首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and secretion of apolipoprotein (apo) B-100 have been studied in a human hepatoblastoma cell line, the Hep G2 cells. Pulse-chase analysis showed that apoB-100 was not quantitatively recovered in the culture medium. To reveal the intracellular degradation of apoB-100 prior to secretion, cells were incubated with 1 microgram/ml Brefeldin A (BFA) which impeded protein transport from the endoplasmic reticulum (ER) to the Golgi apparatus and the fate of apoB-100 retained in the cells was traced at 37 degrees C. A significant amount of intracellular apoB-100 (40-60%/h) was degraded during the chase period, whereas apoA-1 remained intact. ApoB-100 degradation was temperature dependent, no degradation was observed below 20 degrees C. This degradation process was not inhibited by chloroquine, leupeptin, pepstatin, and chymostatin, suggesting that lysosomal proteases were not involved and that apoB-100 was degraded in a pre-Golgi compartment which is either part of, or closely related to, the ER. Preincubation of cells with low density lipoproteins (LDL) induced a 22-32% increase in the degradation of apoB-100. This result raised the possibility that secretion of apoB-100 might be regulated through the intracellular degradation of apoB-100. These results suggest the existence of the degradation pathway for apoB-100 in a pre-Golgi compartment and an unique regulatory mechanism for apoB-100 secretion.  相似文献   

2.
The synthesis and secretion of apolipoprotein B-100 (apoB-100) have been studied in a human hepatoma cell line, the Hep G2 cells. The time needed for the synthesis of apoB-100 was estimated to be 14 min, which corresponds to a translation rate of approximately 6 amino acids/s. ApoB-100 was compared with albumin and alpha 2-macroglobulin as to the distribution between the membrane and the luminal content in the endoplasmic reticulum (ER) and the Golgi apparatus. The results suggested that apoB-100 approximately followed the distribution of these secretory proteins in the Golgi, while the ratios between the percent membrane-bound apoB-100 and percent membrane-bound albumin or alpha 2-macroglobulin were 3-4:1 in the ER. This may suggest that apoB-100 occurs in a membrane-associated form in ER prior to the integration in the lipoproteins. Pulse-chase studies combined with subcellular fractionation was used to investigate the kinetics for the intracellular transfer of apoB-100. A 3-min pulse of [35S]methionine was followed by an increase in apoB-100 radioactivity in the ER during the first 10-15 min of chase. The following 10-15 min of chase were characterized by linear decrease in apoB-100 radioactivity with a decay rate of approximately 6%/min. The residence kinetics for apoB-100 in the ER differed from that of transferrin and probably also from that of albumin. By comparing the time for the pulse maximum in ER with that in the denser Golgi fractions the time needed for the transfer between ER and Golgi could be estimated to be 10 min. The time needed for the secretion of newly synthesized apoB-100 was estimated to be 30 min. This indicates that the transfer of the protein through the Golgi apparatus to the extracellular space requires 20 min.  相似文献   

