首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The conversion of [3H]estradiol to 2-hydroxyestradiol (2-OH-E2) by homogenates of porcine ovarian follicles was assayed in vitro in the presence and absence of 10 and 100 microM concentrations of the following potential substrates or inhibitors of estrogen-2/4-hydroxylase (E-2/4-H): (1) estrogens; estrone (E1), estriol (E3) and 17 alpha-estradiol (17 alpha-E2), (2) catecholestrogens; 2-hydroxyestradiol (2-OH-E2), 4-hydroxyestradiol (4-OH-E2) and 2-hydroxyestrone (2-OH-E1); (3) 2-methoxyestradiol (2-MeO-E2); (4) halogenated estrogens; 2-bromoestradiol, (2-Bromo-E2) 4-bromoestradiol and 2,4-dibromoestradiol; (5) androgens; testosterone (T), dihydrotestosterone (DHT) and androstenedione; (6) progesterone; (7) epinephrine; (8) inhibitors of steroid aromatase; aminoglutethimide and 4-hydroxyandrostenedione and (9) SKF 525A, an inhibitor of cytochrome P-450. Progesterone and 2-Bromo-E2 were the two most effective inhibitors (2-OH-E2 formation = 4 and 5% of control at 100 microM and 29.6 and 17.4% at 10 microM of progesterone and 2-Bromo-E2, respectively). 2-MeO-E2 at 100 microM was nearly as effective as progesterone in inhibiting E-2/4-H activity but only caused about 50% inhibition at 10 microM. The three catecholestrogens reduced 2-OH-E2 formation to about the same degree (21-23% of control at 100 microM). The 2,4-dibromo-E2 was equipotent with the catecholestrogens while 4-bromo-E2 was about half as effective. The phenolic estrogens, potential substrates for the enzyme, reduced 2-OH-E2 formation to different degrees, with E3 being the most effective. Among the androgens, DHT was almost as effective an inhibitor as the catecholestrogens, T was about half as effective while androstenedione had no effect. Epinephrine and the two inhibitors of aromatase did not inhibit E-2/4-H activity. SKF 525A inhibited E-2/4-H activity but with a potency only about 1/10th that reported for liver.  相似文献   

2.
The urinary estrogen profile was studied in the midfollicular phase twice, and diet four times during 1 yr in 10 premenopausal breast cancer (BC) patients consuming an omnivorous normal Finnish diet and in two control groups, one consuming an omnivorous (n = 12) and the other a lactovegetarian (n = 11) diet. Total fat intake in relation to caloric intake was almost identical in all three groups. Only with regard to grain fiber intake did the BC patients differ significantly from both other groups. No differences were found between the groups with regard to urinary excretion of 13 individual estrogens and total estrogens, with the exception of 4-hydroxyestrone (4-OH-E1), which was significantly lower (P less than 0.05) in the BC group than in the vegetarians. A high carbohydrate to protein ratio in the diet had a negative correlation with the excretion of 2-hydroxyestrogens and 2-hydroxyesterone (2-OH-E1) to 4-OH-E1 ratio. The BC group had significantly higher urinary 2-OH-E1 to E1 ratio (P less than 0.05) compared to the vegetarians. The 2-OH-E1 to 4-OH-E1 ratio was highest in the BC group (= 7.1) and differed significantly from that of the omnivores (= 4.3; P less than 0.02) and vegetarians (= 3.6; P less than 0.005). This ratio showed a negative correlation with intake of carbohydrates, starch, total and grain fiber. Urinary excretion of 4-OH-E1 correlated positively with total and grain fiber intake and plasma SHBG. Protein intake correlated positively with urinary 2-methoxy-E1 excretion, and retinol intake positively with catechol estrogen, E1 and E2 excretion. It is concluded that estrogen production and urinary estrogen profile in premenopausal breast cancer patients is normal with the exception of a low 4-OH-E1 excretion and high urinary 2-OH-E1 to 4-OH-E1 ratio. This ratio, which seems to depend on diet, is the only urinary estrogen parameter separating premenopausal BC patients from the control omnivorous and lactovegetarian women.  相似文献   

