis-MGD). A catalytic cycle for this enzyme is presented based on a study of these redox centers using electron paramagnetic resonance (EPR) and extended X-ray absorption fine structure (EXAFS) spectroscopies. The Mo(V) EPR signal of resting NAP (High g [resting]) has g(av) = 1.9898 is rhombic, exhibits low anisotropy, and is split by two weakly interacting protons which are not solvent-exchangeable. Addition of exogenous ligands to this resting state (e.g., nitrate, nitrite, azide) did not change the form of the signal. A distinct form of the High g Mo(V) signal, which has slightly lower anisotropy and higher rhombicity, was trapped during turnover of nitrate and may represent a catalytically relevant Mo(V) intermediate (High g [nitrate]). Mo K-edge EXAFS analysis was undertaken on the ferricyanide oxidized enzyme, a reduced sample frozen within 10 min of dithionite addition, and a nitrate-reoxidized form of the enzyme. The oxidized enzyme was fitted best as a di-oxo Mo(VI) species with 5 sulfur ligands (4 at 2. 43 A and 1 at 2.82 A), and the reduced form was fitted best as a mono-oxo Mo(IV) species with 3 sulfur ligands at 2.35 A. The addition of nitrate to the reduced enzyme resulted in reoxidation to a di-oxo Mo(VI) species similar to the resting enzyme. Prolonged incubation of NAP with dithionite in the absence of nitrate (i.e., nonturnover conditions) resulted in the formation of a species with a Mo(V) EPR signal that is quite distinct from the High g family and which has a g(av) = 1.973 (Low g [unsplit]). This signal resembles those of the mono-MGD xanthine oxidase family and is proposed to arise from an inactive form of the nitrate reductase in which the Mo(V) form is only coordinated by the dithiolene of one MGD. In samples of NAP that had been reduced with dithionite, treated with azide or cyanide, and then reoxidized with ferricyanide, two Mo(V) signals were detected with g(av) elevated compared to the High g signals. Kinetic analysis demonstrated that azide and cyanide displayed competitive and noncompetitive inhibition, respectively. EXAFS analysis of azide-treated samples show improvement to the fit when two nitrogens are included in the molybdenum coordination sphere at 2.52 A, suggesting that azide binds directly to Mo(IV). Based on these spectroscopic and kinetic data, models for Mo coordination during turnover have been proposed.  相似文献   

13.
Arginine 160 in human sulfite oxidase (SO) is conserved in all SO species sequenced to date. Previous steady-state kinetic studies of the R160Q human SO mutant showed a remarkable decrease in k(cat)/K(m)(sulfite) of nearly 1000-fold, which suggests that Arg 160 in human SO makes an important contribution to the binding of sulfite near the molybdenum cofactor [Garrett, R. M., Johnson, J. L., Graf, T. N., Feigenbaum, A., Rajagopalan, K. V. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 6394-6398]. In the crystal structure of chicken SO, Arg 138, the equivalent of Arg 160 in human SO, is involved in the formation of a positively charged sulfite binding site [Kisker, C., Schindelin, H., Pacheco, A., Wehbi, W., Garnett, R. M., Rajagopalan, K. V., Enemark, J. H., Rees, D. C. (1997) Cell 91, 973-983]. To further assess the role of Arg 160 in human SO, intramolecular electron transfer (IET) rates between the reduced heme [Fe(II)] and oxidized molybdenum [Mo(VI)] centers in the wild type, R160Q, and R160K human SO forms were investigated by laser flash photolysis. In the R160Q mutant, the IET rate constant at pH 6.0 was decreased by nearly 3 orders of magnitude relative to wild type, which indicates that the positive charge of Arg 160 is essential for efficient IET in human SO. Furthermore, the IET rate constant for the R160K mutant is about one-fourth that of the wild type enzyme, which strongly indicates that it is the loss of charge of Arg 160, and not its precise location, that is responsible for the much larger decrease in IET rates in the R160Q mutant. Steady-state kinetic measurements indicate that IET is rate-limiting in the catalytic cycle of the R160Q mutant. Thus, the large decrease in the IET rate constant rationalizes the fatal impact of this mutation in patients with this genetic disorder.  相似文献   

