首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cucumber mosaic virus (CMV), the type member of the genus Cucumovirus (family Bromoviridae), is transmitted by aphids in a nonpersistent manner. Mutagenesis experiments identified the betaH-betaI loop of the capsid subunit as a potential key motif responsible for interactions with the insect vector. To further examine the functional characteristics of this motif, we generated monoclonal antibodies that bound to native virions but not to betaH-betaI mutants. Fab fragments from these antibodies were complexed with wild-type CMV and the virus-Fab structure was determined to 12-A resolution by using electron cryomicroscopy and image reconstruction techniques. The electron density attributed to the bound antibody has a turret-like appearance and protrudes from each of the 12 fivefold axes of the icosahedral virus. Thus, the antibody binds only to the pentameric clusters (pentons) of A subunits of the T=3 quasisymmetric virus and does not appear to bind to any of the B and C subunits that occur as hexameric clusters (hexons) at the threefold (quasi-sixfold) axes. Modeling and electron density comparisons were used to analyze the paratope-epitope interface and demonstrated that the antibody binds to three betaH-betaI loops in three adjacent A subunits in each penton. This antibody can discriminate between A and B/C subunits even though the betaH-betaI loop adopts the same structure in all 180 capsid subunits and is therefore recognizing differences in subunit arrangements. Antibodies with such character have potential use as probes of viral assembly. Our results may provide an additional rationale for designing synthetic vaccines by using symmetrical viral particles.  相似文献   

2.
Electrostatic properties of cowpea chlorotic mottle virus (CCMV) and cucumber mosaic virus (CMV) were investigated using numerical solutions to the Poisson-Boltzmann equation. Experimentally, it has been shown that CCMV particles swell in the absence of divalent cations when the pH is raised from 5 to 7. CMV, although structurally homologous, does not undergo this transition. An analysis of the calculated electrostatic potential confirms that a strong electrostatic repulsion at the calcium-binding sites in the CCMV capsid is most likely the driving force for the capsid swelling process during the release of calcium. The binding interaction between the encapsulated genome material (RNA) inside of the capsid and the inner capsid shell is weakened during the swelling transition. This probably aids in the RNA release process, but it is unlikely that the RNA is released through capsid openings due to unfavorable electrostatic interaction between the RNA and capsid inner shell residues at these openings. Calculations of the calcium binding energies show that Ca(2+) can bind both to the native and swollen forms of the CCMV virion. Favorable binding to the swollen form suggests that Ca(2+) ions can induce the capsid contraction and stabilize the native form.  相似文献   

3.
Structural transitions in viral capsids play a critical role in the virus life cycle, including assembly, disassembly, and release of the packaged nucleic acid. Cowpea chlorotic mottle virus (CCMV) undergoes a well-studied reversible structural expansion in vitro in which the capsid expands by 10%. The swollen form of the particle can be completely disassembled by increasing the salt concentration to 1 M. Remarkably, a single-residue mutant of the CCMV N-terminal arm, K42R, is not susceptible to dissociation in high salt (salt-stable CCMV [SS-CCMV]) and retains 70% of wild-type infectivity. We present the combined structural and biophysical basis for the chemical stability and viability of the SS-CCMV particles. A 2.7-A resolution crystal structure of the SS-CCMV capsid shows an addition of 660 new intersubunit interactions per particle at the center of the 20 hexameric capsomeres, which are a direct result of the K42R mutation. Protease-based mapping experiments of intact particles demonstrate that both the swollen and closed forms of the wild-type and SS-CCMV particles have highly dynamic N-terminal regions, yet the SS-CCMV particles are more resistant to degradation. Thus, the increase in SS-CCMV particle stability is a result of concentrated tethering of subunits at a local symmetry interface (i.e., quasi-sixfold axes) that does not interfere with the function of other key symmetry interfaces (i.e., fivefold, twofold, quasi-threefold axes). The result is a particle that is still dynamic but insensitive to high salt due to a new series of bonds that are resistant to high ionic strength and preserve the overall particle structure.  相似文献   

