首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the presence of iodide (I-, 10 mM) and hydrogen peroxide in a large excess (H2O2, 0.1-10 mM) catalytic amounts of lactoperoxidase (2 nM) are very rapidly irreversibly inactivated without forming compound III (cpd III). In contrast, in the absence of I- cpd III is formed and inactivation proceeds very slowly. Increasing the enzyme concentration up to the micromolar range significantly accelerates the rate of inactivation. The present data reveal that irreversible inactivation of the enzyme involves cleavage of the prosthetic group and liberation of heme iron. The rate of enzyme destruction is well correlated with the production of molecular oxygen (O2), which originates from the oxidation of excess H2O2. Since H2O2 and O2 per se do not affect the heme moiety of the peroxidase, we suggest that the damaging species may be a primary intermediate of the H2O2 oxidation, such as oxygen in its excited singlet state (1 delta gO2), superoxide radicals (O-.2), or consequently formed hydroxyl radicals (OH.).  相似文献   

2.
The elastase-inhibitory activity of alpha 1-antiproteinase is inactivated by hydroxyl radicals (.OH) generated by pulse radiolysis or by reaction of iron ions with H2O2 in the presence of superoxide or ascorbate. Uric acid did not protect alpha 1-antiproteinase against inactivation by .OH in pulse radiolysis experiments or in the superoxide/iron/H2O2 system, whereas it did in systems containing ascorbic acid. We propose that radicals formed by attack of .OH on uric acid are themselves able to inactivate alpha 1-antiproteinase, but that these uric acid radicals can be 'repaired' by ascorbic acid.  相似文献   

3.
We studied the effects of some buffer solutions used for microinjection in mammalian zygotes on preimplantation development of (CBA x C57BL)F1 mouse embryos in vitro. The rate of embryo survival was estimated according to their capacity to develop to the stages of blastocyst and blastocyst hatched from zona pellucida. The results obtained suggested a reduced rate of survival of zygotes to the blastocyst stage after the injection into a pronucleus of the buffers Tris-HCl with EDTA, Tris-HCl with MgCl2 and NaCl, and medium M2 (p < 0.05) and to the stage of blastocyst hatched from zone pellucida after injection of a Dulbecco solution, as compared to the control. No differences were found in the survival rate of zygotes injected with different buffer solutions.  相似文献   

4.
Alcohol dehydrogenase (ADH) was used as a marker molecule to clarify the mechanism of gastric mucosal damage as a side effect of using piroxicam. Piroxicam inactivated ADH during interaction of ADH with horseradish peroxidase and H2O2 (HRP-H2O2). The ADH was more easily inactivated under aerobic than anaerobic conditions, indicating participation by oxygen. Superoxide dismutase, but not hydroxyl radical scavengers, inhibited inactivation of ADH, indicating participation by superoxide. Sulfhydryl (SH) groups in ADH were lost during incubation of piroxicam with HRP-H2O2. Adding reduced glutathione (GSH) efficiently blocked ADH inactivation. Other SH enzymes, including creatine kinase and glyceraldehyde-3-phosphate dehydrogenase, were also inactivated by piroxicam with HRP-H2O2. Thus SH groups in the enzymes seem vulnerable to piroxicam activated by HRP-H2O2. Spectral change in piroxicam was caused by HRP-H2O2. ESR signals of glutathionyl radicals occurred during incubation of piroxicam with HRP-H2O2 in the presence of GSH. Under anaerobic conditions, glutathionyl radical formation increased. Thus piroxicam free radicals interact with GSH to produce glutathionyl radicals. Piroxicam peroxyl radicals or superoxide, or both, seem to inactivate ADH. Superoxide may be produced through interaction of peroxyl radicals with H2O2. Thus superoxide dismutase may inhibit inactivation of ADH through reducing piroxicam peroxyl radicals or blocking interaction of SH groups with O2-, or both. Other oxicam derivatives, including isoxicam, tenoxicam and meloxicam, induced ADH inactivation in the presence of HRP-H2O2.  相似文献   

