首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xu Y  Dewanti AR  Mitra B 《Biochemistry》2002,41(41):12313-12319
(S)-Mandelate dehydrogenase from Pseudomonas putida belongs to a FMN-dependent enzyme family that oxidizes (S)-alpha-hydroxyacids. Active site structures of three homologous enzymes, including MDH, show the presence of two conserved arginine residues in close juxtaposition (Arg165 and Arg277 in MDH). Arg277 has an important catalytic role; it stabilizes both the ground and transition states through its positive charge as well as a hydrogen bond [Lehoux, I. E., and Mitra, B. (2000) Biochemistry 39, 10055-10065]. In this study, we examined the role of Arg165 and the overall importance of the Arg165/Arg277 pair. Single mutants at Arg165 as well as double mutants at Arg165 and Arg277 were characterized. Our results show that Arg165 has a role similar to, but less critical than, that of Arg277. It stabilizes the transition state through its positive charge and the ground state through a charge-independent interaction, most likely, a hydrogen bond. Though the k(cat)s for the charge-conserved mutants, R165K and R277K, were only 3-5-fold lower than those of wild-type MDH (wtMDH), the k(cat) for R165K/R277K was approximately 350-fold lower. Thus, at least one arginine residue is required for the optimal substrate orientation and catalysis. Stopped-flow studies show that the FMN reduction step is completely rate-limiting for both wtMDH and the arginine mutants, with the possible exception of R165E. Substrate isotope effects indicate that the carbon-hydrogen bond-breaking step is only partially rate-limiting for wtMDH but fully rate-limiting for the mutants. pH profiles of R165M conclusively show that the pK(a) of 9.3 in free wtMDH does not belong to Arg165.  相似文献   

2.
Dewanti AR  Mitra B 《Biochemistry》2003,42(44):12893-12901
(S)-Mandelate dehydrogenase from Pseudomonas putida is a member of a FMN-dependent enzyme family that oxidizes (S)-alpha-hydroxyacids to alpha-ketoacids. The reductive half-reaction consists of the steps involved in substrate oxidation and FMN reduction. In this study, we investigated the mechanism of this half-reaction in detail. At low temperatures, a transient intermediate was formed in the course of the FMN reduction reaction. This intermediate is characteristic of a charge-transfer complex of oxidized FMN and an electron-rich donor and is formed prior to full reduction of the flavin. The intermediate was not due to binding of anionic substrates or inhibitors. It was only observed with efficient substrates that have high k(cat) values. At higher temperatures, it was formed within the dead time of the stopped-flow instrument. The rate of formation of the intermediate was 3-4-fold faster than its rate of disappearance; the former had a larger isotope effect. This suggests that the charge-transfer donor is an electron-rich carbanion/enolate intermediate that is generated by the base-catalyzed abstraction of the substrate alpha-proton. This is consistent with the observation that the intermediate was not observed with the R277K and R277G mutants, which have been shown to destabilize the carbanion intermediate (Lehoux, I. E., and Mitra, B. (2000) Biochemistry 39, 10055-10065). Thus, the MDH reaction has two rate-limiting steps of similar activation energies: the formation and breakdown of a distinct intermediate, with the latter step being slightly more rate limiting. We also show that MDH is capable of catalyzing the reverse reaction, the reoxidation of reduced MDH by the product ketoacid, benzoylformate. The transient intermediate was observed during the reverse reaction as well, confirming that it is indeed a true intermediate in the MDH reaction pathway.  相似文献   

