首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accuracy of the 23Na nuclear magnetic resonance (NMR) method for measuring the sodium concentration in erythrocytes was tested by comparing the NMR results to those obtained by emission-flame photometry. Comparisons were made on aqueous solutions, hemolysates, gels, ghosts, and intact erythrocytes. The intra- and extracellular 23Na NMR signals were distinguished by addition of the dysprosium tripolyphosphate [Dy(PPP)7-2] shift reagent to the extracellular fluid. The intra- and extracellular volumes of ghosts and cells were determined by the isotope dilution method. Our results indicate that greater than 20% of the intracellular signal remains undetected by NMR in ghosts and cells. When the cells are hemolyzed, the amount of NMR-detectable sodium varies depending on the importance of gel formation. In hemolysates prepared by water addition, the NMR and flame photometry results are identical. The loss of signal in ghosts, cells, and undiluted hemolysates is attributed to partial binding of the Na+ ion to intracellular components, this binding being operative only when these components exist in a gel state. In a second part, 31P NMR was used to monitor the penetration of the shift reagent into the cells during incubation. Our data demonstrate that free Dy3+ can slowly accumulate inside the red cell.  相似文献   

2.
We acquired double-quantum-filtered 23Na NMR spectra from perfused liver, using a range of tau values from 0.2 to 24 ms, where tau is the separation between the first and second pi/2 pulses in the radio-frequency pulse sequence. For each tau value we compared the amplitude of the double-quantum-filtered 23Na NMR signal acquired from intracellular sodium ions when the liver was perfused with buffer containing the "shift reagent" Dy(PPP)2 to the amplitude of the total double-quantum-filtered 23Na NMR signal acquired when the liver was perfused with buffer containing no Dy(PPP)2. For tau < or = 4 ms, the average ratio of the two amplitudes was 0.98 +/- 0.03 (mean +/- SEM). For tau > or = 8 ms, the average ratio was significantly less than 1. These results demonstrate that double-quantum-filtered 23Na NMR signals acquired from perfused liver using short tau values arise almost exclusively from intracellular sodium ions, but double-quantum-filtered 23Na NMR signals acquired from perfused liver using long tau values contain contributions from both intracellular and extracellular sodium ions. This conclusion suggests that multiple-quantum-filtered 23Na NMR spectroscopy will be useful in studying intracellular sodium levels in the perfused liver, and possibly in the intact liver in vivo.  相似文献   

3.
23Na nuclear magnetic resonance spectroscopy (NMR) is increasingly being used to study Na+ gradients and fluxes in biological tissues. However, the quantitative aspects of 23Na NMR applied to living systems remain controversial. This paper compares sodium concentrations determined by 23Na NMR in intact rat hindlimb (n = 8) and excised rat gastrocnemius muscle (n = 4) with those obtained by flame photometric methods. In both types of samples, 90% of the sodium measured by flame photometry was found to be NMR-visible. This is much higher than previously reported values. The NMR measurements for intact hindlimb correlated linearly with the flame photometric measurements, implying that one pool of sodium, predominantly extracellular, is 100% visible. From measurements on excised muscle, in which extracellular space is more clearly defined, the NMR visibility of intracellular Na+ was calculated to be 70%, assuming an extracellular space of 12% of the total tissue water volume and an extracellular NMR visibility of 100%. 23Na transverse relaxation measurements were carried out using a Hahn spin echo on both intact hindlimb (n = 1) and excised muscle (n = 2) samples. These showed relaxation curves that could each be described adequately using two relaxation times. The rapidly relaxing component showed a T2 value of 3-4 ms and the slowly relaxing component a T2 of 21-37 ms. A spin lattice relaxation (T1) measurement on intact hindlimb yielded a value of 51 ms. These relatively long relaxation times show that the quadrupolar relaxation effect of Na+ complexing to large macromolecules or being otherwise motionally restricted is relatively weak. This is consistent with the high NMR visibilities reported here.  相似文献   

