首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The experimental model of D-hypovitaminosis is first obtained on guinea pigs. It is established that the least degree of its manifestation is determined under conditions of the optimal supply of the organism with vitamin C. The necessity of using ascorbic acid in a complex of rachitis prophylaxis measures is substantiated.  相似文献   

2.
The lipid composition and structure of low- and high-density lipoproteins (LDL and HDL) have been studied in children with the vitamin D-deficient rachitis. An increase of the cholesterol content in the atherogenic LDL against a background of its decrease in the antiatherogenic HDL has been revealed, that is analogous to the observed changes under the atherosclerosis development in adults. Due to the studies in the amino acidic composition and determination of the nature and quantity of the charged groups of lipoprotein particles accessible for titration definite, certain disturbance in the structure of lipoproteins are observed as such that may cause disturbances in their functional activity.  相似文献   

3.
Testicular microlithiasis (TMI) is a rare and little known condition. We verified its clinical and pathogenetic characteristics according to our experience. We performed testicular echography on four patients. Three of them had subfertlity and presented oligoasthenospermia in the spermiogram, while one patient had prostatitis with emospermia. Three patients had a high density TMI and one had a low density TMI. None of them showed neoplastic testicular lesions in the first echography. Anamnesis and examination revealed no outstanding data, one had been treated with calcium and Vit.D when a child for rachitis and another reported acute orchyepididymitis in his past history. Oncological markers were negative. 6–18 months follow-up with examination and echography didn’t show any testicular nodules. TMI is easy to diagnose and classify thanks to echography: Isolated TMI (the commonest, of flogistic, vascular or post-traumatic origin) Low-density TMI (<5calcifications per scan) High-density TMI (>5 calcifications per scan). Aetiology, pathogenesis of TMI and its connection to testicular cancer are not yet known. Differential diagnosis trhough echography is possible with both pathological hyperechogenic lesions of testicles (i.e. Tumors, hoematomas, partial atrophy, torsion, calcified hydatid) and non pathological ones (ilum, testicular mediastinum). The structure of the calcifications is constituted by hydroxyapatite which develop on degenerated spermatogones. They measure 1–3mm in diameter and can be found on 30–75% of the seminifer tubules. TMI is typical of patients with subfertility although the connection between this condition and male sterility is not clear. Similarly, TMI can be found in testicles’ tumours although even in this case, the connection between these conditions is not clear. That is why all authors agree in suggesting an echographical check every 6–12 months. Although the above case history can’t be considered significant due to the small number of patients, it is interesting to notice how 3 out of 4 patients had subfertility. Follow-up never showed probable neoplastic lesions. Finally what we also found worthy of notice is the possible connection between past orchyepididymitis and TML and connection between therapy for rachitis and TMI.  相似文献   

4.
Hemorrhagic shock, often a result of traumatic injury, is a condition of reduced perfusion that results in diminished delivery of oxygen to tissues. The disruption in oxygen delivery induced by both ischemia (diminished oxygen delivery) and reperfusion (restoration of oxygen delivery) has profound consequences for cellular metabolism and the maintenance of homeostasis. The pathophysiologic state associated with traumatic injury and hemorrhagic shock was studied with a scale-invariant metabolic network. Urinary metabolic profiles were constructed from NMR spectra of urine samples collected at set timepoints in a porcine model of hemorrhagic shock that included a pulmonary contusion, a liver crush injury, and a 35 % controlled bleed. The network was constructed from these metabolic profiles. A partial least squares discriminant analysis (PLS-DA) model that discriminates by experimental timepoint was also constructed. Comparisons of the network (functional relationships among metabolites) and PLS-DA model (observable relationships to experimental time course) revealed complementary information. First, ischemia/reperfusion injury and evidence of cell death due to hemorrhage was associated with early resuscitation timepoints. Second, evidence of increased protein catabolism and traumatic injury was associated with late resuscitation timepoints. These results are concordant with generally accepted views of the metabolic progression of shock.  相似文献   