3.
The transport of the apolipoprotein (apo) constituents of hepatic very low density lipoprotein (VLDL) through the secretory pathway was investigated with estrogen-induced chick hepatocytes in primary culture. Cell monolayers were pulse-labeled with [3H]leucine and, after differing periods of chase with unlabeled leucine, were subjected to subcellular fractionation for 3H-apoprotein analysis. The first-order rate constants for transit of apoB, apoA-I, and apoII through the endoplasmic reticulum (ER) and Golgi were estimated using a three-compartment (ER, Golgi, and extracellular medium) kinetic analysis. The results indicate that apoB resides in the ER (t1/2 = 26 min) for a shorter period of time than in the Golgi (t1/2 = 43 min). For apoII, the t1/2 for transport through the ER and Golgi are 43 and 49 min, respectively. ApoA-I transits the ER at a rate (t1/2 = 6 min) much faster than apoB, apoII, and virtually all other secretory proteins. Upon reaching the Golgi, the rate of movement of apoA-I is markedly reduced (t1/2 = 28 min). Thus, in contrast to current models of protein secretion, the rate-limiting step in the secretion of VLDL apoproteins from the cell is transport through the Golgi, not the ER. Examination of the steady-state distribution of the apoproteins in the ER and Golgi support this conclusion. To characterize the intracellular transport process further, the distribution of apoproteins between the lumenal contents of the ER and Golgi and the membranes which delineate these compartments was determined after steady-state labeling with [3H]leucine. Approximately 50% of the apoB in the ER and in a dense, early Golgi fraction was membrane-associated, whereas in a less dense or late Golgi compartment, only 20% was bound to membranes. ApoII was also associated with the membranes of the ER and Golgi to a significant extent. In contrast, apoA-I was primarily localized lumenally throughout the secretory pathway. The occurrence of membrane-associated apoproteins in the Golgi, coupled with their slow rate of transit through this compartment suggests a major role for the Golgi in the assembly of the constituents of VLDL, and suggests that interaction of apoproteins (apoB) with the membranes of the Golgi is required for the maturation of VLDL.  相似文献   

4.
Saccharomyces cerevisiae contains several abundant phosphoinositol-containing sphingolipids, namely inositolphosphoceramides (IPCs), mannosyl-inositolphosphoceramide (MIPC), which is substituted on the headgroup with an additional mannose, and M(IP)2C, a ceramide substituted with one mannose and two phosphoinositol groups. Using well-defined temperature-sensitive secretion mutants we demonstrate that the biosynthesis of MIPC, M(IP)2C, and a subclass if IPCs is dependent on genes that are required for the vesicular transport of proteins from the ER to the Golgi. Synthesis of these lipids in intact cells is dependent on metabolic energy. A likely but tentative interpretation of the data is that the biosynthesis of these sphingolipids is restricted to the Golgi apparatus, and that one or more substrates for the biosynthesis of these sphingolipids (phosphatidylinositol, IPCs, or MIPC) are delivered to the Golgi apparatus by an obligatory vesicular transport step. Alternative models to explain the data are also discussed.  相似文献   

5.
Proteins synthesized in the ER are generally transported to the Golgi complex and beyond only when they have reached a fully folded and assembled conformation. To analyze how the selective retention of misfolded proteins works, we monitored the long-term fate of a membrane glycoprotein with a temperature-dependent folding defect, the G protein of tsO45 vesicular stomatitis virus. We used indirect immunofluorescence, immunoelectron microscopy, and a novel Nycodenz gradient centrifugation procedure for separating the ER, the intermediate compartment, and the Golgi complex. We also employed the folding and recycling inhibitors dithiothreitol and AIF4-, and coimmunoprecipitation with calnexin antibodies. The results showed that the misfolded G protein is not retained in the ER alone; it can move to the intermediate compartment and to the cis-Golgi network but is then recycled back to the ER. In the ER it is associated with calnexin and BiP/GRP78. Of these two chaperones, only BiP/GRP78 seems to accompany it through the recycling circuit. Thus, the retention of this misfolded glycoprotein is the result of multiple mechanisms including calnexin binding in the ER and selective retrieval from the intermediate compartment and the cis-Golgi network.  相似文献   

6.
R E Chapman  S Munro 《The EMBO journal》1994,13(20):4896-4907
Mnt1p is an alpha 1.2-mannosyltransferase which resides in an early compartment of the Saccharomyces cerevisiae Golgi apparatus. We have shown that the signal-anchor region is sufficient, and the transmembrane domain necessary, for its normal Golgi localization. This is similar to the transmembrane domain-mediated retention of mammalian glycosyltransferases, and distinct from the tail-mediated recycling retention of certain mammalian and yeast trans-Golgi proteins. To examine the mechanism involved in transmembrane domain-mediated retention, we have isolated six classes of mutants which fail to retain Mnt1p-reporter fusions in the early Golgi. These mutants all show additional phenotypes which are consistent with alterations in Golgi function. We have called the mutant classes 'gem', for Golgi enzyme maintenance. GEM3 is identical to the previously cloned gene ANP1, and homologous to VAN1 and MNN9. Together, these define a new class of proteins involved in the organization and functioning of the secretory pathway. Interestingly, Anp1p is localized to the endoplasmic reticulum (ER), implying that some function of the ER is required to maintain a functional Golgi apparatus.  相似文献   