3.
Dewanti AR  Xu Y  Mitra B 《Biochemistry》2004,43(7):1883-1890
(S)-Mandelate dehydrogenase (MDH) from Pseudomonas putida is a flavin mononucleotide (FMN)-dependent enzyme that oxidizes (S)-mandelate to benzoylformate. In this work, we show that the ethyl and methyl esters of (S)-mandelic acid are substrates for MDH. Although the binding affinity of the neutral esters is 25-50-fold lower relative to the negatively charged (S)-mandelate, they are oxidized with comparable k(cat)s. Substrate analogues in which the carbonyl group on the C-1 carbon is replaced by other electron-withdrawing groups were not substrates. The requirement of a carbonyl group on the C-1 carbon in a substrate suggests that the negative charge developed during the reaction is stabilized by delocalization to the carbonyl oxygen. Arg277, a residue that is important in both binding and transition state stabilization for the activity with (S)-mandelate, is also critical for transition state stabilization for the esters, but not for their binding affinity. We previously showed that the substrate oxidation half-reaction with (S)-mandelate has two rate-limiting steps of similar activation energies and proceeds through the formation of a charge-transfer complex of an electron-rich donor and oxidized FMN [Dewanti, A. R., and Mitra, B. (2003) Biochemistry 42, 12893-12901]. This charge-transfer intermediate was observed with the neutral esters as well. The observation of this electron-rich intermediate for the oxidation of an uncharged substrate to an uncharged product, as well as the critical role of Arg277 in the reaction with the esters, provides further evidence that the MDH reaction mechanism is not a concerted transfer of a hydride ion from the substrate to the FMN, but involves the transient formation of a carbanion/ene(di)olate intermediate.  相似文献   

4.
Hirai TJ  Tsigelny I  Adams JA 《Biochemistry》2000,39(43):13276-13284
The three glycine residues in the glycine-rich loop of the oncoprotein, v-Fps, were mutated to determine the function of these highly conserved residues in catalysis. The kinase domains of six mutants (G928A,S, G930A,S, and G933A,S) and the wild-type enzyme were expressed and purified as fusion proteins of glutathione-S-transferase in Escherichia coli, and their catalytic properties were assessed using steady-state kinetic, inhibition, viscosity and autophosphorylation studies. Although both G928A and G930A had no detectable activity toward the substrate peptide (EAEIYEAIE), the other mutants had apparent, but varying activities. G930S lowered the rate of phosphoryl transfer by 130-fold while G928S and G933S had smaller (6-9-fold) reductions in this step. These effects on catalytic function parallel the reductions in turnover and autophosphorylation but, for G933S and G933A, net product release is still rate limiting at saturating substrate and ATP concentrations. On the basis of K(I) measurements, the effects on turnover for these mutants may be due to improved ADP affinity. While ADP affinity is reduced 2- and 3-fold for G928S and G930S, the affinity of this product is increased by 22- and 7-fold for G933S and G933A. In contrast, ATP affinity is enhanced by 5-fold for G928S and G933S and is reduced by less than 2-fold for G930S. These complex, differential effects on nucleotide binding indicate that the glycines influence the relative affinities of ADP and ATP. On the basis of the results of serine replacements, Gly-928 and Gly-930 enhance ADP affinity by 9- and 2-fold compared to ATP affinity whereas Gly-933 diminishes ADP affinity by approximately 4-fold compared to ATP affinity. These findings demonstrate that the functions of the loop lie not only in modulating the rate of the phosphoryl transfer step but also in balancing the relative affinities of ATP and ADP. These effects on nucleotide specificity may be a contributing element for the stabilization of the phosphoryl transition state and may also facilitate quick release of bound products.  相似文献   