5.
Summary In the last ten years the ABO blood groups of our infants have been constantly ascertained and their distribution among some of the more prevalent diseases have been investigated. Other infants and healthy new-borns were used for comparison. The following results have been found:The blood group O is slightly more frequent in sick babies than in healthy new-borns. Among patients, who were under the age of 2 months at the time of admission, there were more with blood group O than among the older children. The blood group A tends to increase among the infants with anemia and with acute respiratory diseases, the blood group O tends to increase among those with staphylococcal infections and rachitis. With the latter the blood group B seems also to be found a little more frequently.Statistics show the increase of the blood group A in anemia in the 3. and 4. months of life and in acute respiratory diseases between the 3. and 12. month of life. The increase of the blood group O in staphylococcal infections is sure only among the youngest patients during their 1. month of life, it is obvious among the older patients, and there mainly among those of masculine sex. The increase of the blood groups O and B among infants with rachitis at the age of 3 to 12 months is almost certain. Premature babies show a sure decrease of the blood group O among both sexes, an increase of the blood group A among feminine, and of the blood group B among masculine patients.  相似文献   

6.
Adult newts placed in an atmospheric environment of 85% oxygen, saturated humidity, and at a temperature of 20 ± 1°C survived particularly well a 44-day test period. They did not succumb to “oxygen toxicity” as has been frequently reported for other vertebrate species. Having established the newt's tolerance of high oxygen atmosphere, the effect of oxygen on growth and development in the regenerating newt limb was investigated. Under the atmospheric conditions described above, and under 92% oxygen, the regeneration of adult newt limbs appeared to be retarded during the first 25 days after amputation when compared with regenerating limbs of control animals kept under a normal atmosphere of 21% oxygen (air). Thereafter, little or no difference could be discerned between the regeneration of experimental and control limbs. It is known that molecular oxygen participates directly in the hydroxylation of proline to hydroxyproline in the synthesis of collagen. Sectioned regenerates stained specifically for collagen were examined to determine if collagen synthesis was induced in experimental animals. Two regeneration-inhibited limbs of oxygenated newts showed cicatrical repair of the apical limb stump 25 days after amputation. However, the majority of the experimental animals revealed no obvious increase in collagen fibers. These results contraindicate any marked “oxygen toxicity” affecting the life of the newts, or regeneration of their limbs. It is suggested that a change in collagen fiber type might have been induced by the high-oxygen atmosphere. Investigations to test this hypothesis are currently underway.  相似文献   

7.
In batch experiments, we studied the isotope fractionation of nitrogen and oxygen during denitrification of two bacterial strains (Azoarcus sp. strain DSM 9056 and Pseudomonas pseudoalcaligenes strain F10). Denitrification experiments were conducted with succinate and toluene as electron donor in three waters with a distinct oxygen isotope composition. Nitrate consumption was observed in all batch experiments. Reaction rates for succinate experiments were more than six times higher than those for toluene experiments. Nitrogen and oxygen isotopes became progressively enriched in the remaining nitrate pool in the course of the experiments; the nitrogen and oxygen isotope fractionation varied between 8.6–16.2 and 4.0–7.3‰, respectively. Within this range, neither electron donors nor the oxygen isotope composition of the medium affected the isotope fractionation process. The experimental results provide evidence that the oxygen isotope fractionation during nitrate reduction is controlled by a kinetic isotope effect which can be quantified using the Rayleigh model. The isotopic examination of nitrite released upon denitrification revealed that nitrogen isotope fractionation largely follows the fractionation of the nitrate pool. However, the oxygen isotope values of nitrite are clearly influenced by a rapid isotope equilibration with the oxygen of the ambient water. Even though this equilibration may in part be due to storage, it shows that under certain natural conditions (re-oxidation of nitrite) the nitrate pool may also be indirectly affected by an isotope equilibration.  相似文献   