7.
Intracellular localization of the p35 subunit of murine IL-12   总被引:2,自引:0,他引:2  
Production of interleukin-12 (IL-12), a heterodimer of p35 and p40 subunits, is limited by p35 expression. A long and a short murine p35 mRNA potentially encoding proteins differing in pre-sequence size are produced. Increased pre-sequence size could convert a cleaved signal peptide to an uncleaved signal peptide, raising the possibility that a membrane-bound form of p35 is produced. The intracellular localization of the p35 encoded by each mRNA isoform was determined by constructing cDNAs containing the long or short p35 cDNA isoform fused in-frame to a cDNA encoding green fluorescent protein (GFP). After transfection of a CV-1 African green monkey kidney cell line with the constructs, confocal microscopy and immunoblotting of extracted microsomal membranes demonstrated that the p35-GFP fusion protein encoded by the long or short mRNA accumulates in the Golgi apparatus as an endoglycosidase H-sensitive glycosylated integral membrane protein. In contrast, a p40-GFP fusion protein accumulates in the Golgi apparatus as a soluble protein. Since assembly of the p35 and p40 subunits to form bioactive IL-12 occurs in the ER, release of membrane-tethered IL-12 by proteolytic cleavage in a late Golgi or post-Golgi compartment may represent an as yet unidentified level at which bioactive IL-12 secretion is regulated.  相似文献   

8.
Filamentous fungi are excellent hosts for industrial protein production due to their superior secretory capacity; however, the yield of heterologous eukaryotic proteins is generally lower than that of fungal or endogenous proteins. Although activating protein folding machinery in the endoplasmic reticulum (ER) improves the yield, the importance of intracellular transport machinery for heterologous protein secretion is poorly understood. Here, using Aspergillus oryzae as a model filamentous fungus, we studied the involvement of two putative lectin-like cargo receptors, A. oryzae Vip36 (AoVip36) and AoEmp47, in the secretion of heterologous proteins expressed in fusion with the endogenous enzyme α-amylase as the carrier. Fluorescence microscopy revealed that mDsRed-tagged AoVip36 localized in the Golgi compartment, whereas AoEmp47 showed localization in both the ER and the Golgi compartment. Deletion of AoVip36 and AoEmp47 improved heterologous protein secretion, but only AoVip36 deletion had a negative effect on the secretion of α-amylase. Analysis of ER-enriched cell fractions revealed that AoVip36 and AoEmp47 were involved in the retention of heterologous proteins in the ER. However, the overexpression of each cargo receptor had a different effect on heterologous protein secretion: AoVip36 enhanced the secretion, whereas AoEmp47 promoted the intracellular retention. Taken together, our data suggest that AoVip36 and AoEmp47 hinder the secretion of heterologous proteins by promoting their retention in the ER but that AoVip36 also promotes the secretion of heterologous proteins. Moreover, we found that genetic deletion of these putative ER-Golgi cargo receptors significantly improves heterologous protein production. The present study is the first to propose that ER-Golgi transport is a bottleneck for heterologous protein production in filamentous fungi.  相似文献   

