首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K Jezernik  N Pipan 《Histochemistry》1986,85(6):515-521
The localization of complex carbohydrates in the Golgi apparatus, secretory granules and plasmalemma of mouse parotid acinar cells was studied using the fracture-labelling method. The hexose residues of glycoconjugates were identified using ferritin conjugated with Wheat Germ Agglutinin (WGA-), Ricinnus Communis Agglutinin II (RCA-II-), Phaseolus Vulgaris Agglutinin (PHA-) and Limulus Polyphemus Agglutinin (LPA-). We found that the fracture-labelling method allows not only the labelling of membrane faces but also analysis of the compartment's content that is exposed during the fracturing of the tissue. Our results revealed differences in the hexose residues located in the Golgi apparatus, secretory granules and the apical and lateral plasmalemma. Numerous binding sites for WGA-, PHA- and RCA-II-ferritin were demonstrable in the Golgi apparatus. In secretory granules, the WGA- and RCA-II-ferritin binding sites were most numerous, while LPA-ferritin binding sites were very rare. The density of the binding sites for PHA-ferritin showed considerable variation in secretory granules. The apical plasmalemma exhibited a high density of binding sites for all of the lectins used. In the lateral plasmalemma, LPA-ferritin was not bound, and there were fewer binding sites for WGA-, RCA-II- and PHA-ferritin.  相似文献   

2.
Summary Complex carbohydrates in secretory granules and at the apical cell surface of mouse gastric mucoid cells were studied during embryogenesis and in the early postnatal period by various cytochemical methods; the periodic acid-thiocarbohydrazide-silver proteinate (PA-TCH-SP) and tannic acid-uranyl acetate (TA-UA) procedures made neutral mucosubstances (NMS) visible, whereas the hexose residues of glycoconjugates were identified using WGA-, RCA II- and ConA-ferritin. The glycocalyx was stained with ruthenium red (RR). During differentiation of the embryonic mucoid cells the number of secretory granules increased in parallel to the increase in their carbohydrate component. NMS-stainable parts in secretory granules also had binding sites for the conjugates RCA II- and WGA-ferritin, but the binding of ConA could not be identified. The increasing quantity of NMS in secretory granules was correlated with the increased amount of PA-TCH-SP and TA-UA positive substances in the apical glycocalyx only in 14- and 18-day-old embryos. The observed uniform affinity for RR and lectin conjugates in all analysed developmental stages remains to be explained.  相似文献   

3.
L Chan  Y C Wong 《Acta anatomica》1992,143(1):27-40
The glycoconjugates of the lateral prostate were examined ultrastructurally by lectin-gold histochemistry in combination with a low-temperature embedding technique using Lowicryl K4M. The binding patterns of concanavalin A, wheat germ agglutinin, Griffonia simplicifolia, soybean agglutinin, peanut agglutinin, Ricinus communis agglutinin isolectin I, Griffonia simplicifolia isolectin B4, Ulex europaeus isolectin I and Phaseolus vulgaris agglutinin P have been documented in the subcellular compartments of the lateral prostate. The results show that the granular endoplasmic reticulum (GER) is rich in glycoproteins with mannosyl residues while the Golgi cisternae, secretory granules and microvilli are less so. The mannose (Man) and N-acetylglucosamine (GlcNAc) residues present in the GER of the epithelial cells may be associated with the initial assembly of the N-linked oligosaccharides of glycoproteins. The secretory granules exhibited different reactivities to lectins. Most of the lectin-binding sites confined to the limiting membranes may play a role in the transport of plasmalemma glycoconjugates to the apical plasma membrane. The epithelial Golgi stack is rich in GlcNAc, galactose (Gal), N-acetylgalactosamine (GalNAc) and sialic acid residues, and a compartmental organization of the Golgi stack is apparent which might be associated with the sequential addition of sugar residues to the oligosaccharides. The plasma membrane contains abundant Man, GlcNAc, Gal, GalNAc and complex carbohydrates, especially in the microvilli, and a differential lectin labelling was noted between the apical and basolateral plasma membrane. The present study showed that fucose-containing glycoconjugates were detected in the apical plasma membrane of the lateral prostate. The stromal extracellular matrices as well as the epithelial basement membranes demonstrated weak lectin reaction. Man, GlcNAc, Gal residues and complex sugars were also noted in the stromal tissues of the lateral prostate including the extracellular matrix, capillaries and smooth muscle.  相似文献   