3.
The effect of the position of the phenolic hydroxyl on the conformations of the three A-ring isomers of estradiol, namely, estra-1,3,5(10)-trien-1,17 beta-diol (10), estra-1,3,5(10)-trien-2,17 beta-diol (3), and estra-1,3,5(10)-trien-4,17 beta-diol (6), has been analyzed by X-ray crystallography. The results of these analyses were correlated with the absorptions of the angular methyl groups in the [1H]NMR spectra of these isomers and natural estradiol (E2). It was observed that the changes in chemical shift of protons at C18 corresponded to skeletal modifications in the steroid structure which changed the anisotropic effect of the hydroxyl group at C17. Examination of the affinity of these A-ring isomers of E2 for the estrogen receptor has shown the 2-hydroxylated isomer 3 to retain 1/5th the affinity of E2 for its binding protein. The 1- and 4-hydroxylated derivatives (10 and 6, respectively) bound to a much lesser extent. The receptor affinities of these estrogen analogues may be related to the angle between the 18-methyl and the 17 beta-hydroxyl groups (or the dihedral angle between the planar A-ring and the angular C18 methyl) as well as the position of the A-ring hydroxyl group.  相似文献   

4.
T Tanaka  M Katoh  A Kubodera 《Steroids》1986,48(5-6):361-368
The binding of catechol estrogens (2-hydroxyestrone, 4-hydroxyestrone, 2-hydroxyestradiol, and 4-hydroxyestradiol) to estrogen receptors in 7,12-dimethylbenz(a)anthracene (DMBA)-induced rat mammary tumor cytosols was investigated. Cytosol estrogen receptors exhibited high affinities (Ka = 1.12-1.88 X 10(8) M-1) for all catechol estrogens as well as estradiol. The receptor level of catechol estrogens (46.1-97.5 fmol/mg protein) was 1.6-3.0 times higher than that of estradiol; especially the binding of 4-hydroxyestrone to estrogen receptors was the highest of all catechol estrogens and estradiol. In judging the receptor level of more than 20 fmol/mg protein to be positive, the binding of catechol estrogens to estrogen receptors was approximately correlated with that of estradiol. The positive receptor level of catechol estrogens was found in a half of tumor cytosols which showed the negative receptor level of estradiol. These results suggested that characteristic estrogen receptors indicating high affinities for catechol estrogens might be present in rat mammary tumor cytosols.  相似文献   

5.
The ability of breast cancer tissues from postmenopausal women to form catechol estrogens was examined by using a product isolation assay. Initial assays were carried out in the presence of either: (a) NADPH, the co-factor for monooxygenase mediated catecholestrogen (CE) formation or; (b) light-activated Tween 80 (LAT-80), a putative organic hydroperoxide co-factor for peroxidatic activity. Under monooxygenase conditions, CE formation by homogenates of 10 tumors did not exceed that obtained with heat denatured tissue. In contrast, 17 of 20 tumors incubated with LAT-80 synthesized significant amounts of CE (8.5 +/- 1.17 2-hydroxyestradiol [2-OH-E2] and 12.8 +/- 2.4 nmol/g protein/10 min 4-hydroxyestradiol [4-OH-E2]). Substitution of cumene hydroperoxide, an organic hydroperoxide, for LAT-80 enhanced estrogen 2/4 hydroxylase (E-2/4-H) activity over 200-fold, making it possible to characterize systematically the peroxidatic activity. The properties of peroxidatic E-2/4-H activity were similar to those of soluble peroxidases isolated from brain, including an acidic pH optimum, localization in the soluble fraction, an apparent Km in the range of 80 microM and an apparent Vmax in the range of 4000 nmol/g/protein/10 min for both 2- and 4-OH-E2. Under optimal assay conditions, peroxidatic E-2/4-H activity was identified in 10 of 13 tumors (2480 +/- 580 nmol/g protein/10 min for 2-OH-E2 and 2790 +/- 600 for 4-OH-E2). The level of activity detected suggests a biological relevance for CE formation by breast cancer tissue.  相似文献   