4.
D G Davis  E Murphy  R E London 《Biochemistry》1988,27(10):3547-3551
Cesium-133 NMR studies have been carried out on suspended human erythrocytes and on perfused rat hearts in media containing CsCl. The resulting spectra exhibit two sharp resonances, arising from intra- and extracellular Cs+, separated in chemical shift by 1.0-1.4 ppm. Thus, intra- and extracellular resonances are easily resolved without the addition of paramagnetic shift reagents required to resolve resonances of the other alkali metal ions. Spin-lattice relaxation times in all cases are monoexponential and significantly shorter (3-4 times) for the intracellular component. When corrections are made for the pulse repetition rate, the total intensity of the intracellular and extracellular Cs+ resonances in erythrocytes is conserved, implying total observability of the intracellular pool. The uptake of Cs+ by erythrocytes occurs at approximately one-third the reported rate for K+ and was reduced by a factor of 2 upon addition of ouabain to the sample. These results indicate that 133Cs NMR is a promising tool for studying the distribution and transport of cesium ions in biological systems and, in some cases such as uptake by cellular Na,K-ATPase, for analysis of K+ ion metabolism.  相似文献   

5.
The recent work of Cope on 23Na magnetic resonance studies of frog muscle has been repeated with the view of investigating certain objections which can be raised concerning the original studies. The present work leads to the conclusion that Cope's results concerning bound sodium are essentially correct in that a large fraction of the 23Na present does not contribute normally to a detectable nuclear magnetic resonance (NMR) signal. This “missing” signal can be detected at high radio-frequency intensity however, and a signal-saturation study distinctly reveals its presence.  相似文献   

6.
The Intracellular Na+ concentration in the halotolerant alga Dunaliella salina was measured in intact cells by 23Na-NMR spectroscopy, utilizing the dysprosium tripolyphosphate complex as a sodium shift reagent, and was found to be 88 ± 28 millimolar. Intracellular sodium ion content and intracellular volume were the same, within the experimental error, in cells adapted to grow in media containing between 0.1 and 4.0 molar NaCl. These values assume extracellular and intracellular NMR visibilities of the 23Na nuclei of 100 and 40%, respectively. The relaxation rate of intracellular sodium was enhanced with increasing salinity of the growth medium, in parallel to the intracellular osmosity due to the presence of glycerol, indicating that Na+ ions and glycerol are codistribbuted within the cell volume.  相似文献   

7.
A method is described for determining the intracellular pH of intact erythrocytes by 1H NMR. The determination is based on the pH dependence of the chemical shifts of resonances for carbon-bonded protons of an indicator molecule (imidazole) in intact cells. The imidazole is introduced into the erythrocytes by incubation in an isotonic saline solution of the indicator. The pH dependence of the chemical shifts of the imidazole resonances is calibrated from 1H NMR spectra of the imidazole-containing red cell lysates whose pH is varied by the addition of acid or base and measured directly with a pH electrode. To reduce in intensity or eliminate the much more intense envelope of resonances from the hemoglobin, the 1H NMR measurements are made by either the spin-echo Fourier transform technique or by the transfer-of-saturation by cross-relaxation method.  相似文献   

8.
The regulation of intracellular creatine concentration in mammalian cells is poorly understood, but is thought to depend upon active sodium-linked uptake of creatine from extracellular fluid. In normal human erythrocytes, creatine influx into washed cells was inhibited by 40 per cent in the absence of extracellular sodium. In washed cells from uraemic patients, sodium-independent creatine influx was normal, whereas the sodium-dependent component of creatine influx was 3·3 times higher than normal, possibly relecting the reduced mean age of uraemic erythrocytes. In spite of this, the intracellular creatine concentration was no higher than normal in uraemic erythrocytes, implying that some factor in uraemic plasma in vivo inhibits sodium-dependent creatine influx. Both in normal and uraemic erythrocytes, the creatine concentration was 10 times that in plasma, and the concentration in the cells showed no detectable dependence on that in plasma, suggesting that the intracellular creatine concentration is controlled by an active saturable process. Active sodium-dependent accumulation of creatine was also demonstrated in L6 rat myoblasts and was inhibited when transport was measured in the presence of 10?4M ouabain or digoxin, implying that uptake was driven by the transmembrane sodium gradient. However, when creatine influx was measured immediately after ouabain or digoxin had been washed away, it was higher than in control cells, suggesting that Na,K-ATPase and/or sodium-linked creatine transport are up-regulated when treated with inhibitors of Na,K-ATPase.  相似文献   