4.
Summary The ultrastructural localization of peanut lectin-binding sites in the gastric surface epithelial cell has been studied using a horseradish peroxidase-labelled peanut lectin (PL-HRP) conjugate and other cytochemical techniques. The PL-HRP procedure has visualized glycoprotein with presumed terminal galactose residues in the apical plasmalemma and secreted mucins and has localized such glycoprotein selectively in the intermediate Golgi cisternaé situated between the saccules of the maturing face and those of the forming face of the Golgi stacks. Other cytoplasmic organelles, including the forming and stored secretory granules, did not reveal glycoprotein with terminal galactosyl residues. These results demonstrate the applicability of the PL-HRP labelling technique at the electron microscopical level to localize not only extra but also intracellular peanut lectin-reactive sites. The observations afford information concerning the possible site in the Golgi apparatus where galactose residues are added to the growing oligosaccharide side-chain of mucous glycoprotein.  相似文献   

5.
K. J. Porter  E. R. Rivera 《Protoplasma》1980,102(3-4):217-233
Summary The epidermal cell layer of the apical end of the ceras was investigated in two species of aeolid nudibranchs. Based on cellular inclusions, mostly two cell types were found: mucoid and ellipsoid-vacuolate cells. Mucoid cells ofCoryphella rufibranchialis have large heterogeneous and fibrillar secretory granules whereas inAeolidia papillosa, the granules are homogeneous, but vary in electron density from one cell to another. Ellipsoid-vacuolate cells contained large quantities of small vacuoles with an included ellipsoidal structure. Both species contained very numerous ellipsoid-vacuolate cells. Secretory granules and ellipsoid-vacuoles appear to arise from the Golgi apparatus and these contents stain with PAS, suggesting a polysaccharide composition. Mucoid cells contained both secretory granules and ellipsoid-vacuoles which may arise from the same Golgi apparatus.  相似文献   

6.
Summary Kidneys of adult male and female lizards were studied by electron microscopy, in order to understand the ultrastructure of the collecting duct and a differentiated part thereof, the sexual segment, which is an important accessory sexual organ. First portion of sexual segment in males: The cells are filled with large secretory granules of a wide range of opacities. The granular endoplasmic reticulum is abundant; basal formations of superimposed flat cisternae are frequent. Distended vesicles and microvesicles prevail in the supranuclear, well developed Golgi apparatus. Evidences indicate that secretion of these cells is holocrine. Second portion of sexual segment in males: All of the secretory granules are apical in location and relatively electron-opaque; they show a denser core. This core is formed by a substance which, after lying in contact with ribosomes, enters the secretory vesicles of the highly developed Golgi apparatus. A lighter substance is then condensed around it. The secretion of the granules is merocrine. The granular endoplasmic reticulum is very abundant in these cells, but basal ergastoplasmic formations are lacking. Sexual segment in females: The cells show features similar to those of the male first portion, but they are smaller. Undifferentiated collecting duct: Most of the cells are mucigenic. They have small ovoid, apical secretory granules. The density of the granules varies from cell to cell; when they are electron-lucent, they exhibit laminar or dotted opaque figures. Moderately developed Golgi apparatus and granular endoplasmic reticulum, as well as elongated mitochondria, occur in mucigenic cells. Intercalated among the latter are non-secretory cells. They have very abundant mitochondria, numerous microvilli, many pinocytic and smooth-membrane vesicles, whereas the organelles participating in synthetic processes are poorly developed; their function is most likely related to active solute transport.  相似文献   