6.
The binding of catechol estrogens, epoxyenones and methoxyestrogens was evaluated using estrogen receptors in cytosol prepared from human breast cancers. The relative affinity of 2-hydroxyestradiol, a metabolite formed in vitro from estradiol-17 beta by breast cancer cells, was indistinguishable from that of estradiol-17 beta. 4-Hydroxyestradiol, which is also a metabolite of estradiol-17 beta, associated with the estrogen receptor with a relative affinity approximately 1.5-fold greater than that of estradiol-17 beta. Epoxyenones and methoxyestrogens were weak competitors compared to the binding of estradiol-17 beta, exhibiting relative affinities 3% or less than the affinity of estradiol-17 beta. Sucrose density gradient centrifugation revealed that both 2- and 4-hydroxyestradiol inhibited the binding of estradiol-17 beta to both the 4S and 8S isoforms of the estrogen receptor in a competitive manner, with a Ki = 0.94 nM for 2-hydroxyestradiol and a Ki = 0.48 nM for 4-hydroxyestradiol. It can be concluded that these data demonstrate a specific receptor-mediated estrogenic action for both of these catechol estrogens.  相似文献   

7.
Catecholestrogens are MCF-7 cell estrogen receptor agonists   总被引:4,自引:0,他引:4  
Catecholestrogens are important metabolites of estradiol and estrone in the human. Considerable interest has focused on the catecholestrogens 2-hydroxy- and 4-hydroxyestradiol since they bind to the estrogen receptor with an affinity in the range of estradiol. Using the MCF-7 cell line, we analysed the capacity of purified catecholestrogens to transform the estrogen receptor into its high affinity nuclear binding form and to effect receptor-dependent processes such as proliferation and expression of the progesterone receptor (PR). Incubations with 2-hydroxy- and 4-hydroxyestradiol at 10−8 M for 1 h resulted in tight nuclear binding of the estrogen receptor. During treatment of the cells with catecholestrogens we obtained a marked increase in proliferation rate of 36 and 76% for 2-hydroxy- and 4-hydroxyestradiol, respectively, relative to the inductive effect of estradiol (100%). The PR level, was slightly increased by treatment with 2-hydroxyestradiol (10%), whereas treatment with 4-hydroxyestradiol increased the PR level at 28%, compared to estradiol (100%). Form these results we conclude that the 2- and 4-hydroxylated derivatives of estradiol are active hormones and are able to initiate estrogen receptor mediated processes in MCF-7 cells.  相似文献   

8.
The pig conceptus and endometrium possess the ability to convert estrogens into catecholestrogens and catecholestrogens into methoxyestrogens. Experiments were carried out to evaluate the effect of catecholestrogens, methoxyestrogens and progesterone on the secretion of prostaglandin (PG) E and F2 alpha by porcine endometrial glandular and stromal cells in vitro. Both 2-hydroxyestradiol (2-OH-E2, 0-20 microM) and 4-hydroxyestradiol (4-OH-E2, 0-20 microM) increased (P less than .05) PGE and PGF2 alpha secretion by stromal cells in a dose response manner. Two-hydroxyestradiol tended (P less than .1) to decrease PGF2 alpha production by glandular cells. Two-methoxyestradiol (20 microM) suppressed (P less than .05) PGF2 alpha secretion by glandular and stromal cells. Four-methoxyestradiol (20 microM) stimulated (P less than .05) PGE production and PGE:PGF2 alpha ratio. Progesterone (.1 microM) suppressed (P less than .05) PG secretion in both cell types. We conclude that catecholestrogens, methoxyestrogens, and progesterone may participate in the establishment of pregnancy by modulating PG production in the endometrium.  相似文献   