5.
Boubacar AK  Pethe S  Mahy JP  Lederer F 《Biochemistry》2007,46(45):13080-13088
Flavocytochrome b2, a flavohemoprotein, catalyzes the oxidation of lactate at the expense of the physiological acceptor cytochrome c in the yeast mitochondrial intermembrane space. The mechanism of electron transfer from the substrate to monoelectronic acceptors via FMN and heme b2 has been intensively studied over the years. Each prosthetic group is bound to a separate domain, N-terminal for the heme, C-terminal for the flavin. Each domain belongs to a distinct evolutionary family. In particular, the flavodehydrogenase domain is homologous to a number of well-characterized l-2-hydroxy acid-oxidizing enzymes. Among these, some are oxidases for which the oxidative half-reaction produces hydrogen peroxide at the expense of oxygen. For bacterial mandelate dehydrogenase and flavocytochrome b2, in contrast, the oxidative half-reaction requires monoelectronic acceptors. Several crystal structures indicate an identical fold and a highly conserved active site among family members. All these enzymes form anionic semiquinones and bind sulfite, properties generally associated with oxidases, whereas electron transferases are expected to form neutral semiquinones and to yield superoxide anion. Thus, flavocytochrome b2 is a highly unusual dehydrogenase-electron transferase, and one may wonder how its flavin reacts with oxygen. In this work, we show that the separately engineered flavodehydrogenase domain produces superoxide anion in its slow reaction with oxygen. This reaction apparently also takes place in the holoenzyme when oxygen is the sole electron acceptor, because the heme domain autoxidation is also slow; this is not unexpected, in view of the heme domain mobility relative to the tetrameric flavodehydrogenase core (Xia, Z. X., and Mathews, F. S. (1990) J. Mol. Biol. 212, 837-863). Nevertheless, this reaction is so slow that it cannot compete with the normal electron flow in the presence of monoelectronic acceptors, such as ferricyanide and cytochrome c. An inspection of the available structures of family members does not provide a rationale for the difference between the oxidases and the electron transferases.  相似文献   

6.
7.
Cytochrome ba3 from Thermus thermophilus belongs to the B family of heme-copper oxidases and pumps protons across the membrane with an as yet unknown mechanism. The K channel of the A family heme-copper oxidases provides delivery of a substrate proton from the internal water phase to the binuclear heme-copper center (BNC) during the reductive phase of the catalytic cycle, while the D channel is responsible for transferring both substrate and pumped protons. By contrast, in the B family oxidases there is no D-channel and the structural equivalent of the K channel seems to be responsible for the transfer of both categories of protons. Here we have studied the effect of the T315V substitution in the K channel on the kinetics of membrane potential generation coupled to the oxidative half-reaction of the catalytic cycle of cytochrome ba3. The results suggest that the mutated enzyme does not pump protons during the reaction of the fully reduced form with molecular oxygen in a single turnover. Specific inhibition of proton pumping in the T315V mutant appears to be a consequence of inability to provide rapid (τ ~ 100 μs) reprotonation of the internal transient proton donor(s) of the K channel. In contrast to the A family, the K channel of the B-type oxidases is necessary for the electrogenic transfer of both pumped and substrate protons during the oxidative half-reaction of the catalytic cycle.  相似文献   

8.
Malate dehydrogenase (MDH) and glucose 6-phosphate dehydrogenase (G6PDH) have been partially purified from preparations of homogenized yeast cells using Procion Yellow H-E3G and Procion Red H-E7B, respectively, immobilized on solid perfluoropolymer supports in an expanded bed. A series of pilot experiments were carried out in small packed beds using clarified homogenate to determine the optimal elution conditions for both MDH and G6PDH. Selective elution of MDH using NADH was effective but the yields obtained were dependent on the concentration of NADH used. Selective elution was found to be most effective when a low concentration of NaCl (0.1 M) was present. MDH could be recovered in 84% yield with a purification factor of 94 when this strategy was adopted. In the case of G6PDH, specific elution using NADP(+) was successful in purifying G6PDH 178-fold in 96% yield. The dynamic capacity of both affinity supports was estimated by frontal analysis, in an expanded bed with unclarified homogenate, and corresponded to 17 U MDH/mL of settled Procion Yellow H-E3G perfluoropolymer support and 7.7 U H6PDH/mL of settled Procion Red H-E7B perfluoropolymer support. Expanded bed affinity chromatography of MDH resulted in an eluted fraction containing 89% of the applied activity with a purification factor of 113. Expanded bed affinity chromatography of G6PDH resulted in an eluted fraction containing 84% of the applied activity with a purification factor of 172. With both enzymes, the overall recovery of enzyme activity was greater than 94%, showing that the expanded bed approach to purification was nondenaturing. (c) 1995 John Wiley & Sons, Inc.  相似文献   