7.
Intracellular protein distribution and sorting were examined in rat parotid striated duct cells, in which tissue kallikrein is apical, and Na,K-ATPase is basolateral. Electron-microscopic immunogold cytochemistry, with both polyclonal and monoclonal antibodies, demonstrated these enzymes at opposite poles of the cells and in distinct intracellular sites. Kallikrein was found within apical secretory granules, whereas Na,K-ATPase was present on basolateral cell membranes. In addition, kallikrein was localized throughout cisternae of all Golgi profiles, whereas Na,K-ATPase (-subunit) was found only in small peripheral vesicles and/or lateral cisternal extensions of a basal subset of Golgi profiles. These differences in the subcellular distribution of the two marker antigens were most clearly seen with double immunogold labelling. Our results suggest that kallikrein, an apical, regulated secretory protein, and Na,K-ATPase, a basolateral, constitutively transported membrane protein, are segregated at (or prior to) the level of the Golgi apparatus rather than in the trans-Golgi network (TGN), as was expected.Abbreviations ATP adenosine tri-phosphate - HBSS Hanks' balanced salt solution - GaM goat anti-mouse - GaR goat anti-rabbit - PBS phosphate-buffered saline - RaM rabbit anti-mouse - RER rough endoplasmic reticulum - TGN trans-Golgi network  相似文献   

8.
Summary The epithelium of the fundic region mucosa of the hind stomach in the Llama guanacoe has been studied using morphological and histochemical methods. Morphology suggests that solute and water absorption may occur in the epithelium of the surface and of the foveolae, although this absorption can not be estimated because of the extensive secretion of the gastric glands. The same cells of the surface and foveolar epithelium show numerous secretory granules. The glands reveal neck cells, chief cells, a large number of oxyntic cells, four types of endocrine cells (A-like, ECL, D and EC), brush cells and wandering cells. PAS and Alcian blue reactions for light microscopy suggest a secretion of neutral and acidic mucosubstances in the surface and foveolar epithelium, of neutral mucosubstances only in the neck cells. Periodic acid-thiocarbohydrazide silver proteinate (PA-TCH-SP) reaction for electron microscopy confirms the presence of neutral mucosubstances within the secretory granules of the surface, foveolar and neck epithelial cells. In all these cells, the reaction product is also evident within sacculi and vesicles of the maturing surface of the Golgi apparatus. A positive PA-TCH-SP reaction also occurs on the membrane (and not on the contents) of the Golgi apparatus (maturing surface) and of the secretory granules of the chief cells as well as on the membrane of the Golgi apparatus and of apical vesicles and tubules of the oxyntic cells. In addition, silver granules slightly enhance the electron density of the contents of the secretory granules in the endocrine cells. Morphological and histochemical findings are discussed and compared with results described by others for monogastric mammals.  相似文献   

9.
Summary Two different types of ependymal cells were found in the subcommissural organ (SCO) of Natrix maura. Most secretory cells showed morphological features resembling the general structure and ultrastructure of cells in the SCO of other vertebrates. This report describes a second population of cells lining a portion of the dorsal groove of the SCO. These cells were not selectively stained by chromalum-hematoxylin and, under the electron microscope, they were characterized by scarce surface differentiations, sparse apical cytoplasm and short basal processes. Flat, parallel cisternae of the rough endoplasmic reticulum produced vesicles that appeared to be transported to the well-developed Golgi apparatus. Dense secretory granules about 200 nm in diameter were found in the Golgi region. Similar granules were seen in the vicinity of the apical plasma membrane; some of them opened toward the ventricle. All these characteristics clearly differentiate this cell group from the other secretory cells lining the SCO laterally and ventrally.  相似文献   

10.
Summary Binding sites for wheat germ agglutinin (WGA), Dolichos biflorus agglutinin (DBA), Ricinus communis I agglutinin (RCA I) and Limax flavus agglutinin (LFA) have been ultrastructurally detected in rat epiphyseal chondrocytes by a post-embedding cytochemical technique using colloidal gold as marker. The four lectins labelled exclusively the Golgi apparatus of chondrocytes embedded in Lowicryl K4M resin by two different methods. WGA binding sites were localized in medial and trans cisternae as well as in immature secretory vesicles, whereas those for DBA were seen concentrated in cis and medial cisternae. Labelling with both RCA I and LFA lectins was distributed throughout all the cisternac of the Golgi stack, and the latter also in vesicles and tubules at the trans face. Neuraminidase pretreatment of the sections abolished LFA staining, decreased reaction with WGA and increased that with RCA I, while it did not affect DBA staining. After chondroitinase ABC treatment only the RCA I reaction was modified, revealing new binding sites in the trans Golgi face, secretory granules and extracellular matrix. These results indicate that the distribution of subcompartments in the Golgi apparatus of chondrocytes is different from that in cells secreting glycoproteins as major products.  相似文献   