5.
Spectral analysis of light scattered from solutions of 30 S subunits was performed by the method of regularization of the inverse spectral problem. The subunits observed under ionic conditions which preserved their biological activity (200 mM NH4Cl at 1 mM MgCl2) revealed a monodisperse pattern of scattering with diffusion constant D = (1.83 +/- 0.10) X 10(-7) cm2/s. The polydispersity and compaction of 30 S subunits were observed under inactivation ionic conditions (30 mM NH4Cl at 1 mM MgCl2). The number of compacted particles correlates with the irreversible loss of biological activity, the ability of 30 S subunits to bind specific tRNA.  相似文献   

6.
In a previous publication1 we reported that the tyrosine selective reagent, tetraitromethane, causes complete inactivation of E. coli 30S ribosomes for poly U directed non-enzymatic phe-tRNA binding. This inactivation was demonstrated to be due to the chemical modification of the protein moiety of the ribosome. We have no identified the proteins of the 30S particle inactivated by this modification. Using a method of ribosome reconstruction we have found that unmodified proteins S1, S11, and S21 are essential for the restoration of the phe-tRNA binding activity of tetranitromethane inactivated ribosomes. We propose that these three proteins are intimately involved in the 30S ribosome binding site for tRNA.  相似文献   

7.
Summary Addition of benzyl viologen to a cell suspension of the aerobic bacterium Azotobacter chroococcum growing on nitrate resulted in a rapid loss of glutamine synthetase activity as assayed in situ. When a glutamine synthetase preparation which exhibited NADH-benzyl viologen oxidoreductase activity was incubated, under air, with NADH and benzyl viologen, glutamine synthetase was inactivated in a short period of time. This in-vitro inactivation process could be prevented in the presence of added catalase, thus indicating that hydrogen peroxide was involved in the process, and by EDTA, suggesting that metal ions are also involved. The characteristics of the benzyl viologen-dependent glutamine synthetase inactivation observed with externally added H2O2 and a preincubated sample are similar.Inhibition of glutamine synthetase inactivation by histidine suggests that hydroxyl radicals, or something with similar reactivity, is the inactivating agent. The fact that inactivation can also be catalyzed by a model system consisting of Fe2+ and H2O2 leads to the conclusion that hydroxyl radicals are most likely produced in a Fenton reaction in which hydrogen peroxide reacts with adventitious iron ions.Since A. chroococcum contained a high level of catalase it may be concluded that cellular compartmentation plays an important role in the in-vivo inactivation of glutamine synthetase.  相似文献   

8.
Oxidative DNA damage was investigated by free radicals generated from HEPES (2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid) buffer, which is widely used in biochemical or biological studies, in the presence of Au(III). The effect of free radicals on the DNA damage was ascertained by gel electrophoresis, electron spin resonance (ESR) spectroscopy and circular dichroism (CD) spectroscopy. ESR results indicated the generation of nitrogen-centered cationic free radicals from the HEPES in the presence of Au(III) which cause the DNA damage. No ESR spectra were observed for phosphate, tris(hydroxymethyl)aminomethane (Tris-HCl) and acetate buffers in the presence of Au(III) or for HEPES buffer in the presence of other metal ions such as Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) or [Au(III)(TMPyP)](5+) and [Pd(II)(TMPyP)](4+), where [H(2)(TMPyP)](4+) denotes tetrakis(1-methylpyridium-4-yl)porphyrin. Consequently, no DNA damage was observed for these buffer agents (e.g., phosphate, Tris-HCl or acetate) in the presence of Au(III) or for HEPES in the presence of other metal ions or the metalloporphyrins mentioned above. No detectable inhibitory effect on the DNA damage was observed by using the typical scavengers of reactive oxygen species (ROS) ()OH, O(2)(-) and H(2)O(2). This non-inhibitory effect indicated that no reactive oxygen species were generated during the incubation of DNA with HEPES and Au(III). The drastic change in CD spectra from positive ellipticity to negative ellipticity approximately at 270 nm with increasing concentration of Au(III) also indicated the significant damage of DNA. Only HEPES or Au(III) itself did not damage DNA. A mechanism for the damaging of DNA is proposed.  相似文献   

