首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to determine the effectiveness of different organic acids (maleic, succinic, and oxalic acid) on enzymatic hydrolysis and fermentation yields of wheat straw. It was also aimed to optimize the process conditions (temperature, acid concentration, and pretreatment time) by using response surface methodology (RSM). In line with this objective, the wheat straw samples were pretreated at three different temperatures (170, 190, and 210°C), acid concentrations (1%, 3%, and 5%) and pretreatment time (10, 20, and 30 min). The findings show that at extreme pretreatment conditions, xylose was solubilized in liquid phase, causing an increase in cellulose and lignin content of biomass. Enzymatic hydrolysis experiments revealed that maleic and oxalic acids were quite effective at achieving high sugar yields (>90%) from wheat straw. In contrast, the highest sugar yields were 50–60%, when the samples were pretreated with succinic acid, indicating that succinic acid was not as effective. The optimum process conditions for maleic acid were, 210°C, 1.08% acid concentration, and 19.8 min; for succinic acid 210°C, 5% acid concentration, and 30 min; for oxalic acid 210°C, 3.6% acid concentration, and 16.3 min. The ethanol yields obtained at optimum conditions were 80, 79, and 59% for maleic, oxalic and succinic acid, respectively. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1487–1493, 2016  相似文献   

2.
Abstract

Mild alkaline pretreatment was evaluated as a strategy for effective lignin removal and hydrolysis of rice straw. The pretreatment efficiency of different NaOH concentrations (0.5, 1.0, 1.5 or 2.0% w/w) was assessed. Rice straw (RS) pretreated with 1.5% NaOH achieved better sugar yield compared to other concentrations used. A cellulose conversion efficiency of 91% (45.84?mg/ml glucose release) was attained from 1.5% NaOH pretreated rice straw (PRS), whereas 1% NaOH pretreated rice straw yielded 35.10?mg/ml of glucose corresponding to a cellulose conversion efficiency of 73.81%. The ethanol production from 1% and 1.5% NaOH pretreated RS hydrolysates was similar at ~3.3% (w/v), corresponding to a fermentation efficiency of 86%. The non-detoxified hydrolysate was fermented using the novel yeast strain Saccharomyces cerevisiae RPP-03O without any additional supplementation of nutrients.  相似文献   

3.
Briquetting of plant biomass with low bulk density is an advantage for handling, transport, and storage of the material, and heating of the biomass prior to the briquetting facilitates the densification process and improves the physical properties of the briquettes. This study investigates the effects of preheating prior to briquetting of wheat straw (WS) on subsequent hydrothermal pretreatment and enzymatic conversion to fermentable sugars. WS (11% moisture content) was densified to briquettes under different conditions; without preheating or with preheating at 75 or 125°C for either 5 or 10 min. Subsequent hydrothermal pretreatment was done for both un-briquetted WS and for briquettes. Enzymatic saccharification was afterwards performed for all samples. The results showed that as expected, nonpretreated WS briquettes gave very low sugar yields (22–29% of the cellulose content), even though preheating at 125°C prior to briquetting (without pretreatment) improved sugar yields somewhat. When combined with pretreatment, briquetting with preheating showed neutral or negative effects on sugar yield. This result suggests that moderate preheating (75°C for 5 min) before briquetting improved bulk density and compressive resistance of briquettes without impeding subsequent enzymatic conversion. However, excessive preheating (75 or 125°C for 10 min) before briquetting may result in irreversible structural modifications that hinder the interaction between biomass and water during pretreatment, thereby decreasing the accessibility of cellulose to enzymatic saccharification.  相似文献   