4.
Desmodium yellow mottle virus is a 28 nm diameter, T=3 icosahedral plant virus of the tymovirus group. Its structure has been solved to a resolution of 2.7 A using X-ray diffraction analysis based on molecular replacement and phase extension methods. The final R value was 0.151 (R(free)=0.159) for 134,454 independent reflections. The folding of the polypeptide backbone is nearly identical with that of turnip yellow mosaic virus, as is the arrangement of subunits in the virus capsid. However, a major difference in the disposition of the amino-terminal ends of the subunits was observed. In turnip yellow mosaic virus, those from the B and C subunits comprising the hexameric capsomeres formed an annulus about the interior of the capsomere, while the corresponding N termini of the pentameric capsomere A subunits were not visible at all in electron density maps. In Desmodium yellow mottle tymovirus, amino termini from the A and B subunits combine to form the annuli, thereby resulting in a much strengthened association between the two types of capsomeres and an, apparently, more stable capsid. The first 13 residues of the C subunit were invisible in electron density maps. Two ordered fragments of single-stranded RNA, seven and two nucleotides in length, were observed. The ordered water structure of the virus particle was delineated and required 95 solvent molecules per protein subunit.  相似文献   

5.
The structure of brome mosaic virus (BMV), the type member of the bromoviridae family, has been determined from a single rhombohedral crystal by X-ray diffraction, and refined to an R value of 0.237 for data in the range 3.4-40.0 A. The structure, which represents the native, compact form at pH 5.2 in the presence of 0.1 M Mg(2+), was solved by molecular replacement using the model of cowpea chlorotic mottle virus (CCMV), which BMV closely resembles. The BMV model contains amino acid residues 41-189 for the pentameric capsid A subunits, and residues 25-189 and 1-189 for the B and C subunits, respectively, which compose the hexameric capsomeres. In the model there are two Mg ions and one molecule of polyethylene glycol (PEG). The first 25 amino acid residues of the C subunit are modeled as polyalanine. The coat protein has the canonical "jellyroll" beta-barrel topology with extended amino-terminal polypeptides as seen in other icosahedral plant viruses. Mass spectrometry shows that in native BMV virions, a significant fraction of the amino-terminal peptides are apparently cleaved. No recognizable nucleic acid residue is visible in the electron density maps except at low resolution where it appears to exhibit a layered arrangement in the virion interior. It is juxtaposed closely with the interior surface of the capsid but does not interpenetrate. The protein subunits forming hexameric capsomeres, and particularly dimers, appear to interact extensively, but the subunits otherwise contact one another sparsely about the 5-fold and quasi 3-fold axes. Thus, the virion appears to be an assembly of loosely associated hexameric capsomeres, which may be the basis for the swelling and dissociation that occurs at neutral pH and elevated salt concentration. A Mg ion is observed to lie exactly on the quasi-3-fold axis and is closely coordinated by side-chains of three quasi-symmetry-related residues glutamates 84, with possible participation of side-chains from threonines 145, and asparagines 148. A presumptive Mg(2+) is also present on the 5-fold axis where there is a concentration of negatively charged side-chains, but the precise coordination is unclear. In both cases these cations appear to be essential for maintenance of virion stability. Density that is contiguous with the viral interior is present on the 3-fold axis at the center of the hexameric capsomere, where there is a pore of about 6 A diameter. The density cannot be attributed to cations and it was modeled as a PEG molecule.  相似文献   

