首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary To determine its map position, the sSP gene was cloned into plasmid pBR322 and the recombinant plasmid was integrated into the chromosome of a polA mutant at the site of the sSP gene by homologous recombination. The chromosomal location of Ampr was then determined by P1 phage-mediated transduction. Thus, the sSP gene was mapped between gltB and glnF at min 69.5 on the Escherichia coli chromosome. Strains were constructed in which the sSP gene was brought under the control of the lac regulatory system. This indicated that the stringent starvation protein (SSP) is dispensable for growth, at least under normal culture conditions.Abbreviations SSP stringent starvation protein - Ampr ampicillin resistant - IPTG isopropyl -d-thiogalactopyranoside  相似文献   

2.
Summary The in vivo role of the Escherichia coli protein DnaA in the replication of plasmid pBR322 was investigated, using a plasmid derivative carrying an inducible dnaA + gene. In LB medium without inducer, the replication of this plasmid, like that of pBR322, was inhibited by heat inactivation of chromosomal DnaA46 protein so that plasmid accumulation ceased 1 to 2 h after the temperature shift. This inhibition did not occur when the plasmid dnaA + gene was expressed in the presence of the inducer isopropyl-1-thin--d-galactopyranoside (IPTG). Inhibition was also not observed in glycerol minimal medium or in the presence of low concentrations of rifampicin or chloramphenicol. Deletion of the DnaA binding site and the primosome assembly sites (pas, rri) downstream of the replication origin did not affect the plasmid copy number during exponential growth at 30° C, or after inactivation of DnaA by a shift to 42° C in a dnaA46 host, or after oversupply of DnaA, indicating that these sites are not involved in a rate-limiting step for replication in vivo. The accumulation of the replication inhibitor, RNAI, was independent of DnaA activity, ruling out the possibility that DnaA acts as a repressor of RNAI synthesis, as has been suggested in the literature. Changes in the rate of plasmid replication in response to changes in DnaA activity (in LB medium) could be resolved into an early, rom-dependent, and a late, rom-independent component. Rom plasmids show only the late effect. After heat inactivation of DnaC, plasmid replication ceased immediately. These results, together with previously published reports, suggest that DnaA plays no specific role during in vivo replication of ColE1 plasmids and that the gradual cessation of plasmid replication after heat inactivation of DnaA in LB medium results from indirect effects of the inhibition of chromosome replication and the ensuing saturation of promoters with RNA polymerase under nonpermissive growth conditions.  相似文献   

3.
The putative replication origin of Azotobacter vinelandii was cloned as an autonomously replicating fragment after ligation to an antibiotic resistance cartridge. The resulting plasmids could be isolated and labelled by Southern hybridisation with the antibiotic resistance cartridge as probe and also visualised by electron microscopy. These plasmids integrated into the chromosome after a few generations, even in the recA mutant of A. vinelandii. The integrated copy of the plasmid was re-isolated from the chromosome and the DNA and its subfragments were cloned in the plasmid vector pBR322. A 200-bp DNA fragment was sufficient to allow the replication of pBR322 in an Escherichia coli polA strain. Electron microscopic analysis of this plasmid showed that replication initiated mostly within the A. vinelandii DNA fragment. The nucleotide sequence of the putative replication origin and its flanking regions was determined. In the sequence of the 200-bp fragment many of the distinctive features found in other replication origins are lacking. A greater variation from the consensus DnaA binding sequence was observed in A. vinelandii. Direct sequencing of the relevant genomic fragment was also carried after amplifying it from A. vinelandii chromosomal DNA by PCR. This confirmed that no rearrangements had taken place while the cloned fragment was resident in E. coli. It was shown by hybridisation that the 200-bp chromosomal origin fragment of A. vinelandii was present in three other field strains of Azotobacter spp.  相似文献   

4.
Summary A composite plasmid comprising the mini-F and pBR322 replicons was found to inhibit cell growth of a host with conditional mutations in dnaA and rnh under restrictive conditions, where the normal initiation of replication from oriC was inactivated, but the alternative replication initiation from oriK was active. It was further shown that the composite plasrnid inhibited stable DNA replication (SDR) which occurs constitutively in cells mutant for rnh. Neither pBR322 nor mini-F alone produced these inhibitory effects. Deletion analyses revealed that the mini-F segment responsible for the inhibition of both processes was the promoter region of the sopA gene which had been cloned into a site upstream of the bla gene on pBR322 in such an orientation as to cause overexpression of bla. Inserting the promoter of the Escherichia coli lac gene into the same site had the same effect. Introduction of a deletion and a frameshift mutation into bla abolished the inhibition. Thus, the inhibition of growth and SDR appear to be due to overproduction of the bla gene product, -lactamase.  相似文献   

