共查询到20条相似文献,搜索用时 15 毫秒
1.
Biver T Pulzonetti M Secco F Venturini M Yarmoluk S 《Archives of biochemistry and biophysics》2006,451(2):103-111
A T-jump investigation of the binding of Cyan40 [3-methyl-2-(1,2,6-trimethyl-4(1H)pyridinylidenmethyl)-benzothiazolium ion] and CCyan2 [3-methyl-2-[2-methyl-3-(3-methyl-2(3H)-benzothiazolylidene)-1-propenyl]-benzothiazolium ion] with poly(dA-dT) x poly(dA-dT) and poly(dG-dC) x poly(dG-dC) is performed at I = 0.1M (NaCl), 25 degrees C and pH 7. Two kinetic effects are observed for both systems. The binding process is discussed in terms of the sequence D + P <==> P,D <==> PD(I) <==> PD(II), which leads first to fast formation of a precursor complex P,D and then to a partially intercalated complex PD(I) which converts to the fully intercalate complex PD(II). Concerning CCyan2 the rate parameters depend on the polymer nature and their analysis shows that in the case of poly(dG-dC) x poly(dG-dC) the most stable bound form is the fully intercalated complex PD(II), whereas in the case of poly(dA-dT) x poly(dA-dT) the partially intercalated complex PD(I) is the most stable species. Concerning Cyan40, the rate parameters remain unchanged on going from A-T to G-C indicating that this dye is unselective. 相似文献
2.
A new electron-deficient tentacle porphyrin meso-tetrakis[2,3,5,6-tetrafluoro-4-(2-trimethylammoniumethylamine)phenyl]porphyrin (TθF4TAP) has been synthesized. The binding interactions of TθF4TAP with DNA polymers were studied for comparison to those of an electron-deficient tentacle porphyrin and an electron-rich tentacle porphyrin; these previously studied porphyrins bind to DNA primarily by intercalative and outside-binding modes, respectively. The three tentacle porphyrins have similar size and shape. The basicity of TθF4TAP indicated that it has electronic characteristics similar to those of the intercalating electron-deficient tentacle porphyrin. However, TθF4TAP binds to calf thymus DNA, [poly(dA-dT)]2, and [poly(dG-dC)]2 in a self-stacking, outside-binding manner under all conditions. Evidence for this binding mode included a significant hypochromicity of the Soret band, a conservative induced CD spectrum, and the absence of an increase in DNA solution viscosity. As found previously for the electron-rich porphyrin, the results suggest that combinations of closely related self-stacked forms coexist. The mix of forms depended on the DNA and the solution conditions. There are probably differences in the detailed features of the self-stacking adducts for the two types of tentacle porphyrins, especially at high R (ratio of porphyrin to DNA). At low R values, the induced CD signal of TθF4TAP/CT DNA resembled that of TθF4TAP/[poly(dA-dT)]2, suggesting that TθF4TAP binds preferentially at AT regions. Competitive binding experiments gave evidence that TθF4TAP binds preferentially to [poly(dA-dT)]2 over [poly(dG-dC)]2. Thus, despite the long, positively charged, flexible substituents on the porphyrin, the binding of TθF4TAP is significantly affected by base-pair composition. Similar characteristics were found previously for the electron-rich tentacle porphyrin. Thus, significant changes in electron richness have relatively minor effects on this outside binding selectivity for AT regions. TθF4TAP is the first porphyrin with electron deficiency and shape similar to intercalating porphyrins that does not appear to intercalate. All porphyrins reported to intercalate have had pyridinium substituents. Thus, the electronic distribution in the porphyrin ring, not just the overall electron richness, may play a role in facilitating intercalation. © 1997 John Wiley & Sons, Inc. Biopoly 42: 203–217, 1997 相似文献
3.
Lactate dehydrogenase (LDH) was purified from beef heart homogenate by affinity precipitation. The protein purification was
integrated with nucleic acid removal and was done by precipitation of nucleic acids by addition of poly(ethylene imine) PEI
onto which a ligand, Cibacron blue, had been coupled. The yield of LDH after elution from the precipitate was 63%, the purification
factor 6.9 and the nucleic acid content was reduced by 98%. The capacity of the affinity polymer Cibacron blue-PEI is dependent
on the nucleic acid concentration in the homogenate. The beef heart homogenate had an unfavourable ratio of nucleic acids
to LDH. Precipitation with recirculated Cibacron blue-PEI, already complexed with some nucleic acids, improved the yield of
the enzyme to 74%. The loss of Cibacron blue-PEI, when recirculated, was less than 1% after each cycle.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
4.