6.
The crystal structure of tobacco necrosis virus (TNV) has been determined by real-space averaging with 5-fold non-crystallographic symmetry, and refined to R=25.3 % for diffraction data to 2.25 A resolution. A total of 180 subunits form a T=3 virus shell with a diameter of about 280 A and a small protrusion at the 5-fold axis. In 276 amino acid residues, the respective amino terminal 86, 87 and 56 residues of the A, B and C subunits are disordered. No density for the RNA was found. The subunits have a "jelly roll" beta-barrel structure, as have the structures of the subunits of other spherical viruses. The tertiary and quaternary structures of TNV are, in particular, similar to those of southern bean mosaic virus, although they are classified in different groups. Invisible residues 1 to 56 with a high level of basic residues are considered to be located inside the particle. Sequence comparison of the coat proteins of several TNV strains showed that the sequences of the disordered segment diverge considerably as compared with those of the ordered segment, consistent with a small tertiary structural constraint being imposed on the N-terminal segment. Basic residues are localized on the subunit interfaces or inner surface of the capsid. Positive charges of the basic residues facing the interior, as well as those of the N-terminal segment, may neutralize the negative charge of the RNA inside. Five calcium ions per icosahedral asymmetric unit are located at the subunit interfaces; three are close to the exterior surface, the other two away from it. The environments of the first three are similar, and those of the other two sites are similar. These calcium ions are assumed to be responsible for the stabilization/transition of the quaternary structure of the shell. Three peptide segments ordered only in the C subunits are clustered around each 3-fold (quasi-6-fold) axis forming a beta-annulus, and may lead to quasi-equivalent interactions for the organization of the T=3 shell.  相似文献   

7.
Structure of adeno-associated virus type 4   总被引:2,自引:0,他引:2  
Adeno-associated virus (AAV) is a member of the Parvoviridae, belonging to the Dependovirus genus. Currently, several distinct isolates of AAV are in development for use in human gene therapy applications due to their ability to transduce different target cells. The need to manipulate AAV capsids for specific tissue delivery has generated interest in understanding their capsid structures. The structure of AAV type 4 (AAV4), one of the most antigenically distinct serotypes, was determined to 13-A resolution by cryo-electron microscopy and image reconstruction. A pseudoatomic model was built for the AAV4 capsid by use of a structure-based sequence alignment of its major capsid protein, VP3, with that of AAV2, to which AAV4 is 58% identical and constrained by its reconstructed density envelope. The model showed variations in the surface loops that may account for the differences in receptor binding and antigenicity between AAV2 and AAV4. The AAV4 capsid surface topology also shows an unpredicted structural similarity to that of Aleutian mink disease virus and human parvovirus B19, autonomous members of the genus, despite limited sequence homology.  相似文献   

8.
The capsid of Kaposi's sarcoma-associated herpesvirus (KSHV) was visualized at 24-A resolution by cryoelectron microscopy. Despite limited sequence similarity between corresponding capsid proteins, KSHV has the same T=16 triangulation number and much the same capsid architecture as herpes simplex virus (HSV) and cytomegalovirus (CMV). Its capsomers are hexamers and pentamers of the major capsid protein, forming a shell with a flat, close-packed, inner surface (the "floor") and chimney-like external protrusions. Overlying the floor at trigonal positions are (alpha beta(2)) heterotrimers called triplexes. The floor structure is well conserved over all three viruses, and the most variable capsid features reside on the outer surface, i.e., in the shapes of the protrusions and triplexes, in which KSHV resembles CMV and differs from HSV. Major capsid protein sequences from the three subfamilies have some similarity, which is closer between KSHV and CMV than between either virus and HSV. The triplex proteins are less highly conserved, but sequence analysis identifies relatively conserved tracts. In alphaherpesviruses, the alpha-subunit (VP19c in HSV) has a 100-residue N-terminal extension and an insertion near the C terminus. The small basic capsid protein sequences are highly divergent: whereas the HSV and CMV proteins bind only to hexons, difference mapping suggests that the KSHV protein, ORF65, binds around the tips of both hexons and pentons.  相似文献   

