共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary An attempt to isolate an ooplasmic factor active in inducing pole cells in Drosophila embryos is described. With the help of a bioassay system, we demonstrated that RNA extracted from embryos was active in inducing pole cells. These RNA-induced pole cells were morphologically identical to the normal ones. In addition, a local application of cycloheximide suggests that translation in the posterior pole cytoplasm is a precondition for pole cell formation. 相似文献
2.
This article reviews recent analytical studies of cytoplasmic factors involved in a mechanism underlying pole cell formation in Drosophila embryogenesis. Polar plasm, or germ plasm, includes sources of two independent functions in the germ-line segregation from the somatic line: pole cell formation and commitment of pole cells to germ cells. The UV-caused inability of pole cell formation in embryos was restored by poly(A)+ RNA, of which cDNA was cloned. The nucleotide sequence of the cDNA was highly homologous with mitochondrial large rRNA. 相似文献
3.
Functions of maternal mRNA as a cytoplasmic factor responsible for pole cell formation in Drosophila embryos 总被引:1,自引:0,他引:1
Injection of mRNA extracted from Drosophila cleavage embryos or mature oocytes restored pole cell-forming ability to embryos that had been deprived of this ability by uv irradiation. However, mRNA extracted from blastoderms did not show the restoration activity. Pole cells thus formed in uv-irradiated embryos bear similarities to normal pole cells both in their morphology and their ability to migrate to the gonadal rudiments. But this mRNA does not appear to be capable of rescuing uv-induced sterility, or inducing pole cells in the anterior polar region. 相似文献
4.
Overexpression of oskar directs ectopic activation of nanos and presumptive pole cell formation in Drosophila embryos. 总被引:4,自引:0,他引:4
In Drosophila, a small group of maternal effect genes, including oskar, defines a shared pathway leading to the provision of two determinants at the posterior pole of the embryo. One determinant is the posterior body patterning morphogen nanos, and the other directs germ cell formation. Overexpression of oskar causes the shared pathway to be hyperactivated, with excess nanos activity present throughout the embryo and a superabundance of posterior pole cells. In addition, presumptive pole cells appear at a novel anterior position. Strikingly, formation of these ectopic pole cells is enhanced in nanos mutants. This observation may reflect competition between nanos and the germ cell determinant for a shared and limiting precursor. 相似文献
5.
The stereotyped asymmetry of one-cell C. elegans embryos has proven to be an important model for identifying molecular determinants of cell polarity. How polarity is initiated is less well understood. Polarity establishment depends on centrosomes, which use two molecularly distinct pathways to break symmetry. In both, the centrosome's position adjacent to the cell cortex is thought to determine where polarization starts. Defects in centrosome-cortex juxtaposition correlate with defects in polarity establishment in several mutants, suggesting that these processes may be linked, but there is no direct test of this. Here we assess how centrosome position relative to the cortex affects polarity establishment. We find that centrosomes can initiate polarity from any position within the embryo volume, but centrosome-cortex proximity decreases the time required to initiate polarity. Polarization itself brings about close centrosome-cortex proximity. Prior to polarization, cytoplasmic microtubules constrain centrosome movement near the cortex, expanding the controversial role of microtubules during polarity establishment. The ability of centrosomes to induce a single polarity axis from any position within the egg emphasizes the flexible, self-organizing properties of polarization in C. elegans embryos and contrasts the common view of C. elegans development as invariant. 相似文献
6.
In Drosophila embryos, segment boundaries form at the posterior edge of each stripe of engrailed expression. We have used an HRP-CD2 transgene to follow by transmission electron microscopy the cell shape changes that accompany boundary formation. The first change is a loosening of cell contact at the apical side of cells on either side of the incipient boundary. Then, the engrailed-expressing cells flanking the boundary undergo apical constriction, move inwards and adopt a bottle morphology. Eventually, grooves regress, first on the ventral side, then laterally. We noted that groove formation and regression are contemporaneous with germ band retraction and shortening, respectively, suggesting that these rearrangements could also contribute to groove morphology. The cellular changes accompanying groove formation require that Hedgehog signalling be activated, and, as a result, a target of Ci expressed, at the posterior of each boundary (obvious targets like stripe and rhomboid appear not to be involved). In addition, Engrailed must be expressed at the anterior side of each boundary, even if Hedgehog signalling is artificially maintained. Thus, there are distinct genetic requirements on either side of the boundary. In addition, Wingless signalling at the anterior of the domains of engrailed (and hedgehog) expression represses groove formation and thus ensures that segment boundaries form only at the posterior. 相似文献
7.