4.
采用H2 SO4催化和自催化乙醇法对麦秆进行预处理,比较预处理后麦秆的主要化学组成、纤维素酶解性能和半同步糖化发酵生产乙醇特性,并进行物料衡算。结果表明:H2 SO4催化和自催化乙醇预处理过程中纤维素固体回收率大于90%。添加非离子表面活性剂吐温20和吐温80没有显著提高H2 SO4催化乙醇预处理后纤维素的酶解葡萄糖得率及半同步糖化发酵过程中乙醇的产量,而对自催化乙醇处理后麦秆的酶解和半同步糖化发酵过程有一定程度的促进作用,相应的酶解葡聚糖转化率由72.7%提高到85.0%,而半同步糖化发酵过程中乙醇质量浓度提高了11.4%。物料衡算结果表明:酸催化和自催化乙醇预处理后葡聚糖回收率分别为91.0%和95.4%;半同步糖化发酵生产乙醇的得率分别为10.4和11.6 g(按100 g原料计)。  相似文献   

5.
Wan C  Zhou Y  Li Y 《Bioresource technology》2011,102(10):6254-6259
Soybean straw was pretreated with either liquid hot water (LHW) (170-210 °C for 3-10 min) or alkaline soaking (4-40 g NaOH/100 g dry straw) at room temperature to evaluate the effects on cellulose digestibility. Nearly 100% cellulose was recovered in pretreated solids for both pretreatment methods. For LHW pretreatment, xylan dissolution from the raw material increased with pretreatment temperature and time. Cellulose digestibility was correlated with xylan dissolution. A maximal glucose yield of 70.76%, corresponding to 80% xylan removal, was obtained with soybean straw pretreated at 210 °C for 10 min. NaOH soaking at ambient conditions removed xylan up to 46.37% and the subsequent glucose yield of pretreated solids reached up to 64.55%. Our results indicated LHW pretreatment was more effective than NaOH soaking for improving cellulose digestibility of soybean straw.  相似文献   

6.
Rice straw has recently attracted interest in Japan as a potential source of raw material for ethanol production. Wet disk milling, a continuous pretreatment to enhance the enzymatic digestibility of rice straw, was compared with conventional ball milling and hot-compressed water treatment. Pretreated rice straw was evaluated by enzymatic hydrolysis using Acremonium cellulase and characterized by X-ray diffraction and scanning electron microscopy. Glucose and xylose yields by wet disk milling, ball milling, and hot-compressed water treatment were 78.5% and 41.5%, 89.4% and 54.3%, and 70.3% and 88.6%, respectively. Wet disk milling and hot-compressed water treatment increased sugar yields without decreasing their crystallinity. The feature size of the wet disk milled rice straw was similar to that of hot-compressed water-treated rice straw. The energy consumption of wet disk milling was lower than that of other pretreatments. Thus, wet disk milling is an economical, practical pretreatment for the enzymatic hydrolysis of lignocellulosic biomass, especially herbaceous biomass such as rice straw.  相似文献   

7.
Biomethanation of rice and wheat straw   总被引:3,自引:0,他引:3  
When rice or wheat straw was added to cattle dung slurry and digested anaerobically, daily gas production increased from 176 to 331 l/kg total solids with 100% rice straw and to 194 l/kg total solids with 40% wheat straw. Not only was methane production enhanced by adding chopped crop residues but a greater biodegradability of organic matter in the straws was achieved.The authors are with the Microbiology and Molecular Genetics Unit, Tata Energy Research Institute, 158 Jor Bagh, New Delhi 110 003, India  相似文献   