9.
Previously, we reported that CCMV(B3a), a hybrid of bromovirus Cowpea chlorotic mottle virus (CCMV) with the 3a cell-to-cell movement protein (MP) gene replaced by that of cowpea-nonadapted bromovirus Brome mosaic virus (BMV), can form small infection foci in inoculated cowpea leaves, but that expansion of the foci stops between 1 and 2 days postinoculation. To determine whether the lack of systemic movement of CCMV(B3a) is due to restriction of local spread at specific leaf tissue interfaces, we conducted more detailed analyses of infection in inoculated leaves. Tissue-printing and leaf press-blotting analyses revealed that CCMV(B3a) was confined to the inoculated cowpea leaves and exhibited constrained movement into leaf veins. Immunocytochemical analyses to examine the infected cell types in inoculated leaves indicated that CCMV(B3a) was able to reach the bundle sheath cells through the mesophyll cells and successfully infected the phloem cells of 50% of the examined veins. Thus, these data demonstrate that the lack of long-distance movement of CCMV(B3a) is not due to an inability to reach the vasculature, but results from failure of the virus to move through the vascular system of cowpea plants. Further, a previously identified 3a coding change (A776C), which is required for CCMV(B3a) systemic infection of cowpea plants, suppressed formation of reddish spots, mediated faster spread of infection, and enabled the virus to move into the veins of inoculated cowpea leaves. From these data, and the fact that CCMV(B3a) directs systemic infection in Nicotiana benthamiana, a permissive systemic host for both BMV and CCMV, we conclude that the bromovirus 3a MP engages in multiple activities that contribute substantially to host-specific long-distance movement through the phloem.  相似文献   

10.
Cucumber mosaic virus: viral genes as virulence determinants   总被引:1,自引:0,他引:1  
TAXONOMIC RELATIONSHIPS: Cucumber mosaic virus (CMV) is the type species of the genus Cucumovirus in the family Bromoviridae, which also encompasses the Peanut stunt virus (PSV) and the Tomato aspermy virus (TAV). Nucleotide sequence similarity among these three cucumoviruses is 60%-65%. CMV strains are divided into three subgroups, IA, IB and II, based on the sequence of the 5' untranslated region of the genomic RNA 3. Overall nucleotide sequence similarity among CMV strains is approximately 70%-98%. GEOGRAPHICAL DISTRIBUTION, HOST RANGE AND SYMPTOMATOLOGY: CMV is distributed worldwide, primarily in temperate to tropical climate zones. CMV infects more than 1200 species of 100 plant families, including monocot and dicot plants. Symptoms caused by CMV infection vary with the host species and/or CMV strain, and include mosaic, stunt, chlorosis, dwarfing, leaf malformation and systemic necrosis. CMV disease is spread primarily by aphid transmission in a nonpersistent manner. PHYSICAL PROPERTIES: In tobacco sap, the thermal inactivation point of the viral infectivity is approximately 70 °C (10 min), the dilution end-point is approximately 10(-4) and viral infectivity is lost after a few days of exposure to 20 °C. Viral infectivity can be retained in freeze-dried tissues and in the form of virions purified using 5 mm sodium borate, 0.5 mm ethylenediaminetetraacetic acid and 50% glycerol (pH 9.0) at -20 °C. CMV particles are isometric, approximately 28-30 nm in diameter and are composed of 180 capsid subunits arranged in pentamer-hexamer clusters with T= 3 symmetry. The sedimentation coefficient (s(20) ,(w) ) is c. 98 S and the particle weight is (5.8-6.7) × 10(6) Da. The virions contain 18% RNA. The RNA-protein interactions that stabilize the CMV virions are readily disrupted by sodium dodecylsulphate or neutral chloride salts. GENOMIC PROPERTIES: The genomic RNAs are single-stranded messenger sense RNAs with 5' cap and 3' tRNA-like structures containing at least five open reading frames. The viral RNA consists of three genomic RNAs, RNA 1 (c. 3.3 kb), RNA 2 (c. 3.0 kb) and RNA 3 (c. 2.2 kb), and two subgenomic RNAs, RNA 4 (c. 1.0 kb) and RNA 4A (c. 0.7 kb). The 3' untranslated regions are conserved across all viral RNAs. CMV is often accompanied by satellite, noncoding, small, linear RNA that is nonhomologous to the helper CMV.  相似文献   