9.
Estrogens play a crucial role in the development and evolution of human breast cancer. However, it is still unclear whether estrogens are carcinogenic to the human breast. There are three mechanisms that have been considered to be responsible for the carcinogenicity of estrogens: receptor-mediated hormonal activity, a cytochrome P450 (CYP)-mediated metabolic activation, which elicits direct genotoxic effects by increasing mutation rates, and the induction of aneuploidy by estrogen. To fully demonstrate that estrogens are carcinogenic in the human breast through one or more of the mechanisms explained above it will require an experimental system in which, estrogens by itself or one of the metabolites would induce transformation phenotypes indicative of neoplasia in HBEC in vitro and also induce genomic alterations similar to those observed in spontaneous malignancies. In order to mimic the intermittent exposure of HBEC to endogenous estrogens, MCF-10F cells that are ERalpha negative and ERbeta positive were first treated with 0, 0.007, 70 nM and 1 microM of 17beta-estradiol (E(2)), diethylstilbestrol (DES), benz(a)pyrene (BP), progesterone (P), 2-OH-E(2), 4-hydoxy estradiol (4-OH-E(2)) and 16-alpha-OH-E(2) at 72 h and 120 h post-plating. Treatment of HBEC with physiological doses of E(2), 2-OH-E(2), 4-OH-E(2) induce anchorage independent growth, colony formation in agar methocel, and reduced ductulogenic capacity in collagen gel, all phenotypes whose expression are indicative of neoplastic transformation, and that are induced by BP under the same culture conditions. The presence of ERbeta is the pathway used by E(2) to induce colony formation in agar methocel and loss of ductulogenic in collagen gel. This is supported by the fact that either tamoxifen or the pure antiestrogen ICI-182,780 (ICI) abrogated these phenotypes. However, the invasion phenotype, an important marker of tumorigenesis is not modified when the cells are treated in presence of tamoxifen or ICI, suggesting that other pathways may be involved. Although we cannot rule out the possibility, that 4-OH-E(2) may interact with other receptors still not identified, with the data presently available the direct effect of 4-OH-E(2) support the concept that metabolic activation of estrogens mediated by various cytochrome P450 complexes, generating through this pathway reactive intermediates that elicit direct genotoxic effects leading to transformation. This assumption was confirmed when we found that all the transformation phenotypes induced by 4-OH-E(2) were not abrogated when this compound was used in presence of the pure antiestrogen ICI. The novelty of these observations lies in the role of ERbeta in transformation and that this pathway can successfully bypassed by the estrogen metabolite 4-OH-E(2). Genomic DNA was analyzed for the detection of micro-satellite DNA polymorphism using 64 markers covering chromosomes (chr) 3, 11, 13 and 17. We have detected loss of heterozygosity (LOH) in ch13q12.2-12.3 (D13S893) and in ch17q21.1 (D17S800) in E(2), 2-OH-E(2), 4-OH-E(2), E(2) + ICI, E(2) + tamoxifen and BP-treated cells. LOH in ch17q21.1-21.2 (D17S806) was also observed in E(2), 4-OH-E(2), E(2)+ICI, E(2)+tamoxifen and BP-treated cells. MCF-10F cells treated with P or P+E(2) did not show LOH in the any of the markers studied. LOH was strongly associated with the invasion phenotype. Altogether our data indicate that E(2) and its metabolites induce in HBEC LOH in loci of chromosomes 13 and 17, that has been reported in primary breast cancer, that the changes are similar to those induced by the chemical carcinogen (BP) and that the genomic changes were not abrogated by antiestrogens.  相似文献   

10.
The single crystals of coordinated complexes of neutral erythritol (C4H10O4) with zinc nitrate and europium nitrate were synthesized and studied using FT-IR and single crystal X-ray diffraction analysis. In the structure of Zn(NO3)2.C4H10O4, ZnEN (E denotes erythritol, N represents nitrate), Zn2+ is coordinated to four hydroxyl groups from two erythritol molecules and two oxygen atoms from two nitrates. Two Zn2+ are connected by one erythritol molecule to form Zn(C4H10O4)(NO3)2 chain, and layers formed by above chain pile to produce 3D structures. In the structure of Eu(NO3)3.C4H10O4.C2H5OH, EuEN, Eu3+ is 10-coordinated by six oxygen atoms from three nitrate ions, three hydroxyl groups from one erythritol molecule and one hydroxyl group from ethanol. In the above erythritol complexes, two hydroxyl groups of erythritol coordinate to one metal ion and the other two to another metal ion or erythritol acts as three-hydroxyl groups donor. The OH groups of erythritol act as ligand to coordinate to metal ions on one hand, one the other hand, OH groups form hydrogen bonds network to build three-dimensional structures.  相似文献   

11.
Release of 3H2O from regiospecifically labeled estradiol was measured during 2-hydroxylation of this estrogen by rat liver microsomes. The amount of tritium remaining in the isolated catechol estrogen was also determined. Virtually all the tritium was removed from C-2 during the reaction confirming the absence of an NIH shift. About 20% of the tritium at C-1 was also lost without any such change occurring at C-4 or C-6,7 of the steroid molecule. These findings provide evidence for the formation of an arene oxide or o-semiquinone intermediate during the conversion of estradiol to 2-hydroxyestradiol. No indication of adduct formation at either C-1 or C-4 during this biotransformation was obtained although the 2-hydroxylated product was able to react with a nucleophile such as glutathione. The different regiospecificity of tritium loss in the generation of catechol estrogens and in their subsequent reaction leads to the important conclusion that the reactive intermediates in the two processes must be different. The possible role of catechol estrogens in neoplastic transformation is discussed.  相似文献   