8.
Alkaline hydrogen peroxide (AHP) has several attractive features as a pretreatment in the lignocellulosic biomass‐to‐ethanol pipeline. Here, the feasibility of scaling‐up the AHP process and integrating it with enzymatic hydrolysis and fermentation was studied. Corn stover (1 kg) was subjected to AHP pretreatment, hydrolyzed enzymatically, and the resulting sugars fermented to ethanol. The AHP pretreatment was performed at 0.125 g H2O2/g biomass, 22°C, and atmospheric pressure for 48 h with periodic pH readjustment. The enzymatic hydrolysis was performed in the same reactor following pH neutralization of the biomass slurry and without washing. After 48 h, glucose and xylose yields were 75% and 71% of the theoretical maximum. Sterility was maintained during pretreatment and enzymatic hydrolysis without the use of antibiotics. During fermentation using a glucose‐ and xylose‐utilizing strain of Saccharomyces cerevisiae, all of the Glc and 67% of the Xyl were consumed in 120 h. The final ethanol titer was 13.7 g/L. Treatment of the enzymatic hydrolysate with activated carbon prior to fermentation had little effect on Glc fermentation but markedly improved utilization of Xyl, presumably due to the removal of soluble aromatic inhibitors. The results indicate that AHP is readily scalable and can be integrated with enzyme hydrolysis and fermentation. Compared to other leading pretreatments for lignocellulosic biomass, AHP has potential advantages with regard to capital costs, process simplicity, feedstock handling, and compatibility with enzymatic deconstruction and fermentation. Biotechnol. Bioeng. 2012; 109:922–931. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
稻草秸秆预处理方法对烟曲霉产纤维素酶的影响   总被引:1,自引:0,他引:1  
采用机械粉碎、高温、酸碱处理等方法对稻草秸秆进行预处理,以烟曲霉为实验菌株,研究预处理方法对菌株产纤维素酶的影响。结果表明,取机械粉碎后的稻草(30~120目)进行121℃高压蒸汽处理20min(即灭菌处理),有利于菌株的生长与纤维素酶的产生;与未粉碎的稻草秸秆相比,烟曲霉羧甲基纤维素钠(CMC)酶、微晶纤维素酶、β-葡萄糖苷酶和滤纸(FPA)酶的活力分别提高了63.2%、164.0%、10.2%和14.1%。而采用不同种类、不同浓度的酸碱常温处理稻草秸秆4d或100℃高温处理30min,纤维素酶活力均出现了不同程度的下降。  相似文献   

10.
Wheat straw consists of 48.57 ± 0.30% cellulose and 27.70 ± 0.12% hemicellulose on dry solid (DS) basis and has the potential to serve as a low cost feedstock for production of ethanol. Dilute acid pretreatment at varied temperature and enzymatic saccharification were evaluated for conversion of wheat straw cellulose and hemicellulose to monomeric sugars. The maximum yield of monomeric sugars from wheat straw (7.83%, w/v, DS) by dilute H2SO4 (0.75%, v/v) pretreatment and enzymatic saccharification (45 °C, pH 5.0, 72 h) using cellulase, β-glucosidase, xylanase and esterase was 565 ± 10 mg/g. Under this condition, no measurable quantities of furfural and hydroxymethyl furfural were produced. The yield of ethanol (per litre) from acid pretreated enzyme saccharified wheat straw (78.3 g) hydrolyzate by recombinant Escherichia coli strain FBR5 was 19 ± 1 g with a yield of 0.24 g/g DS. Detoxification of the acid and enzyme treated wheat straw hydrolyzate by overliming reduced the fermentation time from 118 to 39 h in the case of separate hydrolysis and fermentation (35 °C, pH 6.5), and increased the ethanol yield from 13 ± 2 to 17 ± 0 g/l and decreased the fermentation time from 136 to 112 h in the case of simultaneous saccharification and fermentation (35 °C, pH 6.0).  相似文献   

11.
Combining biological pretreatment with thermal processing may offer an alternative strategy for efficient conversion of lignocellulosic biomass into fuels and chemicals. The thermal decomposition kinetics of biologically pretreated wheat straw by Phanerochaete chrysosporium was investigated in this study using thermogravimetry (TG) - deconvoluted thermogravimetry (DTG) techniques and the Friedman method. This study revealed that biological pretreatment reduced the thermal degradation temperature of the biomass significantly. Relying on the thermal behavior of the biologically pretreated wheat straw, we proposed two biomass degradation phases during the biological degradation of wheat straw. The first phase of biodegradation (within 10 days of biological pretreatment) improved the efficiency of pyrolysis by reducing the temperature demand. In the second phase (after 10 days), although the efficiency of pyrolysis displayed the similar trend as the first phase, it showed a significant increase in activation energy demand. This process is greatly influenced by the residual lignin and cellulose ratios in the biomass. These experimental results will be useful in developing a biological pretreatment based thermochemical conversion process for lignocellulosic biomass.  相似文献   