9.
Transfer of reducing equivalents from NADPH to the cytochromes P450 is mediated by NADPH-cytochrome P450 oxidoreductase, which contains stoichiometric amounts of tightly bound FMN and FAD. Hydrogen bonding and van der Waals interactions between FAD and amino acid residues in the FAD binding site of the reductase serve to regulate both flavin binding and reactivity. The precise orientation of key residues (Arg(454), Tyr(456), Cys(472), Gly(488), Thr(491), and Trp(677)) has been defined by x-ray crystallography (Wang, M., Roberts, D. L., Paschke, R., Shea, T. M., Masters, B. S., Kim, J.-J. P. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 8411-8416). The current study examines the relative contributions of these residues to FAD binding and catalysis by site-directed mutagenesis and kinetic analysis. Mutation of either Tyr(456), which makes van der Waals contact with the FAD isoalloxazine ring and also hydrogen-bonds to the ribityl 4'-hydroxyl, or Arg(454), which bonds to the FAD pyrophosphate, decreases the affinity for FAD 8000- and 25,000-fold, respectively, with corresponding decreases in cytochrome c reductase activity. In contrast, substitution of Thr(491), which also interacts with the pyrophosphate grouping, had a relatively modest effect on both FAD binding (100-fold decrease) and catalytic activity (2-fold decrease), while the G488L mutant exhibited, respectively, 800- and 50-fold decreases in FAD binding and catalytic activity. Enzymic activity of each of these mutants could be restored by addition of FAD. Kinetic properties and the FMN content of these mutants were not affected by these substitutions, with the exception of a 3-fold increase in Y456S K(m)(cyt )(c) and a 70% decrease in R454E FMN content, suggesting that the FMN- and FAD-binding domains are largely, but not completely, independent. Even though Trp(677) is stacked against the re-face of FAD, suggesting an important role in FAD binding, deletion of both Trp(677) and the carboxyl-terminal Ser(678) decreased catalytic activity 50-fold without affecting FAD content.  相似文献   

10.
Protein engineering is commonly used to improve the robustness of enzymes for activity and stability at high temperatures. In this study, we identified four residues expected to affect the thermostability of Streptomyces sp. strain S9 xylanase XynAS9 through multiple-sequence analysis (MSA) and molecular dynamic simulations (MDS). Site-directed mutagenesis was employed to construct five mutants by replacing these residues with proline or glutamic acid (V81P, G82E, V81P/G82E, D185P/S186E, and V81P/G82E/D185P/S186E), and the mutant and wild-type enzymes were expressed in Pichia pastoris. Compared to the wild-type XynAS9, all five mutant enzymes showed improved thermal properties. The activity and stability assays, including circular dichroism and differential scanning calorimetry, showed that the mutations at positions 81 and 82 increased the thermal performance more than the mutations at positions 185 and 186. The mutants with combined substitutions (V81P/G82E and V81P/G82E/D185P/S186E) showed the most pronounced shifts in temperature optima, about 17°C upward, and their half-lives for thermal inactivation at 70°C and melting temperatures were increased by >9 times and approximately 7.0°C, respectively. The mutation combination of V81P and G82E in adjacent positions more than doubled the effect of single mutations. Both mutation regions were at the end of long secondary-structure elements and probably rigidified the local structure. MDS indicated that a long loop region after positions 81 and 82 located at the end of the inner β-barrel was prone to unfold. The rigidified main chain and filling of a groove by the mutations on the bottom of the active site canyon may stabilize the mutants and thus improve their thermostability.  相似文献   