11.
Using lectin binding, we characterized subdomains of the rough endoplasmic reticulum (rER) in goblet cells of the rat colon. In this cell type, special rER regions can be differentiated on the basis of their content of low electron density and dilated cisternal spaces in conventional transmission electron microscopic preparations. The fine fibrillar content of these cisternal regions demonstrated high-affinity binding with lectins from wheat germ, Helix pomatia, Griffonia simplicifolia I-A4 and -B4, and Ricinus communis I, although not with the sialic acid-specific Limax flavus lectin and the fucose-binding Ulex europaeus I lectin. Sugar-inhibitory experiments indicated that glycoconjugates packed within these regions bound the lectins with higher affinity than molecules present in the Golgi apparatus and secretory granules. Furthermore, the lectin binding patterns of the rER subdomains differed from those of the Golgi apparatus and mucin granules: the terminal sugar residues sialic acid and fucose were demonstrable in the Golgi apparatus and mucin granules and were absent from the rER, while galactose-recognizing lectins bound intensely at these rER regions, weakly to Golgi elements, and were almost absent from mucin granules.  相似文献   

12.
The elaboration of enamel matrix glycoprotein was investigated in secretory ameloblasts of incisor teeth in 30–40-g rats. To this end, the distribution of glycoprotein was examined histochemically by the use of phosphotungstic acid at low pH, while the formation of glycoprotein was traced radioautographically in animals sacrificed 2.5–30 min after galactose-3H injection. Histochemically, the presence of glycoprotein is observed in ameloblasts as well as in the enamel matrix; in ameloblasts glycoprotein occurs within the Golgi apparatus in amounts increasing from the outer to the inner face of the stacks of saccules, and is concentrated in condensing vacuoles and secretory granules; in the enamel matrix, glycoprotein is observed within linear subunits. Radioautographs at 2.5 min after injection demonstrate the uptake of galactose-3H label by Golgi saccules, indicating that galactose-3H is incorporated into glycoprotein within this organelle. After 5–10 min, the label collects in the condensing vacuoles and secretory granules of the Golgi region. By 20–30 min, the label appears in the secretory granules of the apical (Tomes') processes, as well as in the enamel matrix (next to the distal end of the apical processes, and at the tips of matrix prongs). In conclusion, galactose contributes to the formation of glycoprotein within the Golgi apparatus. The innermost saccules then distribute the completed glycoprotein to condensing vacuoles, which later evolve into secretory granules. These granules rapidly migrate to the apical processes, where they discharge their glycoprotein content to the developing enamel.  相似文献   

13.
The distribution and quality of glycoproteins was studied by means of electron microscopic cytochemical methods, particularly lectin cytochemistry, in the secretory cells of the eccrine nasolabial glands of the North American raccoon (Procyon lotor). In the dark and clear glandular cells, complex glycoconjugates were demonstrable, predominantly, in secretory granules, the cisternae of the Golgi apparatus, the surface coat of the plasma membrane, and as glycogen particles. Secretory granules found in the dark cells contained a variety of saccharide residues, such as α-d-mannose, β-d-galactose, β-N-acetyl-d-glucosamine and sialic acid. Several sugars were also detectable in the surface coat of the plasma membrane and the Golgi apparatus.The results obtained may be helpful to understand the specific functions of the glandular secretions of the raccoon nasolabial glands. These could be, particularly, binding of water on the snout surface and protection against microbial hazards, to maintain the structural and functional integrity of the relatively thin snout epidermis in carnivores.  相似文献   