Nielsen PE 《化学与生物多样性》2007,4(9):1996-2002
The possibilities of pseudo-peptide-DNA mimics like PNA (peptide nucleic acid) having a role for the prebiotic origin of life prior to an RNA world is discussed on the basis of literature data showing that this type of molecules might have formed on the primitive earth (or other places in the universe), as well as data indicating the possibilities of template-directed PNA chemical replication and ligation. In particular, the merits of an achiral prebiotic genetic material is discussed. 相似文献
5.
Aminopropyl nucleic acids (APNAs) are constitutionally simple nucleic acid alternatives with one stereogenic center per nucleotide, and with the potential to hybridize with RNA and to exert catalytic functions. We have developed a protecting group strategy to synthesize APNAs, although in a not very efficient way. Isolation and purification of APNAs proved to be difficult. Their structures might be more suited to function as potential catalytic polymers than as information systems that may evolve into RNA. 相似文献
6.
肽核酸是人工合成的寡核苷酸类似物,以N-(2-氨乙基)甘氨酸结构单元替代DNA分子中的戊糖-磷酸结构。与天然核酸相比,肽核酸可以更高效地与DNA或RNA特异性杂交,在分子生物学和基因药物领域具有良好的应用前景。但是,肽核酸骨架呈电中性,难以高效穿过细胞膜,这成为工程应用的最大障碍。为了改善肽核酸的细胞转运性能,对肽核酸进行化学修饰是近年来的研究热点。结合近十年来文献报道和本实验室的工作,对肽核酸的骨架修饰和配合物结合修饰两类增强细胞转运的修饰方法进行综述,并对修饰性肽核酸细胞转运研究中存在的问题以及未来的研究趋势及其应用提出了见解。 相似文献
7.
Richard Holmquist 《Journal of molecular evolution》1978,11(4):361-374
Summary Over half a decade has passed since the quantitative REH theory of evolutionary divergence in nucleic acids and proteins was published. The principle tenant of this theory is that natural selection and stochastic processes interact, the main effect of the former being to restrict those codon sites which may fix mutations. At the time it was published the theory predicted a magnitude for the total number of fixed nucleotide replacements that was appreciably larger than estimates then current. 'In the last two years these predictions have been confirmed in those protein families for which the experimental data base is large: cytochromec, -hemoglobin,-hemoglobin, and myoglobin.It has come to our attention, chiefly through private correspondance, but also in one published review, that certain aspects of the REH theory have caused confusion among some users. This paper discusses these particular aspects in some detail, restates the theory in a manner which emphasizes its essential simplicity, analyzes the magnitude of possible sources of errors, and considers some important statistical matters not dealt with elsewhere. The calculational methodology is simplified by replacing tables and graphs by polynomial expressions, and deriving a more simple expression for calculating the number of codons which have been free to fix mutations during some part of the period of divergence of two species. A statistical bias in the estimation of the fixation intensity is corrected.It is hoped these changes will make the method more accessible to those without extensive computing facilities. 相似文献
8.
Pohle W Gauger DR Dornberger U Birch-Hirschfeld E Selle C Rupprecht A Bohl M 《Biopolymers》2002,67(6):499-503
We used FTIR spectroscopy to comparatively study the hydration of films prepared from nucleic acids (DNA and double-stranded RNA) and lipids (phosphatidylcholines and phosphatidylethanolamines chosen as the most abundant ones) at room temperature by varying the ambient relative humidity in terms of solvent-induced structural changes. The nucleic acids and phospholipids both display examples of polymorphism on the one hand and structural conservatism on the other; even closely related representatives behave differently in this respect. DNA undergoes a hydration-driven A-B conformational transition, but RNA maintains an A-like structure independently of the water activity. Similarly, a main transition between the solid and liquid-crystalline phases can be induced lyotropically in certain phosphatidylcholines, while their phosphatidylethanolamine counterparts do not exhibit chain melting under the same conditions. A principal difference concerning the structural changes that occur in the studied biomolecules is given by the relevant water-substrate stoichiometries. These are rather high in DNA and often low in phospholipids, suggesting different mechanisms of action of the hydration water that appears to induce structural changes on global- and local-mode levels, respectively. 相似文献
9.