5.
The stringent response causes inhibition of replication of plasmid pBR322 in amino acid-starved Escherichia coli cells whereas in relaxed mutants the replication of this plasmid proceeds for several hours. On the basis of density shift experiments and pulse-labelling experiments we showed that most of the pBR322 molecules begin replication during the relaxed response and the rate of plasmid DNA synthesis in unstarved and isoleucine-starved relA ] bacteria is similar. We found that the Rom function plays a key role in the stringent control of plasmid pBR322 replication, as insertional inactivation of the rom gene causes amplification of pBR322rom in both relA and relA + strains during amino acid starvation. Moreover, pUC19, which is a pBR322-derived plasmid lacking the rom gene, behaves like pBR322rom , whereas introduction of the rom gene into the pUC19 replicon drives it into the pBR322 mode of replication in amino acid-starved bacteria. A model for the regulation of pBR322 plasmid DNA replication by Rom protein in amino acid-starved Escherichia coli strains is proposed.  相似文献   

6.
Summary The phenotype of Escherichia coli dnaA missense and nonsense mutations was integratively suppressed by plasmid R100-1. The suppressed strains, however, could not survive when the dnaA function was totally inactivated. This was demonstrated by the inability of replacing the dnaA allele in the suppressed strain by a dnaA::Tn10 insertion using phage P1-mediated transduction. When the intact dnaA + allele was additionally supplied by a specialized transducing phage, imm 21 dnaA +, which integrated at the att site on the E. coli chromosome, then the dnaA::Tn10 insertion, together with a oriC deletion, were able to be introduced into the suppressed strain. Thus, the mechanisms of dnaA function for oriC and for the replication origin of R100-1 may not be quite the same.  相似文献   

7.
Summary Escherichia coli rnh mutants lacking ribonuclease H (RNase H) activity can tolerate deletion of the origin of DNA Replication (oriC) and transposon-insertional inactivation of an initiator gene (dnaA:Tn10). Introduction of the recA200 allele encoding a thermolabile RecA protein intornh dnaA: Tn10 and rnh oriC mutants strains rendered DNA synthesis and colony formation of these mutants temperature sensitive. The temperature sensitivity and the broth sensitivity (Srm) of the rnh dnaA: Tn10 recA200 strain was suppressed by the presenceof plasmids (pBR322 derivatives) carrying dnaA +only when the intact oriC site was present on the chromosome. Lack of RNase H activity neither promoted replication of minichromosomes (pOC24 and pasn20) in the absence of required DnaA+ protein nor inhibited dnaA +–dependent minichromosome replication. These results led to the conclusion that RNase H is not directly involved in the events leading to initiation of DNA replication at oriC. Rather, it functions as a specificity factor by eliminating certain forms of RNA-DNA hybrids which could otherwise be used to prime DNA replication at sites other than oriC.  相似文献   

8.
Summary A hybrid phage (Sda1), containing an 8.1 kb EcoRI DNA fragment from the Escherichia coli chromosome, was selected on the basis of its ability to suppress bacterial thermosensitivity caused by the dnaA46 mutation. We have shown that this suppression is due to a recA +-dependent amplification of the 8.1 kb fragment; consistent with this observation, cloning of the 8.1 kb fragment into a high copy number plasmid (pBR325) leads also to suppression of dnaA46. In the suppressed strains growing at high temperature, bidirectional replication starts in or near the oriC region and requires the presence of the DnaA polypeptide. These findings suggest that the overproduction of a gene product(s), encoded by the cloned 8.1 kb fragment, can restore dnaA-dependent initiation of replication at high temperature in the oriC region. Genetic mapping shows that the groES (mopB) and groEL (mopA) genes are located on the 8.1 kb suppressor fragment. Further analysis, including in vitro mutagenesis and subcloning, demonstrates that the amplification of the groES and groEL genes is both necessary and sufficient to suppress the temperature sensitive phenotype of the dnaA46 mutation.  相似文献   