9.
The site-specific lysozyme damage by iron and by iron-catalysed oxygen radicals was investigated. A solution of purified lysozyme was inactivated by Fe(II) at pH 7.4 in phosphate buffer, as tested on cleavage of Micrococcus lysodeikticus cells; this inactivation was time- and iron concentration-dependent and was associated with a loss of tryptophan fluorescence. In addition, it was reversible at pH 4, as demonstrated by lysozyme reactivation and by the intensity of the 14.4-kD-band on SDS-PAGE. Desferal (1 mM) and Detapac (1 mM) added before iron, prevented lysozyme inactivation, while catalase (100 micrograms/ml), superoxide dismutase (100 micrograms/ml) and bovine serum albumin (100 micrograms/ml) gave about 30 to 40% protection by competing with lysozyme for iron binding. The denaturing effect of iron on lysozyme was studied in the presence of H2O2 (1 mM) and ascorbate (1 mM); under these conditions the enzyme underwent partly irreversible inactivation and degradation different to that produced by gamma radiolysis-generated .OH. Catalase almost fully protected lysozyme; in contrast, mannitol (10 mM), benzoate (10 mM), and formate (10 mM) provided no protection because of their inability to access the site at which damaging species are generated. In this system, radical species were formed in a site-specific manner, and they reacted essentially with lysozyme at the site of their formation, causing inactivation and degradation differently than the hydroxyl radical.  相似文献   

10.
Despite a wealth of experimental evidence concerning the efficacy of the biocidal action associated with the TiO(2) photocatalytic reaction, our understanding of the photochemical mechanism of this particular biocidal action remains largely unclear. It is generally accepted that the hydroxyl radical (.OH), which is generated on the surface of UV-illuminated TiO(2), plays the main role. However, our understanding of the exact mode of action of the hydroxyl radical in killing microorganisms is far from complete, and some studies report that other reactive oxygen species (ROS) (H(2)O(2) and O(2).(-), etc.) also play significant roles. In particular, whether hydroxyl radicals remain bound to the surface or diffuse into the solution bulk is under active debate. In order to examine the exact mode of action of ROS in inactivating the microorganism, we tested and compared the levels of photocatalytic inactivation of MS-2 phage and Escherichia coli as representative species of viruses and bacteria, respectively. To compare photocatalytic microbial inactivation with the photocatalytic chemical degradation reaction, para-chlorobenzoic acid, which rapidly reacts with a hydroxyl radical with a diffusion-limited rate, was used as a probe compound. Two different hydroxyl radical scavengers, tert-butanol and methanol, and an activator of the bulk phase hydroxyl radical generation, Fe(2+), were used to investigate their effects on the photocatalytic mode of action of the hydroxyl radical in inactivating the microorganism. The results show that the biocidal modes of action of ROS are very different depending on the specific microorganism involved, although the reason for this is not clear. It seems that MS-2 phage is inactivated mainly by the free hydroxyl radical in the solution bulk but that E. coli is inactivated by both the free and the surface-bound hydroxyl radicals. E. coli might also be inactivated by other ROS, such as O(2).(-) and H(2)O(2), according to the present results.  相似文献   