10.
D. Gersanovski P. Colson C. Houssier E. Fredericq 《Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression》1985,824(4):313-323
At low ionic strength, Tb3+ binding strongly alters the secondary structure of DNA. Circular dichroism and electro-optical techniques are more sensitive than fluorescence to study these alterations in double-stranded DNA, at low Tb3+/DNA phosphate () ratios. Both techniques yield the following conclusion: as is increased, native and sonicated DNA undergo a transition from the B- to ψ-form, the latter being a compact structure characteristic of aggregated DNA. Our study of alkylated DNA establishes that the accessibility of N-7 guanine to Tb3+ is clearly required for structural alterations in an aggregated state to occur. The chelation of the phosphate group and of the N-7 guanine by Tb3+ simultaneously alters the geometry of the sugar-phosphate backbone and the stacking interaction between the bases in double-stranded DNA. 相似文献
11.
Miles AJ Whitmore L Wallace BA 《Protein science : a publication of the Protein Society》2005,14(2):368-374
The effects of spectral magnitude on the calculated secondary structures derived from circular dichroism (CD) spectra were examined for a number of the most commonly used algorithms and reference databases. Proteins with different secondary structures, ranging from mostly helical to mostly beta-sheet, but which were not components of existing reference databases, were used as test systems. These proteins had known crystal structures, so it was possible to ascertain the effects of magnitude on both the accuracy of determining the secondary structure and the goodness-of-fit of the calculated structures to the experimental data. It was found that most algorithms are highly sensitive to spectral magnitude, and that the goodness-of-fit parameter may be a useful tool in assessing the correct scaling of the data. This means that parameters that affect magnitude, including calibration of the instrument, the spectral cell pathlength, and the protein concentration, must be accurately determined to obtain correct secondary structural analyses of proteins from CD data using empirical methods. 相似文献
12.
N. V. Amirkhanov N. V. Neronova V. F. Zarytova 《Russian Journal of Bioorganic Chemistry》2000,26(2):125-133
Alkylation of the 22-mer DNA target pTGCCTGGAGCTGCTTGATGCCC (I) by oligodeoxynucleotide phosphorothioate derivatives (PTAO)
GpsCpsApsTpsCpsApsApsGpsCpsApsGpsCpN(CH3)CH2(RCl)(II-PS) and (RCl)CH2N(CH3)pGpsCpsAps TpsCpsApsApsGpsCpsApsGpsC (III-PS) bearing a residue of an aromatic analogue of nitrogen lost (RCl=C6H4N(CH3)(CH2CH2Cl) at the 3′- or 5′-end was studied. It was shown that the internucleotide phosphorothioate bonds do not affect the regiospecificity
of the target modification. The maximum degree of the target modification (att→∞) at 20°C was about 25% for both (II-PS) and (III-PS). The use of GCATCAAGCAGCpN(CH3)CH2(RCl)(II-PO), containing internucleotide phosphodiester bonds, under the same conditions gave about 65% of the modified DNA.
Kinetics of the PTAO-induced complementarily addressed nucleic acid (NA) modification was analyzed. The rate constants of
the reaction of the intermediate reactive ethylenimmonium ion with phosphorothioate groups of the reagents were evaluated
both in solution and in duplex. The intramolecular alkylation of phosphorothioate groups considerably affected the DNA target
modification by decreasing the effectiveness of the modification in a wide range of temperatures and changing the temperature
dependence of the modification from a bell-like to an S-like profile. It was concluded that, in the course of the modification,
the PTAO phosphorothioate groups are intramolecularly alkylated both in solution and in the complementary NA target-oligonucleotide
duplex.
For Part III, see [1]. 相似文献
13.