14.
The oxidation of ferric cytochrome c peroxidase by hydrogen peroxide yields a product, compound ES [Yonetani, T., Schleyer, H., Chance, B., & Ehrenberg, A. (1967) in Hemes and Hemoproteins (Chance, B., Estabrook, R. W., & Yonetani, T., Eds.) p 293, Academic Press, New York], containing an oxyferryl heme and a protein free radical [Dolphin, D., Forman, A., Borg, D. C., Fajer, J., & Felton, R. H. (1971) Proc. Natl. Acad. Sci. U.S.A. 68, 614-618]. The same oxidant takes the ferrous form of the enzyme to a stable Fe(IV) peroxidase [Ho, P. S., Hoffman, B. M., Kang, C. H., & Margoliash, E. (1983) J. Biol. Chem. 258, 4356-4363]. It is 1 equiv more highly oxidized than the ferric protein, contains the oxyferryl heme, but leaves the radical site unoxidized. Addition of sodium fluoride to Fe(IV) peroxidase gives a product with an optical spectrum similar to that of the fluoride complex of the ferric enzyme. However, reductive titration and electron paramagnetic resonance (EPR) data demonstrate that the oxidizing equivalent has not been lost but rather transferred to the radical site. The EPR spectrum for the radical species in the presence of Fe(III) heme is identical with that of compound ES, indicating that the unusual characteristics of the radical EPR signal do not result from coupling to the heme site. By stopped-flow measurements, the oxidizing equivalent transfer process between heme and radical site is first order, with a rate constant of 0.115 s-1 at room temperature, which is independent of either ligand or protein concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
The effect of pH variation on the exchangeability with deuterium of protons strongly coupled to Mo(V) in the active and desulpho forms of xanthine oxidase was studied by e.p.r. and rapid freezing, in extension of the work of Gutteridge, Tanner & Bray [Biochem. J. (1978) 175, 887-897]. Above neutrality, exchange rates increased with increasing pH. Detailed studies were made on the desulpho enzyme under a variety of conditions, and exchange rate constants at 22 degrees C ranged from 0.16s -1 at pH 6.6 to 1.6s -1 at pH 11.3. The mechanism of proton exchange in the enzyme is discussed. The interpretation by the above workers that the strongly coupled proton of the active enzyme is on sulphur and that of the desulpho enzyme is on oxygen remains valid (and is in agreement with other work), as do their proposals for the structures of the protonated and deprotonated species. However, pK values cannot be calculated from the exchange data. It is likely that the relatively low rates of exchange observed are due to the difference of structure between the protonated and the deprotonated forms. In the case of the desulpho enzyme, an exchange mechanism, which involves the proton exchanging both as such and along with oxygen in the form of a hydroxyl ion, is discussed.  相似文献   

17.
The reoxidation of reduced cytochrome c1 by potassium ferricyanide follows pseudo-first order kinetics with k = 4 x 10(4) M-1 s-1. However, the reoxidation of this cytochrome in two-electron reduced Complex III does not follow any simple rate law although the overall rate of reaction is essentially unchanged. The observed kinetics can be well fitted with a model in which ferricyanide reacts exclusively with cytochrome c1 together with very rapid electron transfer from the reduced iron-sulfur center to cytochrome c1. Neither removal of coenzyme Q from the complex nor prior incubation with antimycin A had any effect on the observed kinetics of reoxidation.  相似文献   