14.
The ventriculus and the midgut caeca of the fed females of Anystis baccarum (L.) were investigated by using light and electron microscopy. In addition to the main type of polyfunctional digestive cells, special secretory cells were detected in the anterior region of the ventriculus. The shape and the ultrastructure of the digestive cells vary depending on their physiological state. Intracellular digestion, absorption or excretion processes prevail at different stages of the cell cycle. The secretory cells are characterized by the presence of extensive rough endoplasmic reticulum, filling whole space of the cell. These cells do not contain the apical network of pinocytotic canals, which are typical for the digestive cells. Three types of secretory granules were found in the cytoplasm of the secretory cells that probably correspond to three sequential stages of granulogenesis. The primary secretory granules are formed by the fusion of Golgi vesicles. The primary granules fuse to form complex vesicles with heterogeneous contents. These secondary granules aggregate to form very large inclusions of high electron density (tertiary secretory granules), which probably represent the storage of the secretory product. All types of secretory granules were observed close to the apical plasmalemma.  相似文献   

15.
Summary The cerebral caudodorsal cells (CDC) of the pulmonate snail Lymnaea stagnalis are involved in the control of egg laying and associated behaviour by releasing various peptides. One of these is the ovulation hormone (CDCH). The cellular dynamics of this peptide have been studied using an antiserum raised to a synthetic portion of CDCH comprising the 20–36 amino acid sequence. With the secondary antibody-immunogold technique, specific immunoreactivity was found in all CDC. Rough endoplasmic reticulum and Golgi apparatus showed very little reactivity as did secretory granules that were in the process of being budded off from the Golgi apparatus. However, secretory granules that were being discharged from the Golgi apparatus, were strongly reactive. Secretory granules within lysosomal structures revealed various degrees of immunoreactivity, indicating their graded breakdown. Large electrondense granules, formed by the Golgi apparatus and thought to be involved in intracellular degradation of secretory material, were only slightly reactive. In the axon terminals secretory granules released their contents into the haemolymph by the process of exocytosis. The exteriorized contents were in most cases clearly immunopositive.The possibility has been discussed that CDCH is cleaved from its polypeptide precursor within secretory granules during granule discharge from the Golgi apparatus; subsequently, the mature secretory granules would be transported towards the neurohaemal axon terminals where they release CDCH into the haemolymph. Superfluous secretory material would be degraded by the lysosomal system including the large electron-dense granules.  相似文献   

16.
Summary L-3H-fucose was injected intravenously into adult male mice, after which, at different time intervals, the submandibular glands were removed and processed for light-and electron-microscopic radioautography. This radio active hexose was taken up by newly synthesized glycoproteins in the cells lining the granular ducts which were maximally labeled at 4 h after injection. Between 4 and 72 h the amount of labeled glycoproteins decreased moderately indicating that these macromolecules undergo a slow renewal. The main subcellular site of incorporation of 3 H-fucose into glycoproteins was the Golgi apparatus. From this organelle labeled glycoproteins were transferred to small secretory granules (diameter up to 1.0 m) located not only near the Golgi region but also throughout the apical cytoplasm. At 1 h after injection the concentration of label reached a maximum in the small secretory granules and labeling of medium (diameter between 1.1 and 2.0 m) and large (diameter over 2.0 m) granules was very low. At this postinjection interval the secretion product inside the lumen of the duct was already labeled. Between 1 and 72 h after injection the concentration of radioactivity in the small secretory granules decreased intensely while increasing in the medium and in the large ones. The concentration of fucose label reached a maximum in the medium secretory granules at 24 h and in the large ones at 72 h after injection. Additional experiments using mice previously injected with 4 intraperitoneal doses of 3H-fucose given 3 h apart demonstrated that the large granules undergo a very slow renewal. Some were found to be labeled as long as 28 days after administration of 3H-fucose. Recorded in this latter series of experiments was the labeling pattern of dense bodies that were regularly visualized in the cells lining the granular ducts. Their significance in the secretory process is discussed. In conclusion, newly synthesized glycoproteins are transferred from the Golgi apparatus to small secretory granules which carry a readily releasible pool of these macromolecules to the lumen of the duct. The small secretory granules also transfer newly synthesized glycoproteins to medium and large secretion granules which store a pool that is released very slowly. This characterizes the large secretory granules as the intracellular sites of storage of secretion products. The results of this investigation were correlated with the knowledge about the chemical composition of the different macromolecules that are known to be synthesized by the secretory cells of the granular ducts of the submandibular gland of the mouse.  相似文献   