Despite an exponential increase in computing power over the past decades, present information technology falls far short of expectations in areas such as cognitive systems and micro robotics. Organisms demonstrate that it is possible to implement information processing in a radically different way from what we have available in present technology, and that there are clear advantages from the perspective of power consumption, integration density, and real-time processing of ambiguous data. Accordingly, the question whether the current silicon substrate and associated computing paradigm is the most suitable approach to all types of computation has come to the fore. Macromolecular materials, so successfully employed by nature, possess uniquely promising properties as an alternate substrate for information processing. The two key features of macromolecules are their conformational dynamics and their self-assembly capabilities. The purposeful design of macromolecules capable of exploiting these features has proven to be a challenge, however, for some groups of molecules it is increasingly practicable. We here introduce an algorithm capable of designing groups self-assembling of nucleic acid molecules with multiple conformational states. Evaluation using natural and artificially designed nucleic acid molecules favours this algorithm significantly, as compared to the probabilistic approach. Furthermore, the thermodynamic properties of the generated candidates are within the same approximation as the customised trans-acting switching molecules reported in the laboratory. 相似文献
14.
The small molecule coralyne was found to bind preferentially and strongly to single-stranded poly(A) with an apparent association constant (Ka) of (1.8+/-0.3) x 10(6)M(-1). Binding of coralyne to poly(A) is predominantly enthalpically driven with a stoichiometry of one coralyne per four adenine bases. Poly(A) forms a coralyne dependent secondary structure with a melting temperature of 60 degrees C, for the conditions of our study. 相似文献
15.
Arnoldus W.P. Vermeer Maria G.E.G. Bremer Willem Norde 《Biochimica et Biophysica Acta (BBA)/General Subjects》1998,1425(1):1-12
Thermal denaturation of mouse monoclonal immunoglobulin G (isotype 1), as well as structural rearrangements resulting from adsorption on a hydrophobic Teflon surface, are studied by circular dichroism spectroscopy. Both heat-induced and adsorption-induced denaturation do not lead to complete unfolding into an extended polypeptide chain, but leave a significant part of the IgG molecule in a globular or corpuscular form. Heating dissolved IgG causes a decrease of the fractions of β-sheet and β-turn conformations, whereas those of random coil and, to a lesser extent, α-helix increase. Adsorption enhances the formation of α-helices and random coils, but the β-sheet content is strongly reduced. Heating adsorbed IgG results in a gradual break-down of the α-helix and β-turn contents, and a concomitant formation of β-sheet structures. Thus, the structural changes in IgG caused by heating and by adsorption, respectively, are very different. However, after heating, the structure of adsorbed IgG approaches the structure of thermally denatured IgG in solution. 相似文献
16.
Michio Tsuboi 《Archives of microbiology》1976,111(1-2):13-19
The turnover of nucleic acids and changes in ribonuclease activity during sporulation of Saccharomyces cerevisiae were studied. In the sporulating strains, 37–58% of vegetatively synthesized RNA were degraded during the sporulation process. The degree of degradation of vegetative RNA was proportional to the sporulation ability. In the non-sporulating strains, the degradation of vegetative RNA was less than 28% in the sporulation medium. Accompanied by the degradation of vegetative RNA, a ribonuclease activity increased several times during sporulation. We have found a close relation among the sporulation rate, the degree of the degradation of vegetative RNA and the increase in ribonuclease activity in the sporulation medium, using cells of which sporulation ability was repressed by changing the age or carbon source in various degrees. 相似文献
17.
G-quadruplexes are common structural motifs in aptamers. UNA or unlocked nucleic acid is the latest nucleic acid modification. We have attempted to evaluate the impact of UNA modification on the structure and stability of G-quadruplex oligonucleotides for application in aptamer design. We show using CD spectroscopy that UNA modifications can cause structural transitions in some cases although they retain the inherent G- quadruplex signature. From UV melting studies we showed a position dependent effect of UNA modifications such that quadruplexes with UNA modified loops are further stabilized whereas UNA modifications in stem of the G-quadruplex significantly destabilize the structure. The impact of UNA modification on different nucleobases is also investigated. From the analysis of UV melting results, thermodynamic profile was computed and it was concluded that all the sequences are stable at 37 °C. Finally, a greater serum stability of the modified oligonucleotides in comparison with unmodified ones is also demonstrated. Overall, the position dependent effect of single UNA substitutions was observed and analysed. 相似文献
18.