9.
Summary An Escherichia coli mutant defective in replication of the chromosome has been isolated from temperature-sensitive mutants that cannot support colicin E1 plasmid DNA synthesis in the presence of chloramphenicol. Cellular DNA synthesis of the mutant ceases almost immediately after transfer to the nonpermissive temperature. The defect is due to a single mutation, dna-59, which is located close to the sites of dnaA mutations and a cou R mutation conferring DNA gyrase with resistance to coumermycin. The dna-59 mutant is not able to support DNA synthesis of phage at the high temperature. The mutant also restricts growth of X174 phage at the high temperature, but permits formation of supercoiled closedcircular duplex replicative intermediates. T7 phage can grow on the mutant even at the high temperature.A specialized transducing phage imm 21[tna dnaA]#2 (Miki et al., 1978) supports growth of dna-59, dnaA46 and dna-167 cells at the high temperature. Some of the EDTA-resistant derivatives of the phage have lost part or all of the dnaA gene, but carry gene function complementing the defect of dna-59 cells, as judged by conversion of the above dna strains to wild type cells by phage infection, and by suppression of the loss of viability of dna-59 cells at the high temperature by phage infection. The gene containing the dna-59 mutation site is thus distinct from the dnaA gene. Since the dna-59 mutation does not affect expression of the cou r gene of DNA gyrase, which is another known gene involved in DNA synthesis near the dnaA gene, this mutation is probably in a new gene, dnaN. From analysis of the suppression activities of imm 21[tna dnaA]#2 phage and its deletion derivatives against dnaN59 cells, it is suggested that the expression of the dnaN gene function is reduced by deletion in the dnaA region.  相似文献   

10.
A DNA sequence essential for the R64drd11 + ColK-mediated conjugal transfer of pBR322 has been located in a 540 bp HaeIII fragment (HaeIII-2) between the vegetative origin of replication and the tetracycline resistance (Tcr) gene of this vector. The pBR322 derivatives pBR327 and pBR328 lack this DNA sequence and are not mobilized by conjugation. Two derivatives of pBR328 were constructed by re-inserting the HaeIII-2 fragment in both orientations into the chloramphenicol-resistance gene of the same vector. One orientation of the HaeIII-2 fragment permitted mobilization by conjugation while the opposite orientation prevented mobilization. Further examination of pBR322 and derivatives revealed that the region between the origin of replication and Tcr gene also plays a role in regulating plasmid copy number.  相似文献   

11.
Summary A 1.7-kb cryptic plasmid was isolated fromZymomonas anaerobia and used to construct a shuttle vector inserting useful parts of pUC9, pBR322, and pRK2501.Escherichia coli was employed to clone the new plasmid designated pSR12. The 7.7-kb plasmid pSR12 reisolated from the host cells could transform competent cells ofZ.anaerobia at 2×10–7 frequency. This shuttle vector contains two antibiotic resistance markers, Kanr and Tetr, as well as restriction sites such as EcoRI, PstI, and XhoI, suitable for DNA recombinations.  相似文献   

12.
In an Escherichia coli K-12 strain (trpA trpE tnd) cultured in LB broth without selective pressure, a pBR322 derivative bearing the E. coli tryptophan Operon (pBR322-trp) was rapidly lost: after 27 cell-number doublings, only 7% cells retained both tryptophan prototrophy (Trp+) and ampicillin resistance (Apr), and 17% were Apr but Trp?. Insertion of the mini-F DNA from F factor into this plasmid effectively suppressed both the plasmid loss and the discoordinate loss of Trp+: the percentage of Trp? cells per cell-number doubling was decreased more than 100-fold. Partial derepression of the trp operon due to 3-indole acrylic acid further decreased the stability of the pBR322-trp but not that of the mini-F-inserted pBR322-trp.  相似文献   

13.
Prior research suggested that the genes for large (L) and small (S) subunits of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) are amplified in ampicillin-resistant pBR322-transformants of Anacystis nidulans 6301. We now report that chromosomal DNA from either untransformed or transformed A. nidulans cells hybridizes with nick-translated [32P]-pBR322 at moderately high stringency. Moreover, nick-translated [32-P]-pCS75, which is a pUC9 derivative containing a PstI insert with L and S subunit genes (for RuBisCO) from A. nidulans, hybridizes at very high stringency with restriction fragments from chromosomal DNA of untransformed and transformed cells as does the 32P-labeled PstI fragment itself. The hybridization patterns suggest the creation of two EcoRI sites in the transformant chromosome by recombination. In pBR322-transformants the RuBisCO activity is elevated 6- to 12-fold in comparison with that of untransformed cells. In spite of the difference in RuBisCO activity, pBR322-transformants grow in the presence of ampicillin at a similar initial rate to that for wild-type cells. Growth characteristics and RuBisCO content during culture in the presence or absence of ampicillin suggest that pBR322-transformants of A. nidulans 6301 are stable. The data also collectively suggest that a given plasmid in the transformed population replicates via a pathway involving recombination between the plasmid and the chromosome.  相似文献   