9.
Strategies that prevent the attachment of N-linked carbohydrates to nascent glycoproteins often impair intracellular transport and secretion. In the present study, we describe a method to rescue the intracellular transport and secretion of glycoproteins mutagenized to delete N-linked glycosylation sites. Site-directed mutagenesis was used to delete N-linked glycosylation sites from a chimeric protein, TNFR-IgG1. Deletion of any of the three glycosylation sites in the TNFR portion of the molecule, alone or in combination, resulted in a moderate or near total blockade of TNFR-IgG1 intracellular transport and secretion. Pulse chase experiments suggested that the glycosylation site mutants accumulated in the endoplasmic reticulum (ER) and were inefficiently exported to the Golgi apparatus (GA). Replacement of the TNFR signal sequence with the signal/pro sequence of human tissue plasminogen activator (tPA) overcame the blockade to intracellular transport, and restored secretion to levels comparable to those achieved with the fully glycosylated molecule. Ligand binding studies suggested that the secreted glycosylation variants possessed binding characteristics similar to the fully glycosylated protein. This study demonstrates that N-terminal sequences of tPA are unexpectedly efficient in facilitating transport from the ER to the GA and suggests that these sequences contain a previously unrecognized structural element that promotes intracellular transport.  相似文献   

10.
Retrograde Transport of Golgi-localized Proteins to the ER   总被引:17,自引:1,他引:16       下载免费PDF全文
The ER is uniquely enriched in chaperones and folding enzymes that facilitate folding and unfolding reactions and ensure that only correctly folded and assembled proteins leave this compartment. Here we address the extent to which proteins that leave the ER and localize to distal sites in the secretory pathway are able to return to the ER folding environment during their lifetime. Retrieval of proteins back to the ER was studied using an assay based on the capacity of the ER to retain misfolded proteins. The lumenal domain of the temperature-sensitive viral glycoprotein VSVGtsO45 was fused to Golgi or plasma membrane targeting domains. At the nonpermissive temperature, newly synthesized fusion proteins misfolded and were retained in the ER, indicating the VSVGtsO45 ectodomain was sufficient for their retention within the ER. At the permissive temperature, the fusion proteins were correctly delivered to the Golgi complex or plasma membrane, indicating the lumenal epitope of VSVGtsO45 also did not interfere with proper targeting of these molecules. Strikingly, Golgi-localized fusion proteins, but not VSVGtsO45 itself, were found to redistribute back to the ER upon a shift to the nonpermissive temperature, where they misfolded and were retained. This occurred over a time period of 15 min–2 h depending on the chimera, and did not require new protein synthesis. Significantly, recycling did not appear to be induced by misfolding of the chimeras within the Golgi complex. This suggested these proteins normally cycle between the Golgi and ER, and while passing through the ER at 40°C become misfolded and retained. The attachment of the thermosensitive VSVGtsO45 lumenal domain to proteins promises to be a useful tool for studying the molecular mechanisms and specificity of retrograde traffic to the ER.  相似文献   

11.
Hepatitis C virus (HCV) glycoproteins E1 and E2 assemble to form a noncovalent heterodimer which, in the cell, accumulates in the endoplasmic reticulum (ER). Contrary to what is observed for proteins with a KDEL or a KKXX ER-targeting signal, the ER localization of the HCV glycoprotein complex is due to a static retention in this compartment rather than to its retrieval from the cis-Golgi region. A static retention in the ER is also observed when E2 is expressed in the absence of E1 or for a chimeric protein containing the ectodomain of CD4 in fusion with the transmembrane domain (TMD) of E2. Although they do not exclude the presence of an intracellular localization signal in E1, these data do suggest that the TMD of E2 is an ER retention signal for HCV glycoprotein complex. In this study chimeric proteins containing the ectodomain of CD4 or CD8 fused to the C-terminal hydrophobic sequence of E1 were shown to be localized in the ER, indicating that the TMD of E1 is also a signal for ER localization. In addition, these chimeric proteins were not processed by Golgi enzymes, indicating that the TMD of E1 is responsible for true retention in the ER, without recycling through the Golgi apparatus. Together, these data suggest that at least two signals (TMDs of E1 and E2) are involved in ER retention of the HCV glycoprotein complex.  相似文献   