12.
Wi SG  Chung BY  Lee YG  Yang DJ  Bae HJ 《Bioresource technology》2011,102(10):5788-5793
The objective of this study was to find a pretreatment process that enhances enzymatic conversion of biomass to sugars. Rapeseed straw was pretreated by two processes: a wet process involving wet milling plus a popping treatment, and a dry process involving popping plus dry milling. The effects of the pretreatments were studied both in terms of structural and compositional changes and change in susceptibility to enzymatic hydrolysis. After application of the wet and dry processes, the amounts of cellulose and xylose in the straw were 37-38% and 14-15%, respectively, compared to 31% and 12% in untreated counterparts. In enzymatic hydrolysis performance, the wet process presented the best glucose yield, with a 93.1% conversion, while the dry process yielded 69.6%, and the un-pretreated process yielded <20%. Electron microscopic studies of the straw also showed a relative increase in susceptibility to enzymatic hydrolysis with pretreatment.  相似文献   

13.
Alkaline pretreatment of spruce at low temperature in both presence and absence of urea was studied. It was found that the enzymatic hydrolysis rate and efficiency can be significantly improved by the pretreatment. At low temperature, the pretreatment chemicals, either NaOH alone or NaOH-urea mixture solution, can slightly remove lignin, hemicelluloses, and cellulose in the lignocellulosic materials, disrupt the connections between hemicelluloses, cellulose, and lignin, and alter the structure of treated biomass to make cellulose more accessible to hydrolysis enzymes. Moreover, the wood fiber bundles could be broken down to small and loose lignocellulosic particles by the chemical treatment. Therefore, the enzymatic hydrolysis efficiency of untreated mechanical fibers can also be remarkably enhanced by NaOH or NaOH/urea solution treatment. The results indicated that, for spruce, up to 70% glucose yield could be obtained for the cold temperature pretreatment (-15 degrees C) using 7% NaOH/12% urea solution, but only 20% and 24% glucose yields were obtained at temperatures of 23 degrees C and 60 degrees C, respectively, when other conditions remained the same. The best condition for the chemical pretreatment regarding this study was 3% NaOH/12% urea, and -15 degrees C. Over 60% glucose conversion was achieved upon this condition.  相似文献   

14.
Lu X  Xi B  Zhang Y  Angelidaki I 《Bioresource technology》2011,102(17):7937-7940
The energy efficiency of microwave-assisted dilute sulfuric acid pretreatment of rape straw for the production of ethanol was investigated. Different microwave energy inputs and solid loadings were tested to find economic pretreatment conditions. The lowest energy consumption was observed when solid loading and energy input were fixed at 50% (w/w) and 54 kJ (900 W for 1 min), respectively, and amounted to 5.5 and 10.9 kJ to produce 1 g of glucose after enzymatic hydrolysis and 1 g ethanol after fermentation, respectively. In general, 1 g ethanol can produce about 30 kJ of energy, and therefore, the energy input for the pretreatment was only 35% of the energy output. The approach developed in this study resulted in 92.9% higher energy savings for producing 1 g ethanol when compared with the results of microwave pretreatments previously reported.  相似文献   