11.
Viral capsids act as molecular containers for the encapsulation of genomic nucleic acid. These protein cages can also be used as constrained reaction vessels for packaging and entrapment of synthetic cargos. The icosahedral Cowpea chlorotic mottle virus (CCMV) is an excellent model for understanding the encapsulation and packaging of both genomic and synthetic materials. High-resolution structural information of the CCMV capsid has been invaluable for evaluating structure-function relationships in the assembled capsid but does not allow insight into the capsid dynamics. The dynamic nature of the CCMV capsid might play an important role in the biological function of the virus. The CCMV capsid undergoes a pH and metal ion dependent reversible structural transition where 60 separate pores in the capsid open or close, exposing the interior of the protein cage to the bulk medium. In addition, the highly basic N-terminal domain of the capsid, which is disordered in the crystal structure, plays a significant role in packaging the viral cargo. Interestingly, in limited proteolysis and mass spectrometry experiments the N-terminal domain is the first part of the subunit to be cleaved, confirming its dynamic nature. Based on our fundamental understanding of the capsid dynamics in CCMV, we have utilized these aspects to direct packaging of a range of synthetic materials including drugs and inorganic nanoparticles.  相似文献   

12.
Adeno-associated viruses (AAVs) are being developed as gene therapy vectors, and their efficacy could be improved by a detailed understanding of their viral capsid structures. AAV serotype 8 (AAV8) shows a significantly greater liver transduction efficiency than those of other serotypes, which has resulted in efforts to develop this virus as a gene therapy vector for hemophilia A and familial hypercholesterolemia. Pseudotyping studies show that the differential tissue tropism and transduction efficiencies exhibited by the AAVs result from differences in their capsid viral protein (VP) amino acids. Towards identifying the structural features underpinning these disparities, we report the crystal structure of the AAV8 viral capsid determined to 2.6-A resolution. The overall topology of its common overlapping VP is similar to that previously reported for the crystal structures of AAV2 and AAV4, with an eight-stranded beta-barrel and long loops between the beta-strands. The most significant structural differences between AAV8 and AAV2 (the best-characterized serotype) are located on the capsid surface at protrusions surrounding the two-, three-, and fivefold axes at residues reported to control transduction efficiency and antibody recognition for AAV2. In addition, a comparison of the AAV8 and AAV2 capsid surface amino acids showed a reduced distribution of basic charge for AAV8 at the mapped AAV2 heparin sulfate receptor binding region, consistent with an observed non-heparin-binding phenotype for AAV8. Thus, this AAV8 structure provides an additional platform for mutagenesis efforts to characterize AAV capsid regions responsible for differential cellular tropism, transduction, and antigenicity for these promising gene therapy vectors.  相似文献   

13.
The three-dimensional structure of the baculovirus-expressed Norwalk virus capsid has been determined to a resolution of 2.2 nm using electron cryomicroscopy and computer image processing techniques. The empty capsid, 38.0 nm in diameter, exhibits T = 3 icosahedral symmetry and is composed of 90 dimers of the capsid protein. The striking features of the capsid structure are arch-like capsomeres, at the local and strict 2-fold axes, formed by dimers of the capsid protein and large hollows at the icosahedral 5- and 3-fold axes. Despite its distinctive architecture, the Norwalk virus capsid has several similarities with the structures of T = 3 single-stranded RNA (ssRNA) viruses. The structure of the protein subunit appears to be modular with three distinct domains: the distal globular domain (P2) that appears bilobed, a central stem domain (P1), and a lower shell domain (S). The distal domains of the 2-fold related subunits interact with each other to form the top of the arch. The lower domains of the adjacent subunits associate tightly to form a continuous shell between the radii of 11.0 and 15.0 nm. No significant mass density is observed below the radius of 11.0 mm. It is suspected that the hinge peptide in the adjoining region between the central domain and the shell domain may facilitate the subunits adapting to various quasi-equivalent environments. Architectural similarities between the Norwalk virus capsid and the other ssRNA viruses have suggested a possible domain organization along the primary sequence of the Norwalk virus capsid protein. It is suggested that the N-terminal 250 residues constitute the lower shell domain (S) with an eight-strand beta-barrel structure and that the C-terminal residues beyond 250 constitute the protruding (P1+P2) domains. A lack of an N-terminal basic region and the ability of the Norwalk virus capsid protein to form empty T = 3 shells suggest that the assembly pathway and the RNA packing mechanisms may be different from those proposed for tomato bushy stunt virus and southern bean mosaic virus but similar to that in tymoviruses and comoviruses.  相似文献   