12.
We have identified a vesicle fraction that contains alpha 1-antitrypsin and other human HepG2 hepatoma secretory proteins en route from the rough endoplasmic reticulum (RER) to the cis face of the Golgi complex. [35S]Methionine pulse-labeled cells were chased for various periods of time, and then a postnuclear supernatant fraction was resolved on a shallow sucrose-D2O gradient. This intermediate fraction has a density lighter than RER or Golgi vesicles. Most alpha 1-antitrypsin in this fraction (P1) bears N-linked oligosaccharides of composition similar to that of alpha 1-antitrypsin within the RER; mainly Man8GlcNac2 with lesser amounts of Man7GlcNac2 and Man9GlcNac2; this suggests that the protein has not yet reacted with alpha-mannosidase-I on the cis face of the Golgi complex. This light vesicle species is the first post-ER fraction to be filled by labeled alpha 1-antitrypsin after a short chase, and newly made secretory proteins enter this compartment in proportion to their rate of exit from the RER and their rate of secretion from the cells: alpha 1-antitrypsin and albumin faster than preC3 and alpha 1-antichymotrypsin, faster, in turn, then transferrin. Deoxynojirimycin, a drug that blocks removal of glucose residues from alpha 1-antitrypsin in the RER and blocks its intracellular maturation, also blocks its appearance in this intermediate compartment. Upon further chase of the cells, we detect sequential maturation of alpha 1- antitrypsin to two other intracellular forms: first, P2, a form that has the same gel mobility as P1 but that bears an endoglycosidase H- resistant oligosaccharide and is found in a compartment--probably the medial Golgi complex--of density higher than that of the intermediate that contains P1; and second, the mature sialylated form of alpha 1- antitrypsin.  相似文献   

13.
We previously reported that treatment of Hep G2 cells with oleate significantly increased apolipoprotein B (apoB) secretion by reducing early intracellular degradation of nascent apoB. In the current study, inhibitors of secretory protein transport (brefeldin A and monensin), cell fractionation studies, and protease protection assays were utilized to determine the location of apoB degradation and to better define the mechanism whereby oleate treatment reduces nascent apoB intracellular degradation. When cells were treated with brefeldin A, which blocks endoplasmic reticulum (ER) to Golgi protein transport, apoB degradation continued in control cells, suggesting that apoB is degraded in the ER. When oleate-treated cells were blocked with brefeldin A, oleate failed to protect apoB from intracellular degradation. The effects of brefeldin A were not due to effects on lipid synthesis as brefeldin A did not inhibit the synthesis of triglyceride, phospholipid, free cholesterol, or cholesteryl ester in control cells and did not prevent the increases in triglyceride (14-fold) and phospholipid (1.4-fold) synthesis seen in oleate-treated cells. Simultaneous treatment of cells with brefeldin A and nocodazole, which inhibits retrograde transport of proteins from Golgi to ER, added to the evidence for the ER as the site of apoB degradation. This conclusion received further support from experiments in which cells were treated with monensin, a Na+ ionophore which halts protein secretion at the level of the trans-Golgi network. Early degradation of nascent apoB (between 10 and 20 min of chase) was observed in monensin-treated cells, but then cellular apoB degradation ceased and apoB was stable during the remaining chase period. More apoB accumulated in the Golgi of cells that had been treated with oleate and monensin. These results suggest that ER degradation occurs in monensin-treated cells, but then stops as apoB is transferred to the Golgi. The results obtained in whole cells were confirmed in studies using isolated ER and Golgi, which indicated that ER contains a proteolytic activity which degrades apoB, in vitro, whereas Golgi does not. ApoB degradation in isolated ER was not reduced by pretreatment with oleate. Finally, protease protection assays carried out with isolated microsomes indicated that a majority of the apoB in both control or oleate-treated HepG2 cells was located on the cytosolic side of the membranes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Silkworm posterior silkgland is a model for studying intracellular trafficking. Here, using this model, we identify several potential cargo proteins of BmKinesin-1 and focus on one candidate, BmCREC. BmCREC (also known as Bombyx mori DNA supercoiling factor, BmSCF) was previously proposed to supercoil DNA in the nucleus. However, we show here that BmCREC is localized in the ER lumen. Its C-terminal tetrapeptide HDEF is recognized by the KDEL receptor, and subsequently it is retrogradely transported by coat protein I (COPI) vesicles to the ER. Lacking the HDEF tetrapeptide of BmCREC or knocking down COPI subunits results in decreased ER retention and simultaneously increased secretion of BmCREC. Furthermore, we find that BmCREC knockdown markedly disrupts the morphology of the ER and Golgi apparatus and leads to a defect of posterior silkgland tube expansion. Together, our results clarify the ER retention mechanism of BmCREC and reveal that BmCREC is indispensable for maintaining ER/Golgi morphology.  相似文献   