15.
Solid-state anaerobic digestion of spent wheat straw from horse stall   总被引:6,自引:0,他引:6  
Cui Z  Shi J  Li Y 《Bioresource technology》2011,102(20):9432-9437
The spent wheat straw from horse stall bedding has lower cellulose and hemicellulose contents, but higher volatile fatty acid content than raw wheat straw. Biogas production from solid-state anaerobic digestion (SS-AD) of spent wheat straw and raw wheat straw was compared in this study. The SS-AD tests were conducted at 22% total solids (TS) content using inoculum from a liquid AD system at three feedstock-to-inoculum (F/I) ratios of 2.0, 4.0, and 6.0. Daily methane yields of spent wheat straw peaked 8 and 3 days earlier than those of raw wheat straw at F/I ratios of 2.0 and 4.0, respectively. The highest methane yield of 150.0 L/kg volatile solids (VS) was obtained from spent wheat straw at an F/I ratio of 4.0, which was 56.2% higher than that of raw wheat straw. The corresponding cellulose and hemicellulose degradation of spent wheat straw was 24.1% and 49.4% higher than those of raw wheat straw, respectively.  相似文献   

16.
A central composite design was used to investigate the influence of the cooking conditions (time, temperature and phenol concentration) for wheat straw with phenol-water mixtures on the properties of the pulp obtained (yield and holocellulose, -cellulose, lignin and ethanol-benzene extractable contents) and the pH of the resulting wastewater. A second-order polynomial model consisting of three independent process variables was found to accurately describe the organosolv pulping of wheat straw. The equations derived predict the yield, the holocellulose, -cellulose, lignin and ethanol-benzene extractable contents of the pulp, and the pH of the wastewater with multiple-R, R2 and adjusted-R2 high values. The process variables must be set at low variables in order to ensure a high yield and pH. Conversely, if high holocellulose and -cellulose contents, and low lignin and ethanol-benzene extractable contents are desired, then a high temperature (200°C), long cooking time (120 min), and intermediate phenol concentration (65%) must be used.  相似文献   

17.
利用来自海栖热袍茵的重组极耐热木聚糖酶XynB和来自嗜热栖热菌Thermus thermophilus HB27的重组极耐热漆酶Tth-laccase对麦草浆进行协同漂白。结果表明,当未漂浆经XL漂序处理(X:重组木聚糖酶用量20 U/g绝干浆,pH 5.8,温度90℃,浆浓8%,处理时间2 h;L:重组漆酶用量3 U/g绝干浆,pH 4.5,温度90℃,浆浓8%,处理时间1.5 h),可获得最佳漂白效果。与对照浆比较,XL处理使浆料白度提升11.5%ISO,卡伯值降低6.9。双酶协同处理在改善浆料可漂性的同时,对纸浆纤维强度无负面影响。在后续过氧化氢漂白段中,当漂终白度相近时,XL预处理浆可节省约50%H_2O_2消耗量。  相似文献   

18.
小麦秸秆水浸提液对五种植物化感作用的研究   总被引:1,自引:0,他引:1  
郑曦  杨茜茜  李小花 《广西植物》2016,36(3):329-334
该文研究了不同浓度的小麦秸秆水浸提液对徐州地区2种玉米(郑单958和农大108)和3种常见玉米田间杂草(马唐、稗草和反枝苋)种子萌发和幼苗生长的影响。结果表明:当小麦秸秆浸提液浓度分别大于75、50和25 g·L~-1时,马唐、稗草和反枝苋种子的萌发受到显著的抑制;当小麦秸秆浸提液浓度分别大于50和37.5 g·L~-1时,玉米郑单958和农大108种子的萌发受到显著的抑制;但当小麦秸秆浸提液浓度大于37.5 g·L~-1时,马唐、稗草和反枝苋幼苗根和芽的生长均受到明显的抑制;当小麦秸秆浸提液浓度小于75 g·L~-1时,玉米郑单958和农大108幼苗根与芽的生长受到明显的促进,且郑单958幼苗叶片中叶绿素的含量以及郑单958的POD酶活性均得到提高。该研究结果表明较高浓度的小麦秸秆浸提液(50 g·L~-1)会抑制杂草的生长,有利于玉米郑单958的生长,为小麦秸秆还田和玉米田杂草的生态防治提供了理论基础。  相似文献   