14.
The structure of the T=3 single stranded RNA tymovirus, physalis mottle virus (PhMV), has been determined to 3.8 A resolution. PhMV crystals belong to the rhombohedral space group R 3, with one icosahedral particle in the unit cell leading to 20-fold non-crystallographic redundancy. Polyalanine coordinates of the related turnip yellow mosaic virus (TYMV) with which PhMV coat protein shares 32 % amino acid sequence identity were used for obtaining the initial phases. Extensive phase refinement by real space molecular replacement density averaging resulted in an electron density map that revealed density for most of the side-chains and for the 17 residues ordered in PhMV, but not seen in TYMV, at the N terminus of the A subunits. The core secondary and tertiary structures of the subunits have a topology consistent with the capsid proteins of other T=3 plant viruses. The N-terminal arms of the A subunits, which constitute 12 pentamers at the icosahedral 5-fold axes, have a conformation very different from the conformations observed in B and C subunits that constitute hexameric capsomers with near 6-fold symmetry at the icosahedral 3-fold axes. An analysis of the interfacial contacts between protein subunits indicates that the hexamers are held more strongly than pentamers and hexamer-hexamer contacts are more extensive than pentamer-hexamer contacts. These observations suggest a plausible mechanism for the formation of empty capsids, which might be initiated by a change in the conformation of the N-terminal arm of the A subunits. The structure also provides insights into immunological and mutagenesis results. Comparison of PhMV with the sobemovirus, sesbania mosaic virus reveals striking similarities in the overall tertiary fold of the coat protein although the capsid morphologies of these two viruses are very different.  相似文献   

15.
Structural refinement and analysis of Mengo virus   总被引:6,自引:0,他引:6  
The structure of Mengo encephalomyelitis virus was refined at 3 A resolution with a final R-factor of 0.221 and a root-mean-square deviation from idealized bond lengths of 0.019 A for 10 A to 3 A data with F greater than or equal to 3 sigma(F). The Hendrickson-Konnert refinement was restrained by the phases derived from the molecular replacement averaging procedure and constrained by the icosahedral symmetry of the virus. The virus consists of 60 protomers each having three major subunits, VP1, VP2 and VP3, along with one smaller internal protein, VP4. The three major subunits form similar eight-stranded beta-barrel structures. Alterations in the original sequence were found at position 45 in VP1 (Arg to Ala) and at position 58 in VP3 (Met to Val). The residues in loops I and II of VP1 (82 to 102), the "FMDV loop" in VP1 (205 to 213), the flexible loop of VP3 in the putative receptor attachment site (175 to 185) as well as the terminal regions 260 to 268 in VP1, 253 to 256 in VP2 and 13 to 15 in VP4 were built or modified in regions of weak density. The variation in temperature factors at the end of the refinement is over a wide range (from 2 to 80 A2), with the disordered outer and inner regions showing high mobility. Four cis proline residues, 105 in VP1, 85 and 152 in VP2 and 59 in VP3, have been identified. The disulfide bridge Cys86 to Cys88 in VP3 has been characterized. One phosphate ion and 233 water positions were included in the refinement. It is suggested that this phosphate is associated with the receptor attachment site. There are two major hydrogen-bonding networks involving solvent atoms; one involving only the subunits of a protomer, and the other connecting the protomers in a pentamer. The distribution of atom types around the icosahedral symmetry axes shows that the 5-fold channel is more hydrophobic than that along the 3-fold axis and that there are more charged residues around the 2-fold axis. The analysis of contacts between the different subunits supports the assignment of the protomeric unit. The five protomers that form the pentameric unit are held together by interactions involving the smaller VP4 protein and the amino termini of VP1 and VP3. The pentamers are associated by means of the amino-terminal region of the VP2 subunits, the beta F strand of the VP3 subunits, the C terminus of the VP4 subunits and the electrostatic helical (alpha A) interactions of VP2 subunits across the icosahedral 2-fold axes. The superposition of the corresponding subunits of Mengo virus, human rhinovirus 14 and southern bean mosaic virus has provided an improved sequence alignment. The largest structural similarity is between the VP3 subunits of Mengo virus and rhinovirus, while the least similarity is between the VP1 subunits. The various specialized insertions in the different subunits can be associated with specific functional requirements.  相似文献   