We reported previously that the disappearance of cyclin B at the end of mitosis in early Drosophila embryos starts at centrosomes and spreads into the spindle [1]. Here, we used a novel mutation, centrosome fall off (cfo), to investigate whether centrosomes are required to initiate the disappearance of cyclin B from the spindle. In embryos laid by homozygous cfo mutant mothers, the centrosomes co-ordinately detached from the mitotic spindle during mitosis, and the centrosomeless spindles arrested at anaphase. Cyclin B levels decreased on the detached centrosomes, but not on the arrested centrosomeless spindles, presumably explaining why the spindles arrest in anaphase in these embryos. We found that the expression of a non-degradable cyclin B in embryos also caused an anaphase arrest, but most centrosomes remained attached to the arrested spindles, and non-degradable cyclin B levels remained high on both the centrosomes and spindles. These findings suggest that the disappearance of cyclin B from centrosomes and spindles is closely linked to its destruction, and that a connection between centrosomes and spindles is required for the proper destruction of the spindle-associated cyclin B in early Drosophila embryos. These results may have important implications for the mechanism of the spindle-assembly checkpoint, as they suggest that unattached kinetochores may arrest cells in mitosis, at least in part, by signalling to centrosomes to block the initiation of cyclin B destruction. 相似文献
8.
Drosophila tudor is essential for polar granule assembly and pole cell specification, but not for posterior patterning 总被引:2,自引:0,他引:2
Pole cells and posterior segmentation in Drosophila are specified by maternally encoded genes whose products accumulate at the posterior pole of the oocyte. Among these genes is tudor (tud). Progeny of hypomorphic tud mothers lack pole cells and have variable posterior patterning defects. We have isolated a null allele to further investigate tud function. While no pole cells are ever observed in embryos from tud-null mothers, 15% of these embryos have normal posterior patterning. OSKAR (OSK) and VASA (VAS) proteins, and nanos (nos) RNA, all initially localize to the pole plasm of tud-null oocytes and embryos from tud-null mothers, while localization of germ cell-less (gcl) and polar granule component (pgc), is undetectable or severely reduced. In embryos from tud-null mothers, polar granules are greatly reduced in number, size, and electron density. Thus, tud is dispensable for somatic patterning, but essential for pole cell specification and polar granule formation. 相似文献
9.
Abdominal segmentation, pole cell formation, and embryonic polarity require the localized activity of oskar, a maternal gene in Drosophila 总被引:20,自引:0,他引:20
Embryos derived from oskar females lack pole cells and the specialized pole plasm including polar granules. In addition, the abdominal region remains unsegmented and eventually dies. Transplantation of cytoplasm from normal embryos into mutant embryos reveals that osk-dependent activity is strictly localized at the posterior pole and has three distinct functions. In mutant embryos the activity will normalize pole cell formation when transplanted into the posterior pole and abdominal segmentation after transplantation to a more anterior, the prospective abdominal, region. Furthermore, osk activity can provoke the formation of a second "posterior center" at the anterior. The participation of the osk product in the establishment of a source of morphogenetic activity in the posterior pole plasm is discussed. 相似文献
10.
numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos 总被引:8,自引:0,他引:8
Neurons and support cells of each sensory organ in Drosophila embryos are most likely derived from a single precursor cell. This cell lineage is affected in numb mutants. Morphological alterations of sensory structures, as well as changes in the number of cells expressing cell type-specific markers, indicate that sensory neurons in numb mutant embryos are transformed into lineage-related nonneuronal support cells. Thus the numb gene controls the fate of progeny derived from sensory organ precursors. The numb gene has been isolated by the plasmid rescue method. The structure of its predicted product is discussed. 相似文献
11.
Drosophila embryogenesis is an established model to investigate mechanisms and genes related to cell divisions in an intact multicellular organism. Progression through the cell cycle phases can be monitored in vivo using fluorescently labeled fusion proteins and time-lapse microscopy. To measure cellular properties in microscopic images, accurate and fast image segmentation methods are a critical prerequisite. To quantify static and dynamic features of interphase nuclei and mitotic chromosomes, we developed a three-dimensional (3D) segmentation method based on multiple level sets. We tested our method on 3D time-series images of live embryos expressing histone-2Av-green fluorescence protein. Our method is robust to low signal-to-noise ratios inherent to high-speed imaging, fluorescent signals in the cytoplasm, and dynamic changes of shape and texture. Comparisons with manual ground-truth segmentations showed that our method achieves more than 90% accuracy on the object as well as voxel levels and performs consistently throughout all cell cycle phases and developmental stages from syncytial blastoderm to postblastoderm mitotic domains. 相似文献
12.