11.
We have studied the structure-function relationships in newly discovered hemoglobin (Hb) mutants with substitutions occurring at the tight and highly hydrophobic cluster between the B and G helices in the beta chains, namely, Hb Knossos or beta A27S and Hb Grange-Blanche or beta A27V. The beta A27S mutant has a 50% decrease in oxygen affinity relative to native human Hb A, while the beta A27V mutant has an increased oxygen affinity. We have also engineered the artificial beta A27T mutation through site-directed mutagenesis. This new mutant exhibits functional properties similar to those of Hb A. None of these mutants is unstable. X-ray analyses show that the substitution of Val for Ala may reduce the relative stability of the T structure of the molecule through packing effects in the beta chains; for the beta A27S mutant a new hydrogen bond between serine and the carbonyl O at beta 23 (B5) Val is observed and is likely to increase the relative stability of the T structure in the mutant hemoglobin. However, no significant changes in the crystals were observed for these mutants between the quaternary R and T structures relative to native Hb A. We conclude that small tertiary structural changes in the tight hydrophobic B-G helix interface are sufficient to induce functional abnormalities resulting in either low or high intrinsic oxygen affinities.  相似文献   

12.
Hevel JM  Mills SA  Klinman JP 《Biochemistry》1999,38(12):3683-3693
The copper amine oxidases (CAOs) catalyze both the single-turnover modification of a peptidyl tyrosine to form the active-site cofactor 2,4,5-trihydroxyphenylalanine quinone (TPQ) and the oxidative deamination of primary amines using TPQ. The function of a strictly conserved tyrosine located within hydrogen-bonding distance to TPQ has been explored by employing site-directed mutagenesis on the enzyme from H. polymorpha to form the mutants Y305A, Y305C, and Y305F. Both Y305A and Y305C behave similarly with regard to aliphatic amine oxidase activity, showing 3-7-fold decreases in kinetic parameters relative to WT, while the more conservative substitution of Y305F results in a >100-fold decrease in kcat and >500-fold decrease in kcat/Km relative to WT for the reductive half-reaction. The oxidation of benzylamine by all three mutants is severely impaired, with very significant effects seen in the oxidative half-reaction. CAO activity was studied as a function of pH for WT and Y305A proteins. Profiles for WT-catalyzed methylamine oxidation and Y305A-catalyzed ethylamine oxidation are comparable, while profiles of Y305A-catalyzed methylamine oxidation suggest the pH-dependent build-up of an inhibitory intermediate, which was subsequently observed spectrophotometrically and is attributed to the product Schiff base. The relative effects of mutations at Y305 on catalytic turnover are, thus, concluded to be dependent on the nature of the amino acid which substitutes for tyrosine and the substrate used in amine oxidase assays. TPQ biogenesis experiments demonstrate a approximately 800-fold decrease in kobs for apo-Y305A compared to WT. Despite the strict conservation of Tyr305 in all CAOs, neither biogenesis nor catalytic turnover is abolished upon mutation of this residue. We propose an important, but nonessential, role for Tyr305 in the positioning of the TPQ precursor for biogenesis, and in the maintenance of the correct conformation for TPQ-derived intermediates during catalytic turnover.  相似文献   

13.
The coagulation factors IXa (fIXa) and Xa (fXa) share extensive structural and functional homology; both cleave natural substrates effectively only with a cofactor at a phospholipid surface. However, the amidolytic activity of fIXa is 10(4)-fold lower than that of fXa. To identify determinants of this poor reactivity, we expressed variants of truncated fIXa (rf9a) and fXa (rf10a) in Escherichia coli. The crystal structures of fIXa and fXa revealed four characteristic active site components which were subsequently exchanged between rf9a and rf10a. Exchanging Glu219 by Gly or exchanging the 148 loop did not increase activity of rf9a, whereas corresponding mutations abolished reactivity of rf10a. Exchanging Ile213 by Val only moderately increased reactivity of rf9a. Exchanging the 99 loop, however, dramatically increased reactivity. Furthermore, combining all four mutations essentially introduced fXa properties into rf9a: the amidolytic activity was increased 130-fold with fXa substrate selectivity. The results suggest a 2-fold origin of fIXa's poor reactivity. A narrowed S3/S4 subsite disfavours interaction with substrate P3/P4 residues, while a distorted S1 subsite disfavours effective cleavage of the scissile bond. Both defects could be repaired by introducing fXa residues. Such engineered coagulation enzymes will be useful in diagnostics and in the development of therapeutics.  相似文献   