11.
Mannitol Protects against Oxidation by Hydroxyl Radicals   总被引:25,自引:2,他引:25       下载免费PDF全文
Hydroxyl radicals may be responsible for oxidative damage during drought or chilling stress. We have shown that the presence of mannitol in chloroplasts can protect plants against oxidative damage by hydroxyl radicals (B. Shen, R.G. Jensen, H.J. Bohnert [1997] Plant Physiol 113: 1177-1183). Here we identify one of the target enzymes that may be protected by mannitol. Isolated thylakoids in the presence of physiological concentrations of Fe2+ generated hydroxyl radicals that were detected by the conversion of phenylalanine into tyrosine. The activity of phosphoribulokinase (PRK), a thiol-regulated enzyme of the Calvin cycle, was reduced by 65% in illuminated thylakoids producing hydroxyl radicals. Mannitol (125 mM) and sodium formate (15 mM), both hydroxyl radical scavengers, and catalase (3000 units mL-1) prevented loss of PRK activity. In contrast, superoxide dismutase (300 units mL-1) and glycine betaine (125 mM) were not effective in protecting PRK against oxidative inactivation. Ribulose-1,5-bisphosphate carboxylase/oxygenase activity was not affected by hydroxyl radicals. We suggest that the stress-protective role of mannitol may be to shield susceptible thiol-regulated enzymes like PRK plus thioredoxin, ferredoxin, and glutathione from inactivation by hydroxyl radicals in plants.  相似文献   

12.
A M Michelson  J Maral 《Biochimie》1983,65(2):95-104
Presence of carbonate anions increases the oxidation of luminol in different chemical systems. Lysis of human erythrocytes due to the action of dihydroxyfumaric acid or of perborate is also stimulated by carbonate ions. These anions also change considerably the loss of activity of different enzymes treated with superoxide, hydroxyl or formate radicals and can increase or decrease the effect as a function of the nature of the active centre of the enzyme. The relative effects of superoxide, hydroxyl, formate and carbonate radicals for the inactivation of various enzymes (superoxide dismutases, catalase, ribonuclease, glucose oxidase and glutathione peroxidase) have been examined. Three systems were used: gamma-irradiation under different conditions, photoproduction of radicals and sonication. Inactivation of the enzymes is a function not only of the radical used but also of the nature of the active site. Thus glutathione peroxidase is remarkably resistant to hydroxyl radicals while the superoxide dismutases are rapidly inactivated by carbonate radicals. All of the results combine to show that the presence or absence of carbonate anions must be considered in all studies of oxygen containing free radicals whether chemical, biochemical or biological or high energy irradiation.  相似文献   

13.
The preparation of an Escherichia coli tRNA mixture lacking several specific species may be useful for applications ranging from cell-free protein preparation to protein engineering. We have already demonstrated that tRNA(Asp) can be inactivated, or 'knocked out', with practical specificity by an antisense strategy. In the present study, we synthesized five tRNA(Phe)-targeted antisense oligonucleotides and tested if this tRNA can also be inactivated specifically. The salt conditions used previously for the tRNA(Asp) inactivation were not applicable to tRNA(Phe). Instead, Mg2+-deficient conditions were found to be useful for the inactivation of tRNAPhe by the antisense oligonucleotides. These conditions were also applicable to the inactivation of tRNA(Asp). The susceptibility to the antisense DNAs can change drastically, depending on the concentration of Mg2+.  相似文献   

14.
The inactivation of lysozyme caused by the radicals produced by thermolysis of 2, 2-azo-bis-2-amidino-propane can be prevented by the addition of different compounds that can react with the damaging free radicals. Compounds of high reactivity (propyl gallate, Trolox, cysteine, albumin, ascorbate, and NADH) afford almost total protection until their consumption, resulting in well-defined induction times. The number of radicals trapped by each additive molecule consumed ranges from 3 (propyl gallate) to 0.12 (cysteine). This last value is indicative of chain oxidation of the inhibitor. Uric acid is able to trap nearly 2.2 radicals per added molecule, but even at large (200 μM) concentrations, a residual inactivation of the enzyme is observed, which may be caused by urate-derived radicals.