9.
Separation of intracellular and extracellular sodium nuclear magnetic resonance (NMR) signals would enable nondestructive monitoring of intracellular sodium. It has been proposed that differences between the relaxation times of intracellular and extracellular sodium be used either directly or indirectly to separate the signal from each compartment. However, whereas intracellular sodium relaxation times have been characterized for some systems, these times were unknown for interstitial sodium. In this study, the interstitial sodium NMR relaxation times have been measured in perfused frog and rat hearts under control conditions. This was achieved by eliminating the NMR signal from the extracardiac (perfusate) sodium, and then quantifying the remaining cardiac signal. The intracellular signal was measured to be 8% (frog) or 22% (rat) of the cardiac signal and its subtraction was found to have a negligible effect on the cardiac relaxation times. Therefore this cardiac signal is considered to provide a good estimate of interstitial relaxation behavior. For perfused frog (rat) hearts under control conditions, this signal was found to have a T1 of 31.6 +/- 3.0 ms (27.3 +/- 1.6 ms) and a biexponential T2 of 1.9 +/- 1.0 ms (2.1 +/- 0.3 ms) and 25.2 +/- 1.3 ms (26.3 +/- 3.2 ms). Due to the methods used to separate cardiac signal from perfusate signal, it is possible that this characterized only a part of the signal from the interstitium. The short T2 component attributable to the interstitial signal indicates that separation of the NMR signals from each compartment on the basis of relaxation times alone may be difficult.  相似文献   

10.
During the maturation process reticulocytes lose their intracellular organelles and undergo changes in membrane lipid composition and ion transport properties. While several reports indicate differences in the levels of magnesium, sodium and calcium in reticulocytes and erythrocytes, controversy remains concerning the actual magnitude and direction of ionic alterations during reticulocyte maturation. One problem with all of these studies is that the techniques used are invasive and are limited to measuring only the total cell ion content. We have used 31P, 23Na and 19F nuclear magnetic resonance (NMR) spectroscopy to compare the intracellular free ion and phosphometabolite levels in guinea pig reticulocytes and mature red blood cells. In contrast to a sharply decreased concentration of ATP in erythrocytes in comparison to reticulocytes, the intracellular free magnesium, measured using 31P-NMR, was increased by about 65% upon maturation (150 mumol/l cell water in reticulocytes in comparison to 250 mumol/l cell water in erythrocytes). Sizeable but opposite changes in intracellular sodium (5.5 mumol/ml cells in reticulocytes vs. 8.5 mumol/ml cells in erythrocytes) and intracellular free calcium (99 nM vs. 31 nM in reticulocytes and mature red cells, respectively) were also observed, suggesting that alterations in the kinetics of membrane ion transport systems, accompanying changes in phospholipid and cholesterol content, occur during the process of red cell maturation. However, in contrast to dog red blood cells, there was no evidence for the presence of a Na+/Ca2+ exchanger in guinea pig reticulocytes or erythrocytes.  相似文献   

11.
Escherichia coli is known to actively extrude sodium ions, but little is known concerning the concentration gradient it can develop. We report here simultaneous measurements, by 23Na NMR, of intracellular and extracellular Na+ concentrations of E. coli cells before and after energization. 23Na spectra in the presence of a paramagnetic shift reagent (dysprosium tripolyphosphate) consisted of two resonances, an unshifted one corresponding to intracellular Na+ and a shifted one corresponding to Na+ in the extracellular medium, including the periplasm. Extracellular Na+ was found to be completely visible despite the presence of a broad component in its resonance; intracellular Na+ was only 45% visible. Measurements of Na+ were made under aerobic and glycolytic conditions. Na+ extrusion and maintenance of a stable low intracellular Na+ concentration were found to correlate with the development and maintenance of proton motive force, a result that is consistent with proton-driven Na+/H+ exchange as a means of Na+ transport. In both respiring and glycolyzing cells, at an extracellular Na+ concentration of 100 mM, the intracellular Na+ concentration observed (4 mM) corresponded to an inwardly directed Na+ gradient with a concentration ratio of about 25. The kinetics of Na+ transport suggest that rapid extrusion of Na+ against its electrochemical gradient may be regulated by proton motive force or intracellular pH.  相似文献   