19.
【目的】研究过氧化氢预处理对褐煤物化性质及生物产气的影响。【方法】以胜利5号褐煤为研究对象,利用正交试验对过氧化氢预处理褐煤条件进行优化,在最优条件下处理褐煤得到处理后的残煤和处理液,通过X射线衍射分析(X-ray diffraction, XRD)、扫描电镜分析(scanning electron microscopy, SEM)、比表面积分析及孔隙分析(brunauer-emmett-teller, BET)、气相色谱-质谱分析(GC-MS)、高效液相色谱分析(HPLC)等方法对原煤、残煤和处理液的物化性质进行比较分析。【结果】经过氧化氢预处理,褐煤的最优条件为过氧化氢浓度5.0%、预处理时间20 d、液固比30:1,处理液中总有机碳含量为105 mg/L。在最优条件下,过氧化氢处理后残煤表面裂痕、凹陷增多,表面结构变得松散;煤的芳香面网间距增加,芳环结构更加疏松,晶核结构变小;孔隙度和比表面积均增大。处理后残煤中的固定碳、C元素和镜质组的相对含量降低,而灰分、挥发分、O和H元素及惰质组含量增加,残煤中O=C-O、C=C、C=O官能团含量增加,而N-H、C-H官能团含量则减少。生物产气结果表明反应液和残煤产气量均低于原煤,分别减少了39.13%和94.46%。过氧化氢预处理主要作用于煤中镜质组,使其有机碳溶解,煤中大分子结构的官能团发生变化,改变煤的芳环结构,在氧化作用下煤结构中的小分子溶解进入处理液。处理液中有机物以短链脂肪酸为主。经生物产气后,反应液中小分子酸以及有机物种类减少,被微生物利用产气。而各产气试验组中优势菌门及优势菌属的菌群丰度呈现出显著差异,古菌中原煤产气组盐杆菌门(Halobacteriota)为优势菌门,甲烷八叠球菌属(Methanosarcina)为优势菌属;反应液产气组热变形菌(Thermoprotei)为优势菌门,深古菌属(Bathyarchaeia)为优势菌属;细菌中原煤产气组放线菌门(Actinomycetota)为优势菌门,Gaiellales为优势菌属;反应液产气试验组假单胞菌门(Pseudomonadota)为优势菌门,代尔夫特菌属(Delftia)为优势菌属。【结论】煤溶解有机碳可以被微生物利用产气,但是煤中有机组分的过氧化脱除导致生物产气量减少。  相似文献   

20.
Two experiments were conducted to estimate the metabolisable energy (ME) and net energy (NE) of rice straw and wheat straw for beef cattle. In each experiment, 16 Wandong bulls (Chinese indigenous yellow cattle) were assigned to 4 dietary treatments in a completely randomised design. Four dietary treatments included one corn silage-concentrate basal diet and three test diets in which the basal diet was partly substituted by rice straw (Exp. 1) or wheat straw (Exp. 2) at 100, 300 and 600 g/kg. Total collection of faeces and urine was conducted for 5 consecutive days after a 2-week adaption period, followed by a 4-d period where gas exchange measurements were measured by an open-circuit respiratory cage. Linear regression equations of rice straw- or wheat straw-associated ME and NE contribution in test diets against rice straw or wheat straw substitution amount were developed to predict the ME and NE values of rice straw and wheat straw. These regression equations resulted in ME and NE values (dry matter basis) of 6.76 and 3.42 MJ/kg for rice straw and 6.43 and 3.28 MJ/kg for wheat straw, respectively. The NE and ME requirement for maintenance of Wandong cattle fed a straw-based diet were 357 and 562 kJ·kg?0.75·d?1, respectively. The regression-derived ME and NE have lower standard errors and coefficients of variation than those estimated by any single substitution ratio. Our study found that the regression method based on multiple point substitution is more reliable than the substitution method for energy evaluation of feedstuffs for beef cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号