8.
The kinetic processes occurring in an electric-discharge oxygen-iodine laser are analyzed with the help of a 2D (r, z) gasdynamic model taking into account transport of excited oxygen, singlet oxygen, and radicals from the electric discharge and their mixing with the iodine-containing gas. The main processes affecting the dynamics of the gas temperature and gain are revealed. The simulation results obtained using the 2D model agree well with the experimental data on the mixture gain. A subsonic oxygen-iodine laser in which singlet oxygen is generated by a 350 W transverse RF discharge excited in an oxygen flow at a pressure P = 10 Torr and the discharge tube wall is covered with mercury oxide is simulated. The simulated mixing system is optimized in terms of the flow rate and the degree of preliminary dissociation of the iodine flow. The optimal regime of continuous operation of a subsonic electric-discharge oxygen-iodine laser is found.  相似文献   

9.
Hypoxia, caused by disrupted vasculature and peripheral vasculopathies, is a key factor that limits dermal wound healing. Factors that can increase oxygen delivery to the regional tissue, such as supplemental oxygen, warmth, and sympathetic blockade, can accelerate healing. Clinical experience with adjunctive hyperbaric oxygen therapy (HBOT) in the treatment of chronic wounds have shown that wound hyperoxia may increase granulation tissue formation and accelerate wound contraction and secondary closure. However, HBOT is not applicable to all wound patients and may pose the risk of oxygen toxicity. Thus, the efficacy of topical oxygen treatment in an experimental setting using the pre-clinical model involving excisional dermal wound in pigs was assessed. Exposure of open dermal wounds to topical oxygen treatment increased tissue pO2 of superficial wound tissue. Repeated treatment accelerated wound closure. Histological studies revealed that the wounds benefited from the treatment. The oxygen treated wounds showed signs of improved angiogenesis and tissue oxygenation. Topically applied pure oxygen has the potential of benefiting some wound types. Further studies testing the potential of topical oxygen in pre-clinical and clinical settings are warranted.  相似文献   

10.
The reaction of nitric oxide synthase (NOS) with oxygen is fast and takes place within several steps, separated by ephemeral intermediates. The use of extreme experimental conditions, such as low temperature and high pressure, associated to rapid kinetic analysis, has proven to be a convenient tool to study this complex reaction. Stopped-flow experiments under high pressure indicated that oxygen binding occurred in more than one step. This was further corroborated by the detection of two short-lived oxy-compounds, differing in their spectral and electronic properties. Oxy-I resembles the ferrous oxygen complex known for cytochrome P450, whereas oxy-II appears to be locked in the superoxide form. Subzero temperature spectroscopy, together with an analytical separation method, revealed that the subsequent one-electron reduction of the oxygen complex is carried out by the NOS cofactor tetrahydrobiopterin (BH4). The low-temperature stabilized oxidation product of BH4 was found to be a protonated BH3 radical. Finally, work in the presence of a BH4 analog indicated that proton transfer to the activated oxygen complex is a second essential function of BH4.  相似文献   

11.
Hematoporphyrin derivative and light in the presence of cysteine or glutathione were found to convert oxygen to superoxide and hydrogen peroxide at pH less than approx. 6.5, while at pH greater than 6.5 no superoxide or hydrogen peroxide production was observed. However, at pH values greater than 6.5 the rate of oxygen consumption increased. This rate paralleled the acid dissociation curve of the cysteine thiol group and is consistent with the chemical quenching of 1O2 by cysteine. The superoxide and hydrogen peroxide formation observed below pH 6.5 appeared not to be related to the singlet oxygen production of hematoporphyrin derivative. In addition, superoxide and hydrogen peroxide production was observed with hematoporphyrin derivative and light in the presence of NADH, both above and below pH 6.5. Direct detection of singlet oxygen luminescence at 1268 nm in the hematoporphyrin derivative-light system (2H2O as solvent) revealed an apparent linear increase in the singlet oxygen emission intensity as the p2H was raised from 7.0 to 10.0. Azide efficiently quenched this observed emission. In addition, at p2H 7.4, 1 mM cysteine resulted in a 40% reduction of the singlet oxygen luminescence, while at p2H 9.4 the signal was quenched by over 95% (under the experimental conditions employed). In total, we interpret these results as consistent with the chemical quenching of 1O2 by the ionized thiol group of cysteine.  相似文献   