12.
NMR studies of intracellular sodium ions in mammalian cardiac myocytes   总被引:1,自引:0,他引:1  
The unambiguous measurement of intracellular sodium ion [Na+]i by the noninvasive NMR technique offers a new opportunity to monitor precisely the maintenance and fluctuations of [Na+]i levels in intact cells and tissues. The anionic frequency shift reagent, dysprosium (III) tripolyphosphate, which does not permeate intact cells, when added to suspensions of intact adult rat cardiac myocytes, alters the NMR frequency of extracellular sodium ions, [Na+]o, leaving that of intracellular ions, [Na+]i, unaffected. Using 23Na NMR in conjunction with this shift reagent, we have determined NMR-visible intracellular Na+ ion concentration in a suspension of isolated cardiac myocytes under standard conditions with insulin and Ca2+ in the extracellular medium to be 8.8 +/- 1.2 mmol/liter of cells (n = 4). This value is comparable to that measured by intracellular ion-selective microelectrodes in heart tissue. Cardiac myocytes incubated for several hours in insulin-deficient, Ca2+-containing medium prior to NMR measurement exhibited a somewhat lower [Na+]i value of 6.9 +/- 0.5 mmol/liter of cells (n = 3). Reversible Na+ loading of the cells by manipulation of extracellular calcium levels is readily measured by the NMR technique. Incubation of myocytes in a Ca2+-free, insulin-containing medium causes a 3-fold increase in [Na+]i to a level of 22.8 +/- 2.6 mmol/liter of cells (n = 10). In contrast to cells with insulin, insulin-deficient myocytes exhibit a markedly lower level of [Na+]i of only 14.6 +/- 2.0 mmol/liter of cells (n = 4) in Ca2+-free medium. These observations suggest that insulin may stimulate a pathway for Na+ influx in heart cells.  相似文献   

13.
The nuclear magnetic resonance (NMR) spectrum of Na+ is suitable for qualitative and quantitative analysis of Na+ in tissues. The width of the NMR spectrum is dependent upon the environment surrounding the individual Na+ ion. NMR spectra of fresh muscle compared with spectra of the same samples after ashing show that approximately 70% of total muscle Na+ gives no detectable NMR spectrum. This is probably due to complexation of Na+ with macromolecules, which causes the NMR spectrum to be broadened beyond detection. A similar effect has been observed when Na+ interacts with ion exchange resin. NMR also indicates that about 60% of Na+ of kidney and brain is complexed. Destruction of cell structure of muscle by homogenization little alters the per cent complexing of Na+. NMR studies show that Na+ is complexed by actomyosin, which may be the molecular site of complexation of some Na+ in muscle. The same studies indicate that the solubility of Na+ in the interstitial water of actomyosin gel is markedly reduced compared with its solubility in liquid water, which suggests that the water in the gel is organized into an icelike state by the nearby actomyosin molecules. If a major fraction of intracellular Na+ exists in a complexed state, then major revisions in most theoretical treatments of equilibria, diffusion, and transport of cellular Na+ become appropriate.  相似文献   

14.
Using nuclear magnetic resonance (NMR), we have developed a method of noninvasively determining the transmembrane sodium potential in erythrocytes by measuring intracellular and extracellular sodium concentrations. The experimental values correlated well with values obtained from standard flame photometric methods.  相似文献   

15.
In order to characterize intracellular pH regulation and cellular metabolism in PKE 5 cells, a mutant of the renal epithelial cell line LLC-PK1 supposed to lack Na+-H+ exchanger activity, 31P and 13C-NMR studies were conducted. The 31P studies on intact cell suspensions revealed that these cells have an ATP content and an ATP/ADP ratio similar to the parent cell line. Their intracellular pH, in the presence of 5 mM HCO3-, was 7.17 +/- 0.04 (n = 5) - identical to that of LLC-PK1 cells. After acid loading the cells with 15% CO2, the initial rate of realkalinization was 0.027 pH units/min (n = 6), 50% lower than in the parent cells. The recovery rate was not affected by the removal of extracellular sodium or by the addition of 1 mM amiloride. These results indicate that PKE 5 cells are devoid of Na+-H+ exchange activity, but are able to regulate their intracellular pH by amiloride-insensitive, sodium-independent mechanisms. Extracts prepared from PKE 5 cells incubated with [13C]lactate showed 13C spectra identical to those of the parent cell line. In particular, no synthesis of 13C-labeled D-glucose was observed.  相似文献   