12.
Catecholestrogens are estrogen metabolites formed by hydroxylation of 17beta-estradiol and estrone at either the C-2 or C-4 position, rivaling the parent estrogens in concentration. The objective of the present work was to assess if their catechol group could make them induce proliferation of human breast cancer cells via alpha(2)-adrenoceptors. In competition studies in human breast cancer MCF-7 cells, high concentrations of 2-hydroxy-estradiol (2-OH-E(2)), 2-hydroxy-estrone (2-OH-E(1)) and 4-hydroxy-estrone (4-OH-E(1)) competed for [(3)H]-rauwolscine binding, whereas 4-hydroxy-estradiol (4-OH-E(2)) did not. The contribution of alpha(2)-adrenoceptors and estrogen receptors (ERs) in proliferation enhancement was analyzed with specific antagonists. The specific alpha(2)-adrenergic antagonist yohimbine partially reversed the effect of catecholestrogens except 4-OH-E(2). The selective ER downregulator ICI-182780 or fulvestrant partially or totally reversed the effect of all hydroxylated catecholestrogens. When analyzing the effect of the combination of both antagonists in MCF-7, the contribution of the alpha(2)-adrenoceptors and ERs for 2-OH-E(2), 2-OH-E(1) and 4-OH-E(1) was mixed, whereas for 4-OH-E(2), the only receptor implied was an ER. In MDA-MB-231 cells (ER-alpha negative) the proliferation stimulation by these three catecholestrogens and reversal by the adrenergic antagonist was also observed. It can be concluded that alpha(2)-adrenoceptors contribute at least in part to the mitogenic effect of 2-OH-E(2), 2-OH-E(1) and 4-OH-E(1).  相似文献   

13.
Natural estrogens have much greater radical-scavenging antioxidant activity than has previously been demonstrated, with activities up to 2.5 times those of vitamin C and vitamin E. The biological significance of this finding remains to be elucidated. In this work the antioxidant activity of a range of estrogens (phenolic, catecholic and stilbene-derived) has been studied. The activity of these substances as hydrogen-donating scavengers of free radicals in an aqueous solution has been determined by monitoring their relative abilities to quench the chromogenic radical cation 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS*+). The results show that the order of reactivity in scavenging this radical in the aqueous phase is dependent on the precise estrogenic structure, with phenolic estrogens being more potent antioxidants than catecholestrogens or diethylstilbestrol. The ability of the same estrogens to scavenge lipid phase radicals has also been assessed, determined by the ex vivo enhancement of the resistance of low-density lipoprotein (LDL) to oxidation; the order of efficacy is different from that in the aqueous phase, with the phenolic estrogens estriol, estrone and 17beta-estradiol being less potent than 2-hydroxyestradiol, 4-hydroxyestradiol, or diethylstilbestrol. In this lipid-based system, phenolic estrogens were found to be unable to regenerate alpha-tocopherol from LDL subjected to oxidative stress, while at the same time 2- and 4-hydroxyestradiol significantly delayed alpha-tocopherol loss. These results indicate that the various estrogens are good scavengers of free radicals generated in both the aqueous and the lipophilic phases. The antioxidant activity of an estrogen depends not only on the hydrophilic or lipophilic nature of the scavenged radical, but also on the phenol and catechol structures of the estrogen compound.  相似文献   