14.
Expression of the umuDC operon is required for UV and most chemical mutagenesis in Escherichia coli. The closely related species Salmonella typhimurium has two sets of umuDC-like operons, umuDC ST on the chromosome and samAB on a 60-MDa cryptic plasmid. The roles of theumuDC-like operons in chemically induced frameshift mutagenesis of the hisD3052 allele of S. typhimurium were investigated. Introduction of a pBR322-derived plasmid carrying umuDCST increased the rate of reversion of hisD3052, following treatment with 1-nitropyrene (1-NP) or 1,8-dinitropyrene (1,-8DNP) tenfold and fivefold, respectively, whereas it did not substantially increase the rate of reversion induced by other frameshift mutagens, i.e. 2-nitrofluorene (2NF) and 2-amino- 3-methyldipyrido[1,2-a:3 ,2-d]imi-dazole (Glu-P-1). Introduction of a pBR322-derived plasmid carrying samAB did not increase the incidence of reversion of hisD3052 observed with any of the mutagens examined. Deletion of umuDC STSubstantially lowered the reversion rate induced by l-NP or 1,8-DNP, but it did not affect reversion induced by 2-NF, Glu-P-1 or N-hydroxyacetylaminofluorene (N-OH-AAF). Deletion of samAB had little impact on reversion incidence induced by any of the five frameshift mutagens. DNA amplification using the polymerase chain reaction technique followed by restriction enzyme analysis using BssHII, suggested that the mutations induced by the five frameshift mutagens were all CG deletions at the CGCGCGCG sequence in hisD3052. These results suggest that umuDCST, but not samAB, is involved in the -2 frameshift mutagenesis induced by l-NP and 1,8-DNP at the repetitive CG sequence, whereas neither operon participates in induction of the same type of mutations by 2-NF, Glu-P-1 or N-OH-AAF.  相似文献   

15.
Summary Monomeric pBR322 DNA that had been linearized at its unique SalI site transformed wild-type Escherichia coli with 102 to 103 times less efficiency than CCC plasmid DNA. Dose-response experiments indicated that a single linear plasmid molecule was sufficient to produce a transformant. Transformation with linearized pBR322 DNA was reduced 10 to 40 fold in recA , recBC or recF backgrounds. In contrast, transformation with CCC DNA was unaffected by the rec status of the host. Transformation with linear pBR322 DNA was increased 3-fold in a DNA ligase-overproducing (lop11) mutant and decreased to a similar degree by transient inactivation of ligase in a ligts7 mutant.A proportion (ranging from about 9% in the wild-type to 42% in a recBC, lop11 mutant) of the transformants obtained with SalI-linearized pBR322 monomeric DNA contained deleted plasmids. Deletion rates were generally higher in rec strains. Dephosphorylation of the termini on linear DNA or the creation of blunt-ended pBR322 molecules (by end-filling the SalI 5 protrusions or by cleavage with PvuII) decreased the transformation frequencywhilst increasing the deletion rate.Linear pBR322 dimeric DNA gave transformation frequencies in recA + and recA strains that were reduced only 3 to 7 fold respectively relative to frequencies obtained with dimeric CCC DNA. Furthermore, in contrast to transformation with linear monomeric DNA, deletions were not observed.We propose that the majority of transformants arise, not by simple intracellular reannealing and ligation of the two cohesive SelI-termini of a linear molecule, but by intramolecular recombination. Deleted plasmids could be generated therefore during recyclization caused by recombination between short directly repeated sequences within a pBR322 monomer. We suggest that perfectly recircularized monomeric pBR322 molecules, which are found in the majority of transformants, arise primarily by intramolecular recombinational resolution of head-to-tail linear pBR322 dimers. Such linear oligomeric forms are created during preparation of linearized plasmid DNA by annealing of the SalI cohesive termini and constitute a variable proportion of the total molecules present.  相似文献   