18.
The high-potential iron-sulfur protein (HiPIP) from Rhodospirillum tenue (strain 3761) shows only a weak (20-25%) sequence similarity to HiPIPs from Chromatium vinosum, Ectothiorhodospira halophila and Ectothiorhodospira vacuolata, including the strict conservation of only two of the twelve residues assumed to be in the 4Fe-4S cluster packing region [Tedro, S. M., Meyer, T. E. and Kamen, M. D. (1979) J. Biol. Chem. 254, 1495-1500]. In spite of these differences, the general range and distribution of hyperfine-shifted 1H-NMR peaks of oxidized and reduced R. tenue HiPIP resemble those of E. halophila HiPIP I [Krishnamoorthi, R., Markley, J. L., Cusanovich, M. A., Pryzycieki, C. T. and Meyer, T. E. (1986) Biochemistry 25, 60-67]. Temperature- and pH-dependence and longitudinal relaxation behavior were determined for hyperfine-shifted peaks of the oxidized protein. Tentative assignments of peaks to ligands and aromatic residues suggest the presence of common apoprotein-active-site interactions in these proteins. Differences occur in the pattern of paramagnetically shifted peaks attributed to hydrogens bonded to the 4Fe-4S cluster. Hyperfine-shifted peaks of R. tenue HiPIP are not perturbed by pH changes in the range 5-9. In contrast, those of the C. vinosum protein exhibit a pH-dependence of chemical shifts that has been attributed to the titration of His42 [Nettesheim, D. G., Meyer, T. E., Feinberg, B. A. and Otvos, J. D. (1983) J. Biol. Chem. 258, 8235-8239]. Since R. tenue HiPIP contains no histidine, the present observation confirms the above hypothesis.  相似文献   

19.
Molybdoenzymes of the xanthine oxidase family contain two [2Fe-2S](1+,2+) clusters that are bound to the protein by very different cysteine motifs. In the X-ray crystal structure of Desulfovibrio gigas aldehyde oxidoreductase, the cluster ligated by a ferredoxin-type motif is close to the protein surface, whereas that ligated by an unusual cysteine motif is in contact with the molybdopterin [Romao, M. J., Archer, M., Moura, I., Moura, J. J. G., LeGall, J., Engh, R., Schneider, M., Hof, P., and Huber, R. (1995) Science 270, 1170-1176]. These two clusters display distinct electron paramagnetic resonance (EPR) signals: the less anisotropic one, called signal I, is generally similar to the g(av) approximately 1.96-type signals given by ferredoxins, whereas signal II often exhibits anomalous properties such as very large g values, broad lines, and very fast relaxation properties. A detailed comparison of the temperature dependence of the spin-lattice relaxation time and of the intensity of these signals in D. gigas aldehyde oxidoreductase and in milk xanthine oxidase strongly suggests that the peculiar EPR properties of signal II arise from the presence of low-lying excited levels reflecting significant double exchange interactions. The issue raised by the assignment of signals I and II to the two [2Fe-2S](1+) clusters was solved by using the EPR signal of the Mo(V) center as a probe. The temperature dependence of this signal could be quantitatively reproduced by assuming that the Mo(V) center is coupled to the cluster giving signal I in xanthine oxidase as well as in D. gigas aldehyde oxidoreductase. This demonstrates unambiguously that, in both enzymes, signal I arises from the center which is closest to the molybdenum cofactor.  相似文献   

20.
To evaluate their role in the active site of the UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase (MurD) from Escherichia coli, 12 residues conserved either in the Mur superfamily [Eveland, S. S., Pompliano, D. L., and Anderson, M. S. (1997) Biochemistry 36, 6223-6229; Bouhss, A., Mengin-Lecreulx, D., Blanot, D., van Heijenoort, J., and Parquet, C. (1997) Biochemistry 36, 11556-11563] or in the sequences of 26 MurD orthologs were submitted to site-directed mutagenesis. All these residues lay within the cleft of the active site of MurD as defined by its 3D structure [Bertrand, J. A., Auger, D., Fanchon, E., Martin, L., Blanot, D., van Heijenoort, J., and Dideberg, O. (1997) EMBO J. 16, 3416-3425]. Fourteen mutant proteins (D35A, K115A, E157A/K, H183A, Y194F, K198A/F, N268A, N271A, H301A, R302A, D317A, and R425A) containing a C-terminal (His)(6) extension were prepared and their steady-state kinetic parameters determined. All had a reduced enzymatic activity, which in many cases was very low, but no mutation led to a total loss of activity. Examination of the specificity constants k(cat)/K(m) for the three MurD substrates indicated that most mutations affected both the binding of one substrate and the catalytic process. These kinetic results correlated with the assigned function of the residues based on the X-ray structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号