14.
The conformation of Escherichia coli 5 S rRNA was investigated using chemical and enzymatic probes. The four bases were monitored at one of their Watson-Crick positions with dimethylsulfate (at C(N-3) and A(N-1], with a carbodiimide derivative (at G(N-1) and U(N-3] and with kethoxal (at G(N-1, N-2]. Position N-7 of purine was probed with diethylpyrocarbonate (at A(N-7] and dimethylsulfate (at G(N-7]. Double-stranded or stacked regions were tested with RNase V1 and unpaired guanine residues with RNase T1. We also used lead(II) that has a preferential affinity for interhelical and loop regions and a high sensitivity for flexible regions. Particular care was taken to use uniform conditions of salt, magnesium, pH and temperature for the different enzymatic chemical probes. Derived from these experimental data, a three dimensional model of the 5 S rRNA was built using computer modeling which integrates stereochemical constraints and phylogenetic data. The three domains of 5 S rRNA secondary structure fold into a Y-shaped structure that does not accommodate long-range tertiary interactions between domains. The three domains have distinct structural and dynamic features as revealed by the chemical reactivity and the lead(II)-induced hydrolysis: domain 2 (loop B/helix III/loop C) displays a rather weak structure and possesses dynamic properties while domain 3 (helix V/region E/helix IV/loop D) adopts a highly structured and overall helical conformation. Conserved nucleotides are not crucial for the tertiary folding but maintain an intrinsic structure in the loop regions, especially via non-canonical pairing (A.G, G.U, G.G, A.C, C.C), which can close the loops in a highly specific fashion. In particular, nucleotides in the large external loop C fold into an organized conformation leading to the formation of a five-membered loop motif. Finally, nucleotides at the hinge region of the Y-shape are involved in a precise array of hydrogen bonds based on a triple interaction between U14, G69 and G107 stabilizing the quasi-colinearity of helices II and V. The proposed tertiary model is consistent with the localization of the ribosomal protein binding sites and possesses strong analogy with the model proposed for Xenopus laevis 5 S rRNA, indicating that the Y-shape model can be generalized to all 5 S rRNAs.  相似文献   

15.
The norepinephrine (NET) and dopamine (DAT) transporters are highly homologous proteins, displaying many pharmacological similarities. Both transport dopamine with higher affinity than norepinephrine and are targets for the psychostimulants cocaine and amphetamine. However, they strikingly contrast in their affinities for tricyclic antidepressants (TCA). Previous studies, based on chimeric proteins between DAT and NET suggest that domains ranging from putative transmembrane domain (TMD) 5 to 8 are involved in the high affinity binding of TCA to NET. We substituted 24 amino acids within this region in the human NET with their counterparts in the human DAT, resulting in 22 different mutants. Mutations of residues located in extra- or intracytoplasmic loops have no effect on binding affinity of neither TCA nor cocaine. Three point mutations in TMD6 (F316C), -7 (V356S), and -8 (G400L) induced a loss of TCA binding affinity of 8-, 5-, and 4-fold, respectively, without affecting the affinity of cocaine. The triple mutation F316C/V356S/G400L produced a 40-fold shift in desipramine affinity. These three residues are strongly conserved in all TCA-sensitive transporters cloned in mammalian and nonmammalian species. A strong shift in TCA affinity (IC(50)) was also observed for double mutants F316C/D336T (35-fold) and S399P/G400L (80-fold for nortriptyline and 1000-fold for desipramine). Reverse mutations P401S/L402G in hDAT did not elicit any gain in TCA affinities, whereas C318F and S358V resulted in a 3- and 10-fold increase in affinity, respectively. Our results clearly indicate that two residues located in TMD6 and -7 of hNET may play an important role in TCA interaction and that a critical region in TMD8 is likely to be involved in the tertiary structure allowing the high affinity binding of TCA.  相似文献   