16.
The complete nucleotide sequence of the influenza C/California/78 virus RNA 4 was obtained by using cloned cDNA derived from the RNA segment. This gene is 2,071 nucleotides long and can code for a polypeptide of 654 amino acids. Although there are no convincing sequence homologies between RNA 4 and the hemagglutinin genes of influenza A and B viruses, we suggest, on the basis of structural features, that RNA 4 of the influenza C virus codes for the hemagglutinin. The structural features which are common to the hemagglutinins of influenza A, B, and C viruses include (i) a hydrophobic signal peptide, (ii) an arginine cleavage site between the hemagglutinin 1 and 2 subunits, (iii) hydrophobic regions at the amino and carboxyl termini of the hemagglutinin 2 subunit, and (iv) several conserved cysteine residues. Additional evidence that RNA 4 of influenza C virus codes for the hemagglutinin is that the tripeptide Ile-Phe-Gly, known to be present at the amino terminus of the hemagglutinin 2 subunit of influenza C virus, is encoded by RNA 4 at a point immediately adjacent to the presumptive arginine cleavage site. The lack of primary sequence homology between the influenza C virus hemagglutinin and the influenza A or B virus hemagglutinins, which all have similar functions, might be attributed to convergent rather than divergent evolution. However, the structural similarities among the influenza A, B, and C virus hemagglutinins strongly suggest that the three hemagglutinin genes have diverged from a common precursor.  相似文献   

17.
The structure of Red clover necrotic mosaic virus (RCNMV), an icosahedral plant virus, was resolved to 8.5 A by cryoelectron microscopy. The virion capsid has prominent surface protrusions and subunits with a clearly defined shell and protruding domains. The structures of both the individual capsid protein (CP) subunits and the entire virion capsid are consistent with other species in the Tombusviridae family. Within the RCNMV capsid, there is a clearly defined inner cage formed by complexes of genomic RNA and the amino termini of CP subunits. An RCNMV virion has approximately 390 +/- 30 Ca2+ ions bound to the capsid and 420 +/- 25 Mg2+ ions thought to be in the interior of the capsid. Depletion of both Ca2+ and Mg2+ ions from RCNMV leads to significant structural changes, including (i) formation of 11- to 13-A-diameter channels that extend through the capsid and (ii) significant reorganization within the interior of the capsid. Genomic RNA within native capsids containing both Ca2+ and Mg2+ ions is extremely resistant to nucleases, but depletion of both of these cations results in nuclease sensitivity, as measured by a significant reduction in RCNMV infectivity. These results indicate that divalent cations play a central role in capsid dynamics and suggest a mechanism for the release of viral RNA in low-divalent-cation environments such as those found within the cytoplasm of a cell.  相似文献   