Alakesh Bera Pradip K. Nandi 《Protein science : a publication of the Protein Society》2014,23(12):1780-1788
Nucleic acid can catalyze the conversion of α‐helical cellular prion protein to β‐sheet rich Proteinase K resistant prion protein oligomers and amyloid polymers in vitro and in solution. Because unfolding of a protein molecule from its ordered α‐helical structure is considered to be a necessary step for the structural conversion to its β‐sheet rich isoform, we have studied the unfolding of the α‐helical globular 121–231 fragment of mouse recombinant prion protein in the presence of different nucleic acids at neutral and acid pH. Nucleic acids, either single or double stranded, do not have any significant effect on the secondary structure of the protein fragment at neutral pH; however the protein secondary structure is modified by the nucleic acids at pH 5. Nucleic acids do not show any significant effect on the temperature induced unfolding of the globular prion protein domain at neutral pH which, however, undergoes a gross conformational change at pH 5 as evidenced from the lowering of the midpoint of thermal denaturation temperatures, Tm, of the protein. The extent of Tm decrease shows a dependence on the nature of nucleic acid. The interaction of nucleic acid with the nonpolar groups exposed from the protein interior at pH 5 probably contributes substantially to the unfolding process of the protein. 相似文献
19.
Summary An important issue in the problem of the origins of life is whether or not nucleic acids may exert catalytic activities. In order to study the possible role of the adenine ring in catalysis, we have synthesized polymers containing aliphatic amino groups and the nucleic base adenine linked to macromolecules by its 6-amino group. These polymers exhibit pronounced catalytic activities in the hydrolysis of p-nitrophenylacetate. In mild basic conditions, the strong increase in the activities observed can be related to a cooperative effect between the amino groups and the adenine rings of the polymers. These properties and our previous results on the catalytic activity of N6-ribosyl-adenine are consistent with a possible role for the adenine ring in prebiotic catalysis.
Ofprint requests to: M.C. Maurel 相似文献
20.
Hans H. Ippel Hans van den Elst Gijs A. van der Marel Jacques H. van Boom Cornelis Altona 《Biopolymers》1998,46(6):375-393
TheDNA sequences 5′-d(CGC-AC-GCG)-3′ (HPAC), 5′-d(CGC-AA-GCG)-3′ (HPAA), 5′-d(CGC-TC-GCG)-3′ (HPTC), and 5′-d(CGC-CT-GCG)-3′ (HPCT), were studied by means of nmr spectroscopy. At low DNA concentration and no added salt all four molecules adopt a minihairpin structure, containing three Watson–Crick base pairs and a two-residue loop. The structure of the HPAC hairpin is based on quantitative distance restraints, derived by a full relaxation matrix approach (iterative relaxation matrix approach), together with torsion angles obtained from coupling constant analysis. The loop folding is of the H1-family type, characterized by continuous 3′-5′ stacking of the loop bases on the duplex stem. The structure of the HPAA hairpin is similar to that of HPAC, but is more flexible and has a lower thermodynamic stability (Tm 326 K vs 320 K). According to “weakly” distance-constrained simulations in water on the HPAC minihairpin, the typical H1-family loop folding remains intact during the simulation. However, residue-based R factors of simulated nuclear Overhauser effect spectroscopy spectra, free molecular dynamics simulations in vacuo, and unusual chemical shift profiles indicate partial destacking of the loop bases at temperatures below the overall melting midpoint. The dynamic nature of the loop bases gives insight into the geometrical tolerances of stacking between bases in H1-family minihairpin loops. The HPTC and HPCT minihairpins, both containing a pyrimidine base at the first position in the loop, adopt a H2-family type folding, in which the first loop base is loosely bound in the minor groove and the second loop base is stacked upon the helix stem. The thermal stability for these two hairpins corresponds to 327–329 K, but depends on local base sequence. Preference for the type of folding depends on a single substitution from a pyrimidine (H2 family) to a purine (H1 family) at the first position of the miniloop and is explained by differences in base stacking energies, steric size, and the number of possible candidates for hydrogen bonds in the minor groove. In view of newly collected data, previous models of the H1-family and H2-family hairpins had to be revised and are now compatible with the reported HPTC and HPAC structures. The structural difference between the refined structure of HPAC and HPTC show that a conversion between H1-family and H2-family hairpins is geometrically possible by a simple pivot point rotation of 270° along two torsion angles, thereby swiveling the first loop base from a stacked position in a H1-family folding toward a position in the minor groove in a H2-family folding. The second loop residue subsequently shifts to the position of the first base in a concerted fashion. © 1998 John Wiley & Sons, Inc. Biopoly 46: 375–393, 1998 相似文献