16.
The deacetoxycephalosporin C synthase (DAOCS) from Streptomyces clavuligerus was engineered with the aim of enhancing the conversion of penicillin G into phenylacetyl-7-aminodeacetoxycephalosporanic acid, a precursor of 7-aminodeacetoxycephalosporanic acid, for industrial application. A single round of random mutagenesis followed by the screening of 5,500 clones identified three mutants, G79E, V275I, and C281Y, that showed a two- to sixfold increase in the k(cat)/K(m) ratio compared to the wild-type enzyme. Site-directed mutagenesis to modify residues surrounding the substrate resulted in three mutants, N304K, I305L, and I305M, with 6- to 14-fold-increased k(cat)/K(m) values. When mutants containing all possible combinations of these six sites were generated to optimize the ring expansion activity for penicillin G, the double mutant, YS67 (V275I, I305M), showed a significant 32-fold increase in the k(cat)/K(m) ratio and a 5-fold increase in relative activity for penicillin G, while the triple mutant, YS81 (V275I, C281Y, I305M), showed an even greater 13-fold increase in relative activity toward penicillin G. Our results demonstrate that this is a robust approach to the modification of DAOCS for an optimized DAOCS-penicillin G reaction.  相似文献   

17.
Vagin O  Denevich S  Munson K  Sachs G 《Biochemistry》2002,41(42):12755-12762
Inhibition of the gastric H,K-ATPase by the imidazo[1,2-alpha]pyridine, SCH28080, is strictly competitive with respect to K+ or its surrogate, NH4+. The inhibitory kinetics [V(max), K(m,app)(NH4+), K(i)(SCH28080), and competitive, mixed, or noncompetitive] of mutants can define the inhibitor binding domain and the route to the ion binding region within M4-6. While mutations Y799F, Y802F, I803L, S806N, V807I (M5), L811V (M5-6), Y928H (M8), and Q905N (M7-8) had no effect on inhibitor kinetics, mutations P798C, Y802L, P810A, P810G, C813A or -S, I814V or -F, F818C, T823V (M5, M5-6, and M6), E914Q, F917Y, G918E, T929L, and F932L (M7-8 and M8) reduced the affinity for SCH28080 up to 10-fold without affecting the nature of the kinetics. In contrast, the L809F substitution in the loop between M5 and M6 resulted in an approximately 100-fold decrease in inhibitor affinity, and substitutions L809V, I816L, Y925F, and M937V (M5-6, M6, and M8) reduced the inhibitor affinity by 10-fold, all resulting in noncompetitive kinetics. The mutants L811F, Y922I, and I940A also reduced the inhibitor affinity up to 10-fold but resulted in mixed inhibition. The mutations I819L, Q923V, and Y925A also gave mixed inhibition but without a change in inhibitor affinity. These data, and the 9-fold loss of SCH28080 affinity in the C813T mutant, suggest that the binding domain for SCH28080 contains the surface between L809 in the M5-6 loop and C813 at the luminal end of M6, approximately two helical turns down from the ion binding region, where it blocks the normal ion access pathway. On the basis of a model of the Ca-ATPase in the E2 conformation (PDB entry 1kju), the mutants that change the nature of the kinetics are arranged on one side of M8 and on the adjacent side of the M5-6 loop and M6 itself. This suggests that mutations in this region modify the enzyme structure so that K+ can access the ion binding domain even with SCH28080 bound.  相似文献   