14.
Abstract: The affinity of a series of catecholestrogens for 7S cytoplasmic receptor proteins from hypothalamus and pituitary gland of ovariectomised rats was assessed in vitro by a competitive charcoal binding assay at 4°C. The equilibrium dissociation constants ( K i) of catecholestrogens 4-hydroxyestradiol, 4-hydroxyethynylestradiol, 2-hydroxyestradiol, 2-hydroxyethynylestradiol, and 4-hydroxyestrone were of the same order ( K i 0.3–0.6 n m ) as those of estradiol and ethynylestradiol ( K i: 0.1 n m ). Methylation of 2-hydroxyestradiol led to a substantial loss of binding affinity. Tritium-labelled receptor complexes were demonstrated in KCl extracts of purified nuclei from pituitary and hypothalamic tissue 1 h after intravenous injection of 0.1 mCi tritiated 2- or 4-hydroxyestradiol. These macromolecular complexes sedimented in the 5-6S region of 5–20% (w/v) sucrose gradients containing 0.4 m -KCl. Further evidence for the translocation of estrogen receptors by catecholestrogens into the nuclei of rat pituitary and hypothalamus was the increase in nuclear receptor concentrations, measured by exchange assay, 1 h after the intraperitoneal injection of 0.1 mg unlabelled catecholestrogen. Administration of 4-hydroxyestradiol and 4-hydroxyethynylestradiol increased nuclear receptor concentrations to the same maximal levels as those following application of the same dose of estradiol or ethynylestradiol, whereas the respective 2-hydroxylated compounds exhibited only 60–70% of the maximal translocating capacity. The in vivo translocating capacities of the various catecholestrogens tested at this dose correlated well with their binding affinities for cytosol receptors determined in vitro.  相似文献   

15.
Kiuru PS  Wähälä K 《Steroids》2003,68(4):373-375
The estrogen metabolite 2-methoxyestradiol was synthesized from estradiol bis-THP-ether which was 2-hydroxylated using the superbase LIDAKOR, trimethyl borate, and H(2)O(2), then methylated and deprotected to obtain 2-methoxyestradiol in three steps and 61% yield. 2-Hydroxyestradiol was obtained by deprotecting the 2-hydroxyestradiol bis-THP-ether from the first step.  相似文献   

16.
Abstract— The hydroxylation of estrone and estradiol at C2 to their respective catechol estrogens has been demonstrated by others with in vitro preparations from rat hypothalamic tissue. The subsequent methylation of these catechol estrogens by catechol- O -methyltransferase (COMT) in rat brain extracts has also been observed. Therefore, in specific sites in brain, 2-hydroxylation of estrogens could play a significant role in the regulation of catecholamine metabolism. To evaluate the potential physiological significance of these interactions, we studied cultured murine neuroblastoma cells where the effect of 2-hydroxyestradiol on COMT activity could be investigated in living cells and in cell homogenates. The addition of 2-hydroxyestradiol to the cultures caused a specific dose-dependent reduction in the formation of methylated products from the catecholamine, dopamine. The properties of COMT activity in the cell homogenates were examined and optimized with respect to the substrate, pH, concentrations of Mg2+, and the co-factor, S -adenosylmethionine. The catechol substrate. 3, 4-dihydroxybenzoic acid, and 2-hydroxyestradiol were both methylated by the cell homogenates. Inhibitor studies confirmed that both methylations were due to COMT. Furthermore, the catechol estrogen inhibited catechol methylation competitively at micromolar levels. These findings are consistent with the hypothesis that catechol estrogens are endogenous modulators of catecholamine metabolism.  相似文献   

17.
P H Jellinck  J Fishman 《Biochemistry》1988,27(16):6111-6116
Estradiol and 2-hydroxyestradiol labeled with 3H at different positions in rings A or B were incubated with male rat liver microsomes, and their oxidative transformation was followed by the transfer of 3H into 3H2O. 14C-labeled estrogen or catechol estrogen was used to determine the fraction that becomes bound covalently to microsomal protein. The further metabolism of 2-hydroxyestradiol involves activation of the steroid at C-4 and, to a much lesser extent at C-1, by a cytochrome P-450 mediated reaction as indicated by the effects of NADPH, spermine, SKF-525A, and CO in the microsomal system. Glutathione promoted the loss of 3H from C-4 of either estradiol or 2-hydroxyestradiol but had less effect on this reaction at C-1 and inhibited it at C-6,7. It also abolished the irreversible binding of 14C-labeled estradiol and 2-hydroxyestradiol to microsomal protein. NADPH was needed specifically for glutathione to exert its effect both on the transfer of 3H into 3H2O and on the formation of water-soluble products from catechol estrogen by rat liver microsomes. It could not be replaced by NADP, NAD, or NADH. Ascorbic acid inhibited these enzymatic reactions but did not affect significantly the initial 2-hydroxylation of estradiol. Evidence is also provided for the further hydroxylation of 2-hydroxyestradiol at C-6 (or C-7). These results indicate that cytochrome P-450 activates catechol estrogens by an electron abstraction process.  相似文献   