Compounds of lower reactivity (tryptophan, Tempol, hydroquinone, desferrioxamine, diethylhydroxylamine, methionine, histidine, NAD+ and tyrosine) only partially decrease the lysozyme inactivation rates. For these compounds, we calculated the concentration necessary to reduce the enzyme inactivation rate to one half of that observed in the absence of additives. These concentrations range from 9 μM (tryptophan and Tempol) to 5 mM (NAD+).  相似文献   

15.
A I Cederbaum  E Dicker  G Cohen 《Biochemistry》1980,19(16):3698-3704
The microsomal oxidation of ethanol or 1-butanol was increased by ferrous ammonium sulfate-ethylenediaminetetraacetic acid (1:2) (Fe-EDTA) (3.4-50 microM). The increase was blocked by hydroxyl radical scavenging agents such as dimethyl sulfoxide or mannitol. The activities of aminopyrine demethylase or aniline hydroxylase were not affected by Fe-EDTA. The accumulation of H2O2 was decreased in the presence of Fe-EDTA, consistent with an increased utilization of H2O2. Other investigators have shown that Fe-EDTA increases the formation of hydroxyl radicals in systems where superoxide radicals are generated. The stimulation by Fe-EDTA appears to represent a pathway involving hydroxyl radicals rather than catalase because (1) stimulation occurred in the presence of azide, which inhibits catalase, (2) stimulation occurred in the presence of 1-butanol, which is not an effective substrate for catalase, and (3) stimulation was blocked by hydroxyl radical scavenging agents, which do not affect catalase-mediated oxidation of ethanol. A possible role for contaminating iron in the H2O or buffers could be ruled out since similar results were obtained with or without chelex-100 treatment of these solutions. The stimulatory effect by Fe-EDTA required microsomal electron transfer with NADPH, and H2O2 could not replace the NADPH-generating system. In the absence of microsomes or catalase, Fe-EDTA also stimulated the coupled oxidation of ethanol during the oxidation of xanthine by xanthine oxidase. These results suggest that during microsomal electrom transfer, conditions may be appropriate for a Fenton type or a modified Haber-Weiss type of reaction to occur, leading to the production of hydroxyl radicals.  相似文献   

16.
Using RNA-directed synthesis of the alpha-peptide of beta-galactosidase as an assay, a factor was purified that inactivated further function of the mRNA. In the presence of Ca2+ ions to inhibit most nuclease activity, inactivation of mRNA occurred during incubation with ribosomes or with a 1 M KCl wash of ribosomes. The inactivation activity required Mg2+ ions, and purified as a single factor which did not bind to DEAE-cellulose, but bound reversibly to phosphocellulose. The factor eluted from Sephadex G-150 with an apparent molecular weight of about 43,000. Purified 700-fold, it showed no detectable exonuclease activity, and little or no cleavage of a variety of single-stranded substrates, including full length lac operon mRNA; but repurified inactivated mRNA was still inactive for protein synthesis. The factor did not inhibit poly(U)-directed polyphenylalanine synthesis. When proteins isolated from the ribosomal wash were individually tested, highly purified RNase III, which purifies in the same way and has the same size, also inactivated lac mRNA. The ribosomal wash from an RNase III- strain showed little if any activity compared to that from an isogenic RNase III+ strain. The possibility of a site-specific inactivating cleavage of mRNA by RNase III at or near the 5' end is considered.  相似文献   

17.
Leukotriene B4, C4, D4 and E4 inactivation by hydroxyl radicals   总被引:1,自引:0,他引:1  
Leukotriene B4 chemotactic activity and leukotriene C4, D4 and E4 slow reacting substance activity were rapidly decreased by hydroxyl radicals generated by two different iron-supplemented acetaldehyde-xanthine oxidase systems. At low Fe2+, leukotriene inactivation was inhibited by catalase, superoxide dismutase, mannitol and ethanol, suggesting involvement of hydroxyl radicals generated by the iron-catalyzed interaction of superoxide and H2O2 (Haber-Weiss reaction). Leukotriene inactivation increased at high Fe2+ concentrations, but was no longer inhibitable by superoxide dismutase, suggesting that inactivation resulted from a direct interaction between H2O2 and Fe2+ to form hydroxyl radicals (Fenton reaction). The inactivation of leukotrienes by hydroxyl radicals suggests that oxygen metabolites generated by phagocytes may play a role in modulating leukotriene activity.  相似文献   