18.
Fructosamine oxidases (FAOXs) are flavin-containing enzymes that catalyze the oxidative deglycation of low molecular weight fructosamines or Amadori products. The fructosamine substrate is oxidized by the flavin in the reductive half-reaction, and the reduced flavin is then oxidized by molecular oxygen in the oxidative half-reaction. The crystal structure of FAOX-II from Aspergillus fumigatus reveals a unique interaction between Lys53 and the isoalloxazine. The ammonium nitrogen of the lysine is in contact with and nearly centered over the aromatic ring of the flavin on the si-face. Here, we investigate the importance of this unique interaction on the reactions catalyzed by FAOX by studying both half-reactions of the wild-type and Lys53 mutant enzymes. The positive charge of Lys53 is critical for flavin reduction but plays very little role in the reaction with molecular oxygen. The conservative mutation of Lys53 to arginine had minor effects on catalysis. However, removing the charge by replacing Lys53 with methionine caused more than a million-fold decrease in flavin reduction, while only slowing the oxygen reaction by ~30-fold.  相似文献   

19.
High levels of conversion of 14C-labelled pristinamycin IIB (PIIB) to pristinamycin IIA (PIIA) were obtained in vivo in Streptomyces pristinaespiralis and in some other streptogramin A producers. This established that PIIB was an intermediate on the pathway to PIIA. In addition, in vitro studies with cell-free protein preparations demonstrated that the oxidation of PIIB to PIIA is a complex process requiring NADH, riboflavin 5'-phosphate (FMN), and molecular oxygen. Two enzymes were shown to be necessary to catalyze this reaction. Both were purified to homogeneity from S. pristinaespiralis by a coupled enzyme assay based on the formation of PIIA and by requiring addition of the complementing enzyme. One enzyme was purified about 3,000-fold by a procedure including a decisive affinity chromatography step on FMN-agarose. It was shown to be a NADH:FMN oxidoreductase (E.C. 1.6.8.1.) (hereafter called FMN reductase), providing reduced FMN (FMNH2) to the more abundant second enzyme. The latter was purified only 160-fold and was called PIIA synthase. Our data strongly suggest that this enzyme catalyzes a transient hydroxylation of PIIB by molecular oxygen immediately followed by a dehydration leading to PIIA. The native PIIA synthase consists of two different subunits with Mrs of around 50,000 and 35,000, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, while the FMN reductase seems to be a monomer with a Mr of around 28,000 and containing one molecule of tightly bound FMN. Stepwise Edman degradation of the entire polypeptides or some of their trypsin-digested fragments provided amino acid sequences for the two isolated proteins.  相似文献   

20.
The higher order structure of the functionally important 530 loop in Escherichia coli 16S rRNA was studied in mutants with single base changes at position 517, which significantly impair translational fidelity. The 530 loop has been proposed to interact with the EF-Tu-GTP-aatRNA ternary complex during decoding. The reactivity at G530, U531 and A532 to the chemical probes kethoxal, CMCT and DMS respectively was increased in the mutant 16S rRNA compared with the wild-type, suggesting a more open 530 loop structure in the mutant ribosomes. This was supported by oligonucleotide binding experiments in which probes complementary to positions 520-526 and 527-533, but not control probes, showed increased binding to the 517C mutant 70S ribosomes compared with the non-mutant control. Furthermore, enzymatic digestion of 70S ribosomes with RNase T1, specific for single-stranded RNA, substantially cleaved both wild-type and mutant rRNAs between G524 and C525, two of the nucleotides involved in the 530 loop pseudoknot. This site was also cleaved in the 517C mutant, but not wild-type rRNA, by RNase V1. Such a result is still consistent with a more open 530 loop structure in the mutant ribosomes, since RNase V1 can cut at appropriately stacked single-stranded regions of RNA. Together these data indicate that the 517C mutant rRNA has a rather extensively unfolded 530 loop structure. Less extensive structural changes were found in mutants 517A and 517U, which caused less misreading. A correlation between the structural changes in the 530 loop and impaired translational accuracy is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号