12.
Because nitric oxide (NO) reacts with various molecules, such as hemeproteins, superoxide and thiols including glutathione (GSH) and cysteine residues in proteins, biological effects and metabolic fate of this gaseous radical are affected by these reactants. Although the lifetime of NO is short particularly under air atmospheric conditions (where the oxygen tension is unphysiologically high), it increases significantly under physiologically low oxygen concentrations. Because oxygen tensions in human body differ from one tissue to another and change depending on their metabolism, biological activity of NO in various tissues might be affected by local oxygen tensions. To elucidate the role of NO and related radicals in the regulation of circulation and energy metabolism, their effects on arterial resistance and energy metabolism in mitochondria, mammalian cells and enteric bacteria were studied under different oxygen tensions. Kinetic analysis revealed that NO-dependent generation of cGMP in resistance arteries and their relaxation were strongly enhanced by lowering oxygen tensions in the medium. NO reversibly suppressed the respiration and ATP synthesis of isolated mitochondria and intact cells particularly under low oxygen tensions. Kinetic analysis revealed that cross-talk between NO and superoxide generated in and around endothelial cells regulates arterial resistance particularly under physiologically low oxygen tensions. NO also inhibited the respiration and ATP synthesis of E. coli particularly under low oxygen tensions. Because concentrations of NO and H+ in gastric juice are high, most ingested bacteria are effectively killed in the stomach. However, the inhibitory effects of NO on the respiration and ATP synthesis of H. pylori are extremely small. Kinetic analysis revealed that H. pylori generates the superoxide radical thereby inhibiting the bactericidal action of NO in gastric juice. Based on such observations, critical roles of the cross-talk of NO, superoxide and molecular oxygen in the regulation of energy metabolism and survival of aerobic and microaerophilic organisms are discussed.  相似文献   

13.
14.
Because nitric oxide (NO) reacts with various molecules, such as hemeproteins, superoxide and thiols including glutathione (GSH) and cysteine residues in proteins, biological effects and metabolic fate of this gaseous radical are affected by these reactants. Although the lifetime of NO is short particularly under air atmospheric conditions (where the oxygen tension is unphysiologically high), it increases significantly under physiologically low oxygen concentrations. Because oxygen tensions in human body differ from one tissue to another and change depending on their metabolism, biological activity of NO in various tissues might be affected by local oxygen tensions. To elucidate the role of NO and related radicals in the regulation of circulation and energy metabolism, their effects on arterial resistance and energy metabolism in mitochondria, mammalian cells and enteric bacteria were studied under different oxygen tensions. Kinetic analysis revealed that NO-dependent generation of cGMP in resistance arteries and their relaxation were strongly enhanced by lowering oxygen tensions in the medium. NO reversibly suppressed the respiration and ATP synthesis of isolated mitochondria and intact cells particularly under low oxygen tensions. Kinetic analysis revealed that cross-talk between NO and superoxide generated in and around endothelial cells regulates arterial resistance particularly under physiologically low oxygen tensions. NO also inhibited the respiration and ATP synthesis of E. coli particularly under low oxygen tensions. Because concentrations of NO and H+ in gastric juice are high, most ingested bacteria are effectively killed in the stomach. However, the inhibitory effects of NO on the respiration and ATP synthesis of H. pylori are extremely small. Kinetic analysis revealed that H. pylori generates the superoxide radical thereby inhibiting the bactericidal action of NO in gastric juice. Based on such observations, critical roles of the cross-talk of NO, superoxide and molecular oxygen in the regulation of energy metabolism and survival of aerobic and microaerophilic organisms are discussed.  相似文献   