18.
IR spectra (1600-1800 and 3000-3650 cm-1) of lincomycin base solutions in inert (CCl4 and C2Cl4), proton acceptor (dioxane, dimethylsulfoxide and triethyl amine) and proton donor (CHCl3, CD3OD and D2O) solvents were studied. Analysis of the concentration and temperature changes in the spectra revealed that association in lincomycin in the inert solvents was due to intramolecular hydrogen linkage involving amide and hydroxyl groups. Disintegration of the associates after the solution dilution and temperature rise was accompanied by formation of intramolecular bonds stabilizing the stable conformation structure of the lincomycin molecule. The following hydrogen linkage in the conformation was realized: NH...N (band v NH...N at 3340 cm-1), OH...O involving the hydroxyl at C-7 and O atoms in the D-galactose ring (band v OH...O at 3548 cm-1), a chain of the hydrogen bonds OH...OH...OH in the lincomycin carbohydrate moiety (band v OH...O at 3593 cm-1 and v OH of the end hydroxyl group at 3625 cm-1). Bonds NH and C-O of the amide group were located in transconformation. Group C-O did not participate in the intramolecular hydrogen linkage.  相似文献   

19.
Recently, two types of estrogen sulfotransferase, chronologically named types 1 and 2 estrogen sulfotransferase (hEST1 and hEST2), have been described. Since hEST2 selectively catalyzes the sulfonation of ethinyl estradiol as well as that of estrone (E1) and estradiol (E2), but poorly the sulfonation of catecholestrogens, we wanted to assess the ability of hEST1 to metabolize these compounds. We overexpressed hEST1 in Escherichia coli in fusion with GST, then purified the enzyme using a glutathione affinity column, and obtained GST-free enzyme by digestion with thrombin. Using [35S]-phosphosadenosine phosphosulfate (PAPS) as cofactor, we showed that hEST1 efficiently metabolizes the transformation of 2-OH-E2 and 2-OH-E1. However, the transformation of 4-OH-E1 and 4-OH-E2 is much less efficient. Our results also show that hEST1 metabolizes more efficiently E2 than E1. Since hEST1 mRNA is produced from the same gene as MPST using different alternative promoters and since it is expressed in most breast cancer cells (MCF-7, ZR-75-1, T47-D, MDA-231, and MDA-418), studies of the expression and activity of hEST1 will be most important to have a better knowledge about its involvement in the control of the genotoxicity of estrogens and catecholestrogens.  相似文献   

20.
Previously we have shown that 2-hydroxyestradiol (2-OH-E2) synergizes with catecholamines to enhance progesterone production by porcine granulosa cells in vitro. The present studies were undertaken to determine if the synergistic effects of 2-OH-E2 and catecholamines were 1) modulated by gonadotropins, 2) unique to catecholamines, and 3) mediated by cyclic adenosine monophosphate (cAMP). Undifferentiated granulosa cells from 1- to 3-mm porcine follicles were cultured in serum-free medium for periods of 6-9 days. A 3-day pretreatment plus a 4-day cotreatment versus a 4-day cotreatment of granulosa cell cultures with follicle-stimulating hormone (FSH) did not significantly alter progesterone production stimulated by a saturating concentration of epinephrine (EPI; 2 micrograms/ml) but significantly reduced the effect of 4 micrograms/ml 2-OH-E2 on Day 7 of culture. Four-day cotreatment of either FSH or luteinizing hormone (LH) from Day 3 to 7 of culture dramatically enhanced progesterone production stimulated by 2-OH-E2 and estradiol (E2) but not by EPI when measured on Day 7 of culture. Progesterone production (expressed as "-fold of controls") stimulated by 4-day treatment of EPI, 2-OH-E2, or EPI-plus-2-OH-E2 was 1.4 +/- 0.2, 8.2 +/- 2.2, and 10.7 +/- 1.0, respectively, in the presence of LH (n = 5 experiments), and 1.9 +/- 0.1, 7.8 +/- 1.4, and 10.6 +/- 1.8, respectively, in the presence of FSH (n = 3 experiments). Similar to E2, 2-OH-E2 significantly enhanced the stimulating effect of the cAMP analog 8-bromo-cAMP (0.5 mM) on progesterone production.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号