15.
Proteins destined for the secretory pathway must first fold and assemble in the lumen of endoplasmic reticulum (ER). The pathway maintains a quality control mechanism to assure that aberrantly processed proteins are not delivered to their sites of function. As part of this mechanism, misfolded proteins are returned to the cytosol via the ER protein translocation pore where they are ubiquitinated and degraded by the 26S proteasome. Previously, little was known regarding the recognition and targeting of proteins before degradation. By tracking the fate of several mutant proteins subject to quality control, we demonstrate the existence of two distinct sorting mechanisms. In the ER, substrates are either sorted for retention in the ER or are transported to the Golgi apparatus via COPII-coated vesicles. Proteins transported to the Golgi are retrieved to the ER via the retrograde transport system. Ultimately, both retained and retrieved proteins converge at a common machinery at the ER for degradation. Furthermore, we report the identification of a gene playing a novel role specific to the retrieval pathway. The gene, BST1, is required for the transport of misfolded proteins to the Golgi, although dispensable for the transport of many normal cargo proteins.  相似文献   

16.
The endoplasmic reticulum (ER) of most vertebrate cells is spread out by kinesin-dependent transport along microtubules, whereas studies in Saccharomyces cerevisiae indicated that motility of fungal ER is an actin-based process. However, microtubules are of minor importance for organelle transport in yeast, but they are crucial for intracellular transport within numerous other fungi. Herein, we set out to elucidate the role of the tubulin cytoskeleton in ER organization and dynamics in the fungal pathogen Ustilago maydis. An ER-resident green fluorescent protein (GFP)-fusion protein localized to a peripheral network and the nuclear envelope. Tubules and patches within the network exhibited rapid dynein-driven motion along microtubules, whereas conventional kinesin did not participate in ER motility. Cortical ER organization was independent of microtubules or F-actin, but reformation of the network after experimental disruption was mediated by microtubules and dynein. In addition, a polar gradient of motile ER-GFP stained dots was detected that accumulated around the apical Golgi apparatus. Both the gradient and the Golgi apparatus were sensitive to brefeldin A or benomyl treatment, suggesting that the gradient represents microtubule-dependent vesicle trafficking between ER and Golgi. Our results demonstrate a role of cytoplasmic dynein and microtubules in motility, but not peripheral localization of the ER in U. maydis.  相似文献   

17.
Recycling of proteins from the Golgi compartment to the ER in yeast   总被引:32,自引:12,他引:20       下载免费PDF全文
In the yeast Saccharomyces cerevisiae, the carboxyl terminal sequence His-Asp-Glu-Leu (HDEL) has been shown to function as an ER retention sequence (Pelham, H. R. B., K. G. Hardwick, and M. J. Lewis. 1988. EMBO (Eur. Mol. Biol. Organ.) J. 7:1757-1762). To examine the mechanism of retention of soluble ER proteins in yeast, we have analyzed the expression of a preproalpha factor fusion protein, tagged at the carboxyl terminus with the HDEL sequence. We demonstrate that this fusion protein, expressed in vivo, accumulates intracellularly as a precursor containing both ER and Golgi-specific oligosaccharide modifications. The Golgi-specific carbohydrate modification, which occurs in a SEC18-dependent manner, consists of alpha 1-6 mannose linkages, with no detectable alpha 1-3 mannose additions, indicating that the transit of the HDEL-tagged fusion protein is confined to an early Golgi compartment. Results obtained from the fractionation of subcellular organelles from yeast expressing HDEL-tagged fusion proteins suggest that the Golgi-modified species are present in the ER. Overexpression of HDEL-tagged preproalpha factor results in the secretion of an endogenous HDEL-containing protein, demonstrating that the HDEL recognition system can be saturated. These results support the model in which the retention of these proteins in the ER is dependent on their receptor-mediated recycling from the Golgi complex back to the ER.  相似文献   