16.
Summary The mini-F plasmid has the trans-acting sopA, sopB genes and the cis-acting sopC DNA which are essential for plasmid partitioning. In this paper, we report the purification of the sopB gene product from extracts of cells harboring a pBR322 derivative carrying the sopB gene. The purity of the final preparation was more than 95%, as determined by densitometry. The amino acid sequence of the amino-terminal region of the protein for the 17 residues identified was identical to that predicted from the DNA sequence of the sopB gene. Therefore, it was concluded that the protein was the sopB gene product. Using anti-SopB serum, the SopB protein was detected in the cell lysates of F+, F, and Hfr strains. The SopB protein bound to the plasmid DNA of a pBR322 derivative carrying the sopC DNA segment, but not to the vector plasmid pBR322.  相似文献   

17.
The chloramphenicol-resistance (CPr) plasmid pTZ12 (2.55 kb) in Bacillus subtilis was genetically analyzed in detail, and the CPr determinant and the functional unit of replication were mapped. The plasmids pTZ12 and pBR322 were digested with suitable restriction endonucleases and ligated with T4 ligase. The ligated DNAs were introduced into E. coli by transformation and CP-resistant transformants were selected. In conclusion, the CPr determinant was mapped between a TaqI site and a BclI site (about 900 base pairs) on pTZ12. A set of pTZ12–pBR322 recombinant plasmids isolated from E. coli was introduced into B. subtilis by transformation to test for ability to replicate in B. subtilis. From the results, the region of the functional unit of pTZ12 replication was mapped. It was also proved that the gene product of this CPr determinant was chloramphenicol acetyltransferase (CAT) and the native CAT in the cells carrying pTZ12 was a dimeric protein with two identical subunits having a molecular weight of approximately 24,000 (24 K).  相似文献   

18.
Summary Strains of Escherichia coli K12 heterozygous for the R100-1 tetracycline resistance region were constructed. They carried the wild-type Tetr genes in the chromosome and single site Tets mutations on plasmids. Some heterozygotes could not express tetracycline resistance fully after induction. The mutant tet allele was thus partially dominant.When heterozygotes carrying the dominant tet mutant were plated on agar containing 50 g/ml tetracycline, mutants which grew normally occurred at a frequency of 1–4×10-4. Analysis of these dominance relief mutants showed that in 53/56 isolates the dominant tet allele was lost forming either Tra+ or Tra- deletion mutants of the plasmid. The mutation frequency was not affected either by the host chromosomal recA mutation or by the temperature of growth of the culture.  相似文献   

19.
Summary More temperature-sensitive mutants affecting the replication of the F-gal+ episome of Escherichia coli K12 have been isolated. Eight of the mutations were located on F itself and three were located on the chromosome.The temperature sensitive F-gal+'s have been integrated into the chromosome to produce Hfr strains. These Hfr strains have transfer origins similar to Hfr Cavalli, and all show aberrant excision and transfer of elongated segments of the chromosome including the integrated F-gal to generate long merodiploids.The chromosomal mutations that govern the replication of F have been termed seg (for segregation). Wild-type F-gal+ can be integrated into seg cells at 42° C to give Hfrs, in a process analogous to integrative suppression in the formation of Hfrs from cells carrying mutations that are temperature-sensitive for chromosomal DNA replication (dnaA). A curious feature of an Hfr derived from a seg strain is that it also shows F-genote enlargement as well as normal transfer of chromosomal genetic marker. Preliminary transductional mapping data show that the mutation seg-2 is linked to the threonine locus (minute 0).  相似文献   

20.
Summary A DNA fragment containing the replication origin of the Escherichia coli K-12 chromosome was inserted in two orientations at either the BamHI or SalI site of pBR322 DNA. All the resulting hybrid plasmids were found to replicate in both polA and polA + cells, whereas pBR322 replicates only in polA + cells. This characteristic provided a method for assaying the autonomously replicating ability (Ori function) of the E. coli origin.In order to define the minimum DNA region (ori) that determines Ori function, deletions of various sizes were introduced from either side of the ori-containing segment in the hybrid plasmids by in vitro techniques, and the correlation between the Ori phenotype and nucleotide sequence of the deletion derivatives was analyzed. It was found that the left end of ori is between positions 23 and 35, and the right end is either position 266 or 267 in our nucleotide coordinate (Sugimoto et al., 1979). Therefore, ori is present within a region of minimum 232 base pairs and maximum 245 base pairs in length. The Ori+ and Ori- phenotypes were clearly resolved at both sides of these boundaries by the above assay procedure.To obtain information about the effect of mutations in the internal region of the defined ori stretch, short sequences were inserted or deleted in vitro in the vicinity of several restriction sites within ori on the hybrid plasmids. Most of these plasmids carrying modified sequences showed Ori- phenotype, suggesting that most parts of the ori stretch play important roles in Ori function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号