13.
15.
Cryomicroscopy and differential scanning calorimetry (DSC) were used to characterize the incidence of intracellular ice formation (IIF) in 12- to 13-hr-old embryos of Drosophila melanogaster (Oregon-R strain P2) as influenced by the state of the eggcase (untreated, dechorionated, or permeabilized), the composition of the suspending medium (with and without cryoprotectants), and the cooling rate. Untreated eggs underwent IIF over a very narrow temperature range when cooled at 4 or 16 degrees C/min with a median temperature of intracellular ice formation (TIIF50) of -28 degrees C. The freezable water volume of untreated eggs was approximately 5.4 nl as determined by DSC. IIF in dechorionated eggs occurred over a much broader temperature range (-13 to -31 degrees C), but the incidence of IIF increased sharply below -24 degrees C, and the cumulative incidence of IIF at -24 degrees C decreased with cooling rate. In permeabilized eggs without cryoprotectants (CPAs), IIF occurred at much warmer temperatures and over a much wider temperature range than in untreated eggs, and the TIIF50 was cooling rate dependent. At low cooling rates (1 to 2 degrees C/min), TIIF50 increased with cooling rate; at intermediate cooling rates (2 to 16 degrees C/min), TIIF50 decreased with cooling rate. The total incidence of IIF in permeabilized eggs was 54% at 1 degree C/min, and volumetric contraction almost always occurred during cooling. Decreasing the cooling rate to 0.5 degree C/min reduced the incidence of IIF to 43%. At a cooling rate of 4 degrees C/min, ethylene glycol reduced the TIIF50 by about 12 degrees C for each unit increase in molarity of CPA (up to 2.0 M) in the suspending medium. The TIIF50 was cooling rate dependent when embryos were preequilibrated with 1.0 M propylene glycol or ethylene glycol, but was not so in 1.0 M DMSO. For embryos equilibrated in 1.5 M ethylene glycol and then held at -5 degrees C for 1 min before further cooling at 1 degree C/min, the incidence of IIF was decreased to 31%. Increasing the duration of the isothermal hold to 10 min reduced the incidence of IIF to 22% and reduced the volume of freezable water in embryos when intracellular ice formation occurred. If the isothermal hold temperature was -7.5 or -10 degrees C, a 10- to 30-min holding time was required to achieve a comparable reduction in the incidence of IIF. 相似文献
16.
The regular position of spindle poles in bi- and multipolar cell divisions is interpreted as the result of expanding caps on the surface of cell nuclei first proposed by Mazia in 1986. In a computer model it is shown that expanding caps position their centers with the maximal distance between them, which is in complete accordance with findings in experimentally influenced cell divisions in which multiple poles are formed. 相似文献
17.
Several mitotic regulators, including Cyclin B1/Cdk1, are present at centrosomes prior to mitosis onset, but it is unclear whether centrosomes promote mitotic entry in vivo. Here we developed a sensitive assay in C. elegans embryos for the temporal analysis of mitotic entry, in which the male and female pronuclei undergo asynchronous entry into mitosis when separated from one another. Using this assay, we found that centrosome integrity is necessary for timing mitotic entry. Centrosomes do not function in this instance through their ability to nucleate microtubules. Instead, centrosomes serve to focus the Aurora A kinase AIR-1, which is essential for timely mitotic entry. Furthermore, analysis of embryos in which centrosomes and pronuclei are detached from one another demonstrates that centrosomes are sufficient to promote mitosis onset. Together, our findings support a model in which centrosomes serve as integrative centers for mitotic regulators and thus trigger mitotic entry in a timely fashion. 相似文献
18.
19.
Programmed cell death plays an essential role during Drosophila embryonic development. A stereotypic series of cellular changes occur during apoptosis, most of which are initiated by a caspase cascade that is triggered by a trio of proteins, RPR, HID and GRIM. The final step in apoptosis is engulfment of the cell corpse. To monitor cell engulfment in vivo, we developed a fluorogenic beta-galactosidase substrate that is cleaved by an endogenous, lysosomal beta-galactosidase activity. The pattern of cell engulfment in wild-type embryos correlated well with the known pattern of apoptosis. Surprisingly, the pattern of cell engulfment persisted in apoptosis-deficient embryos. We provide evidence for a caspase-independent engulfment process that affects the majority of cells expected to die in developing Drosophila embryos. 相似文献