18.
Several soluble proteins that reside in the lumen of the ER contain a specific C-terminal sequence (KDEL) which prevents their secretion. This sequence may be recognized by a receptor that either immobilizes the proteins in the ER, or sorts them from other proteins at a later point in the secretory pathway and returns them to their normal location. To distinguish these possibilities, I have attached an ER retention signal to the lysosomal protein cathepsin D. The oligosaccharide side chains of this protein are normally modified sequentially by two enzymes to form mannose-6-phosphate residues; these enzymes do not act in the ER, but are thought to be located in separate compartments within (or near) the Golgi apparatus. Cathepsin D bearing the ER signal accumulates within the ER, but continues to be modified by the first of the mannose-6-phosphate forming enzymes. Modification is strongly temperature-dependent, which is also a feature of ER-to-Golgi transport. These results support the idea that luminal ER proteins are continuously retrieved from a post-ER compartment, and that this compartment contains N-acetylglucosaminyl-1-phosphotransferase activity.  相似文献   

19.
In all eucaryotic cells, specific vesicle fusion during vesicular transport is mediated by membrane-associated proteins called SNAREs (soluble N-ethyl-maleimide sensitive factor attachment protein receptors). Sequence analysis identified a total of 54 SNARE genes (18 Qa-SNAREs/Syntaxins, 11 Qb-SNAREs, 8 Qc-SNAREs, 14 R-SNAREs/VAMPs and 3 SNAP-25) in the Arabidopsis genome. Almost all of them were ubiquitously expressed through out all tissues examined. A series of transient expression assays using green fluorescent protein (GFP) fused proteins revealed that most of the SNARE proteins were located on specific intracellular compartments: 6 in the endoplasmic reticulum, 9 in the Golgi apparatus, 4 in the trans-Golgi network (TGN), 2 in endosomes, 17 on the plasma membrane, 7 in both the prevacuolar compartment (PVC) and vacuoles, 2 in TGN/PVC/vacuoles, and 1 in TGN/PVC/plasma membrane. Some SNARE proteins showed multiple localization patterns in two or more different organelles, suggesting that these SNAREs shuttle between the organelles. Furthermore, the SYP41/SYP61-residing compartment, which was defined as the TGN, was not always located along with the Golgi apparatus, suggesting that this compartment is an independent organelle distinct from the Golgi apparatus. We propose possible combinations of SNARE proteins on all subcellular compartments, and suggest the complexity of the post-Golgi membrane traffic in higher plant cells.  相似文献   

20.
As a model of ligand-dependent protein secretion the biosynthesis, intracellular transport, and release of the retinol-binding protein (RBP) were studied in primary cultures of rat hepatocytes pulse-labeled with [35S]methionine. After various periods of chase RBP was isolated by immunoprecipitation and identified by SDS PAGE. Both normal and vitamin A-deficient hepatocytes synthesized RBP. The normal cells secreted the pulse-labeled RBP within 2 h. RBP synthesized by deficient cells was not secreted, and intracellular degradation of the protein appeared to be slow. Deficient cells could be induced to secrete RBP on the addition of retinol to the culture medium. This occurred also after protein synthesis had been blocked by cycloheximide. Since retinol induces the secretion of RBP, accumulated in the endoplasmic reticulum (ER), it seems reasonable to conclude that the transport of RBP from the ER to the Golgi complex is regulated by retinol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号