18.
RH1 (2,5-diaziridinyl-3-(hydroxymethyl)-6-methyl-1,4-benzoquinone), which is currently in clinical trials, is a diaziridinyl benzoquinone bioreductive anticancer drug that was designed to be activated by the obligate two-electron reductive enzyme NAD(P)H quinone oxidoreductase 1 (NQO1). In this electron paramagnetic resonance (EPR) study we showed that RH1 was reductively activated by the one-electron reductive enzyme NADPH cytochrome P450 reductase and by a suspension of HCT116 human colon cancer cells to yield a semiquinone free radical. As shown by EPR spin trapping experiments RH1 was reductively activated by cytochrome P450 reductase and underwent redox cycling to produce damaging hydroxyl radicals in reactions that were both H2O2- and iron-dependent. Thus, reductive activation by cytochrome P450 reductase or other reductases to produce a semiquinone that can redox cycle to produce damaging hydroxyl radicals and/or DNA-reactive alkylating species may contribute to the potent cell growth inhibitory effects of RH1. These results also suggest that selection of patients for treatment with RH1 based on their expression levels of NQO1 may be problematic.  相似文献   

19.
Treatment of the Cu(II)-Fe(III) derivative of pig allantoic fluid acid phosphatase with hydrogen peroxide caused irreversible inactivation of the enzyme and loss of half of the intensity of the visible absorption spectrum. Phosphate, a competitive inhibitor, protected against this inactivation, suggesting that it occurred as a result of a reaction at the active site. The native Fe(II)-Fe(III) enzyme was irreversibly inactivated by H2O2 to a much smaller extent than the Cu(II)-Fe(III) derivative, whereas the Zn(II)-Fe(III) derivative was stable to H2O2 treatment. The rates of inactivation of the Cu(II)-Fe(III) and Fe(II)-Fe(III) enzymes in the presence of H2O2 were increased by addition of ascorbate. These results suggest involvement of a Fenton-type reaction, generating hydroxyl radicals which react with essential active site groups. Experiments carried out on the Fe(II)-Fe(III) enzyme showed that irreversible inactivation by H2O2 in the presence of ascorbate obeyed pseudo first-order kinetics. A plot of kobs for this reaction against H2O2 concentration (at saturating ascorbate) was hyperbolic, giving kobs(max) = 0.41 +/- 0.025 min-1 and S0.5(H2O2) = 1.16 +/- 0.18 mM. A kinetic scheme is presented to describe the irreversible inactivation, involving hydroxyl radical generation by reaction of H2O2 with Fe(II)-Fe(III) enzyme, reduction of the product Fe(III)-Fe(III) enzyme by ascorbate and reaction of hydroxyl radical with an essential group in the enzyme.  相似文献   

20.
The prokaryotic post-termination ribosomal complex is disassembled by ribosome recycling factor (RRF) and elongation factor G. Because of the structural similarity of RRF and tRNA, we compared the biochemical characteristics of RRF binding to ribosomes with that of tRNA. Unesterified tRNA inhibited the disassembly of the post-termination complex in a competitive manner with RRF, suggesting that RRF binds to the A-site. Approximately one molecule of ribosome-bound RRF was detected after isolation of the RRF-ribosome complex. RRF and unesterified tRNA similarly inhibited the binding of N-acetylphenylalanyl-tRNA to the P-site of non-programmed but not programmed ribosomes. Under the conditions in which unesterified tRNA binds to both the P- and E-sites of non-programmed ribosomes, RRF inhibited 50% of the tRNA binding, suggesting that RRF does not bind to the E-site. The results are consistent with the notion that a single RRF binds to the A- and P-sites in a somewhat analogous manner to the A/P-site bound peptidyl tRNA. The binding of RRF and tRNA to ribosomes was influenced by Mg(2+) and NH(4)(+) ions in a similar manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号