15.
Local nitrification and carbon assimilation activities were studied in situ in a model biofilm to investigate carbon yields and contribution of distinct populations to these activities. Immobilized microcolonies (related to Nitrosomonas europaea/eutropha, Nitrosomonas oligotropha, Nitrospira sp., and to other Bacteria) were incubated with [14C]-bicarbonate under different experimental conditions. Nitrifying activity was measured concomitantly with microsensors (oxygen, ammonium, nitrite, nitrate). Biofilm thin sections were subjected to fluorescence in situ hybridization (FISH), microautoradiography (MAR), and local quantification of [14C]-bicarbonate uptake (beta microimaging). Nitrifying activity and tracer assimilation were restricted to a surface layer of different thickness in the various experiments (substrate or oxygen limitation). Excess oxygen uptake under all conditions revealed heterotrophic activity fuelled by decay or excretion products during active nitrification. Depth limits and intensity of tracer incorporation profiles were in agreement with ammonia-oxidation activity (measured with microsensors), and distribution of incorporated tracer (detected with MAR). Microautoradiography revealed a sharp individual response of distinct populations in terms of in-/activity depending on the (local) environmental conditions within the biofilm. Net in situ carbon yields on N, expressed as e- equivalent ratios, varied between 0.005 and 0.018, and, thus, were in the lower range of data reported for pure cultures of nitrifiers.  相似文献   

16.
Gluconic acid fermentation has been widely used for the analysis of various aspects of kinetics and gas liquid transfer of oxygen. Most of these studies are, however, restricted to processes with bacteria. Mathematical models for industrially important productions with fungi have not been elaborated. In the experimental part of this work computer coupled fermentations of gluconic acid production with Aspergillus niger NRRL 3 have been performed. Knowledge of the stoichiometric relationship in the key reaction (glucose oxidase) provides an excellent opportunity for on-line estimation of glucose, biomass and product gluconate from oxygen uptake and carbon dioxide evolution rates. Starting then from experimental observations on the pH-depending oxygen kinetics of gluconic acid formation and influences of product concentrations on the growth of Aspergillus niger a mathematical framework is developed in which the kinetics of growth and production are coupled with gas liquid oxygen transfer. The model can be successfully applied to simulations of the experimental results of gluconic acid fermentations with cyclic addition of glucose. An important aspect in the coupling of transport and microbial reaction in this model is the incorporation of the influence of sugar and gluconate on the solubility of oxygen and k La via changes of viscosities and molecular diffusivities. With the development of such a comprehensive model, it appears feasible to investigate the influence of various process conditions (sugar feeding, pressure, optimal pH profiles) and to study their possible impacts on the productivity of the overall process.  相似文献   

17.
Bioluminescence imaging assays have become a widely integrated technique to quantify effectiveness of cell-based therapies by monitoring fate and survival of transplanted cells. To date these assays are still largely qualitative and often erroneous due to the complexity and dynamics of local micro-environments (niches) in which the cells reside. Here, we report, using a combined experimental and computational approach, on oxygen that besides being a critical niche component responsible for cellular energy metabolism and cell-fate commitment, also serves a primary role in regulating bioluminescent light kinetics. We demonstrate the potential of an oxygen dependent Michaelis-Menten relation in quantifying intrinsic bioluminescence intensities by resolving cell-associated oxygen gradients from bioluminescent light that is emitted from three-dimensional (3D) cell-seeded hydrogels. Furthermore, the experimental and computational data indicate a strong causal relation of oxygen concentration with emitted bioluminescence intensities. Altogether our approach demonstrates the importance of oxygen to evolve towards quantitative bioluminescence and holds great potential for future microscale measurement of oxygen tension in an easily accessible manner.  相似文献   