18.
The crystal structures of the proteases (PRs) encoded by the Rous sarcoma virus (RSV) and the human immunodeficiency virus (HIV) have been compared. The crystallographic monomer of HIV PR superimposes on the two crystallographically independent subunits of the RSV PR dimer with root mean square deviations of 1.45 and 1.55 A for 86 and 88 common C alpha atoms, respectively. There is a conserved structural core consisting of seven beta-strands forming two perpendicular layers, a helix, and the amino- and carboxyl-terminal beta-strands. PRs from related retroviruses fold into similar structures with surface turns of variable length between the beta-strands. Both HIV and RSV PR dimers have significant subunit-subunit interactions in three regions: the "firemen's grip" at the active site; the salt bridges involving Arg8, Asp29, and Arg87 of HIV PR; and the termini of the two subunits, which form a four-stranded antiparallel beta-sheet. The specific interactions of the termini differ in the two PRs. The carboxyl termini, residues 96-99 of HIV PR and residues 119-124 of RSV PR, contribute approximately 50% of the intersubunit ionic and hydrogen bond interactions and approximately 45% of the buried surface area involved in dimer formation. This information may be useful in the design of site-directed mutations or inhibitors of dimer formation.  相似文献   

19.
Cowpea chlorotic mottle virus (CCMV), which is stable at pH 5.0, has been modified at this pH with 0.5--0.7 pyridoxal 5'-phosphate molecules per protein subunit. The fluorescence properties of the labelled CCMV protein in different aggregation states of the virus provide information about the labelled part of the protein and the changes induced in its environment, when the nucleo-protein particles are swollen or dissociated. Fluorescence excitation and emission spectra indicate the presence of radiationless energy transfer from the aromatic amino acid residues to the label. Comparison of the fluorescence lifetimes of the labelled and the unlabelled protein confirms the existence of energy transfer. The mobility of the labelled part, which can be estimated from the fluorescence polarization of pyridoxal phosphate chromophore, is higher than expected from the dimensions of the virus and the protein subunits. Polarization values and the fluorescence lifetimes depend on the presence of small amounts of NaCl or MgCl2 in the buffer solution at pH 7.5. This is due to structural changes in the vicinity of the pyridoxal phosphate label of the RNA and of the protein part.  相似文献   

20.
Normal mode analysis based on a simplified energy function was used to study the swelling process of the icosahedral virus, cowpea chlorotic mottle virus (CCMV). Native state virus particles (coat proteins) of this T=3 icosahedral virus have been shown to undergo a large conformational change to a swollen state when metal ions are removed or the pH is raised. A normal mode analysis based on the native state capsid showed one preferential direction, a breathing mode, that explains the majority of the structural rearrangement necessary to bring the native structure close to the swollen state. From the native form of CCMV, the structure can be displaced along the direction of a single breathing mode by different amounts to create several candidate swollen structures and a putative pathway for virus expansion. The R-factor between these predicted swollen capsid structures and experimental electron density from cryoelectron microscopy (cryo-EM) measurements is then calculated to indicate how well each structure satisfies the experimental measurements on the swollen capsid state. A decrease of the crystallographic R-factor value from approximately 72% to approximately 49% was observed for these simple incremental displacements along the breathing mode. The simultaneous displacement of the native structure along other relevant (symmetric, non-degenerate) modes produce a structure with an R-factor of 45%, which is further reduced to 43.9% after minimization: a value in good accord with models based on the EM data at 28 A resolution. Based on the incrementally expanded structures, a pathway for the swelling process has been proposed. Analysis of the intermediate structures along this pathway indicates a significant loss of interactions at the quasi-3-fold interfaces occurs in the initial stages of the swelling process and this serves as a trigger for the compact to swollen transition. Furthermore, the pH dependent swelling appears to be triggered by the titration of a single residue with an anomalous pK(a) value in the unswollen particle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号