17.
Summary

The activity of the endocrine dorsal bodies (DB) of the adult land snail Helix aspersa living in the field shows striking fluctuations during a 24 hr cycle. Quantitative electron microscopical data revealed that the number of secretory granules, the volume of the Golgi apparatus and the number of Golgi saccules containing electron-dense material were maximal at 1 am and minimal at 1 pm. The use of tannic acid indicated the exocytosis of secretory material was intense around 1 pm and only moderate at 1 am. The results suggest that, under natural conditions, the DB have a diurnal rhythm of activity, packaging secretory material into secretory granules mainly during the night and releasing it during the afternoon.  相似文献   

18.
Summary The unlabeled antibody-enzyme method was used to demonstrate ultrastructurally the specific localization of vitellogenin in the fat body of Calliphora. In control flies the binding sites to vitellogenin were localized in secretory granules situated in the Golgi complex, and in larger bodies named composite secretory granules. These composite granules appear to be formed when a part of a Golgi complex containing secretory granules and a number of small vesicles become surrounded by a common membrane. Ovariectomized flies, which apparently do not produce secretory granules, exhibited no immunocytochemical staining. Ovariectomized flies in which the administration of ecdysterone induced formation of secretory granules, also revealed specific staining on these granules. This is the first ultrastructural evidence of: (a) the specific localization of vitellogenin in secretory granules of the fat body of an insect; (b) the relationship between the presence of the ovary, and of ecdysterone, and the synthesis of vitellogenin by the fat body.  相似文献   

19.
Summary The neurointermediate lobe of the hypophysis in the Chameleon (Chamaeleo dilepis) was examined with light and electron microscopic methods, with special reference to the cytology of the pars intermedia (PI). The PI is the largest lobe of the hypophysis consisting of (1) dark cells with secretory granules ranging from 200–600 nm; (2) light cells, far fewer in number, containing granules 150–300 nm in diameter; (3) stellate, non-secretory cells. The secretory cells abut onto the perivascular basal lamina of the capillary sinusoids while their apical part borders an intercellular space. This surface of the cells often bears a cilium. The granules arise from the Golgi cisternae while small detached vesicles are found between circumscribed sites of the cell membrane and the Golgi apparatus. No nervous elements were found in the pars intermedia and it is assumed that the regulation of this lobe is purely humoral. This is supported by the presence of three types of nerve terminals in the pars nervosa: (a) terminals with large secretory granules and small vesicles; (b) terminals with dense-core vesicles and small vesicles; (c) terminals with small vesicles only. All of these are secretory as indicated by the presence of the synaptic semidesmosomes formed with the perivascular basal lamina.I would like to thank Mr. W.N. Newton for his skill and aid in all aspects of this work, Mr. A. Ansary for expert photographic assistance and the Central Pathology Laboratory, University of Dar es Salaam, for the electron microscopic facilities provided. Research sponsored by the University of Zambia Grants J02-18-00 and Medic 74/6  相似文献   

20.
Expression of fucose residues in entero-endocrine cells   总被引:1,自引:0,他引:1  
 The binding of the fucose-specific lectin, Ulex europaeus agglutinin (UEA-I), to entero-endocrine cells was studied in the ileum and caecum of humans, rabbits, rats, and mice. In all species investigated, numerous cells scattered in the crypt and villus epithelia intensely bound the UEA-I lectin. These cells proved to be argyrophilic and were identified as enterochromaffin cells and peptide tyrosine tyrosine cells by immunohistochemistry. They mostly reached the gut lumen (”open type”) by slender cellular processes. At the ultrastructural level, fucose binding sites were located in the matrix of the electron-dense secretory granules of these cells and in the glycocalyx covering their apical membrane. The results show that in various mammalian species entero-endocrine cells of defined types express fucose-bearing glycoconjugates. The presence of fucose residues in the apical membrane of entero-endocrine cells indicates that this membrane domain has a specialized composition of intramembranous glycoconjugates which could be involved in receptive and/or secretory functions. Accepted: 12 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号