18.
The complexes of the estrogen alpha-receptor with estradiol and 8-isoestradiol were comparatively analyzed. The computations of ligand-receptor complexes, carried out using the FLEXX program, allowed us to propose a model for the binding of the analogues of 8-isoestradiol. It was found that rings C and D of estradiol and 8-isoestradiol are similarly arranged in the ligand-binding pocket and coincide upon the superposition of the corresponding ligand-receptor complexes, whereas rings A and B do not coincide. The oxygen functions in position 17 of the estradiol analogues of both series coincide upon superposition, whereas the phenol 3-hydroxyl groups are 0.05 A apart. A comparison of the predicted biological properties of modified estradiol analogues of the natural and 8-isoseries with the available experimental data revealed their similarity. Synthetic 2-acetyl analogues of 8-isoestrogens were found to have no uterotropic activity, which is also consistent with the proposed model.  相似文献   

19.
A computational methodology for accurately predicting flow and oxygen-transport characteristics and performance of an intravenous membrane oxygenator (IMO) device is developed, tested, and validated. This methodology uses extensive numerical simulations of three-dimensional computational models to determine flow-mixing characteristics and oxygen-transfer performance, and analytical models to indirectly validate numerical predictions with experimental data, using both blood and water as working fluids. Direct numerical simulations for IMO stationary and pulsating balloons predict flow field and oxygen transport performance in response to changes in the device length, number of and balloon pulsation frequency. Multifiber models are used to investigate interfiber interference and length effects for a stationary balloon whereas a single fiber model is used to analyze the effect of balloon pulsations on velocity and oxygen concentration fields and to evaluate oxygen transfer rates. An analytical lumped model is developed and validated by comparing its numerical predictions with experimental data. Numerical results demonstrate that oxygen transfer rates for a stationary balloon regime decrease with increasing number of fibers, independent of the fluid type. The oxygen transfer rate ratio obtained with blood and water is approximately two. Balloon pulsations show an effective and enhanced flow mixing, with time-dependent recirculating flows around the fibers regions which induce higher oxygen transfer rates. The mass transfer rates increase approximately 100% and 80%, with water and blood, respectively, compared with stationary balloon operation. Calculations with combinations of frequency, number of fibers, fiber length and diameter, and inlet volumetric flow rates, agree well with the reported experimental results, and provide a solid comparative base for analysis, predictions, and comparisons with numerical and experimental data.  相似文献   

20.
Previous studies have shown that increased oxygen delivery, via increased convection or arterial oxygen content, does not speed the dynamics of oxygen uptake, Vo(2m), in dog muscle electrically stimulated at a submaximal metabolic rate. However, the dynamics of transport and metabolic processes that occur within working muscle in situ is typically unavailable in this experimental setting. To investigate factors affecting Vo(2m) dynamics at contraction onset, we combined dynamic experimental data across working muscle with a mechanistic model of oxygen transport and metabolism in muscle. The model is based on dynamic mass balances for O(2), ATP, and PCr. Model equations account for changes in cellular ATPase, oxidative phosphorylation, and creatine kinase fluxes in skeletal muscle during exercise, and cellular respiration depends on [ADP] and [O(2)]. Model simulations were conducted at different levels of arterial oxygen content and blood flow to quantify the effects of convection and diffusion of oxygen on the regulation of cellular respiration during step transitions from rest to isometric contraction in dog gastrocnemius muscle. Simulations of arteriovenous O(2) differences and (.)Vo(2m) dynamics were successfully compared with experimental data (Grassi B, Gladden LB, Samaja M, Stary CM, Hogan MC. J Appl Physiol 85: 1394-1403, 1998; and Grassi B, Gladden LB, Stary CM, Wagner PD, Hogan MC. J Appl Physiol 85: 1404-1412, 1998), thus demonstrating the validity of the model, as well as its predictive capability. The main findings of this study are: 1) the estimated dynamic response of oxygen utilization at contraction onset in muscle is faster than that of oxygen uptake; and 2) hyperoxia does not accelerate the dynamics of diffusion and consequently muscle oxygen uptake at contraction onset due to the hyperoxia-induced increase in oxygen stores. These in silico derived results cannot be obtained from experimental observations alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号