16.
The mammalian Na+/H+ exchanger isoform 1 (NHE1) is an integral membrane protein that regulates intracellular pH (pHi) by removing a single intracellular proton in exchange for one extracellular sodium ion. It is involved in cardiac hypertrophy and ischemia reperfusion damage to the heart and elevation of its activity is a trigger for breast cancer metastasis. NHE1 has an extensive 500 amino acid N-terminal membrane domain that mediates transport and consists of 12 transmembrane segments connected by intracellular and extracellular loops. Intracellular loops are hypothesized to modulate the sensitivity to pHi. In this study, we characterized the structure and function of intracellular loop 5 (IL5), specifically amino acids 431–443. Mutation of eleven residues to alanine caused partial or nearly complete inhibition of transport; notably, mutation of residues L432, T433, I436, N437, R440 and K443 demonstrated these residues had critical roles in NHE1 function independent of effects on targeting or expression. The nuclear magnetic resonance (NMR) solution spectra of the IL5 peptide in a membrane mimetic sodium dodecyl sulfate solution revealed that IL5 has a stable three-dimensional structure with substantial alpha helical character. NMR chemical shifts indicated that K438 was in close proximity with W434. Overall, our results show that IL5 is a critical, intracellular loop with a propensity to form an alpha helix, and many residues of this intracellular loop are critical to proton sensing and ion transport.  相似文献   

17.
Nuclear magnetic resonance spectroscopy has become a powerful tool for metabolic investigations on living cell suspensions. However, unless mechanical means are used to maintain the cells in dispersion, settling occurs during the NMR experiment. Because high packed-cell volumes are generally used to produce maximum NMR signals, settling may be inapparent to the eye, leading to unrecognized artifactual changes in NMR spectra. Such artifacts include time-dependent loss of signal intensity when the sample volume approximates the sensitive volume of the NMR probe, and time-dependent increase in signal intensity when the sample volume exceeds the sensitive volume. Through the addition of the polysaccharide arabinogalactan, increasing the buoyant density of the suspending medium to approach that of the cells, we have eliminated cell settling and improved the quality of 31P NMR spectra of human erythrocytes.  相似文献   

18.
Applications of high-resolution 35Cl NMR to the study of chloride in vivo and in vesicles have hitherto been limited by problems of NMR detectability and of resolving internal from external signals. We have characterized the effects of Co2+ on the 35Cl resonance of Cl- in solution and have shown that when added to suspensions of lipid vesicles, Co2+ shifts the 35Cl signal of the extravesicular Cl-, allowing clear resolution and quantitation of two peaks. We have assigned these signals to chloride inside and outside the vesicles. The spectra do not change over a 90-min period, demonstrating the stability of the vesicles in the presence of Co2+. This technique is shown to be applicable to red blood cell ghosts, where intravesicular and extravesicular chloride signals were separated and measured and chloride/sulfate exchange through the band 3 anion transport protein A was followed. In two plant species (an alga and a higher plant), an intracellular Cl- signal can be observed and resolved from the extracellular signal. The intracellular transportable chloride was found to be fully NMR-visible (+/- 5%) in the algal cells. The high steady-state levels of Cl- seen in the alga were consistent with previous work using 36Cl- labeling on a related species [Doblinger, R., & Tromballa, H.W. (1982) Planta 156, 10-15]. Successive spectra acquired after adding Co2+ to Chlorella cells under deenergizing conditions allow us to follow the time course of movement of Cl- out of the cells.  相似文献   

19.
High-resolution 23Na and 39K nuclear magnetic resonance (NMR) spectra of perfused, beating rat hearts have been obtained in the absence and presence of the downfield shift reagent Dy(TTHA)3- in the perfusing medium. Evidence indicates that Dy(TTHA)3- enters essentially all extracellular spaces but does not enter intracellular spaces. It can thus be used to discriminate the resonances of the ions in these spaces. Experiments supporting this conclusion include interventions that inhibit the Na+/K+ pump such as the inclusion of ouabain in and the exclusion of K+ from the perfusing medium. In each of these experiments, a peak corresponding to intracellular sodium increased in intensity. In the latter experiment, the increase was reversed when the concentration of K+ in the perfusing medium was returned to normal. When the concentration of Ca2+ in the perfusing medium was also returned to normal, the previously quiescent heart resumed beating. In the beating heart where the Na+/K+ pump was not inhibited, the intensity of the intracellular Na+ resonance was less than 20% of that expected. Although the data are more sparse, the NMR visibility of the intracellular K+ signal appears to be no more than 20%.  相似文献   

20.
The change in dielectric properties caused by the destruction of the transport barrier of yeast cells has been investigated. Dielectric measurements were made over the frequency range of 1 kc to 2 Mc by using “leaky” yeast cells prepared by treatments with HgCl2 or CTAB (cetyl trimethyl ammonium bromide). The Hg-treated cells were observed to give smaller dielectric constants and lower critical frequencies as compared with that of the intact cells, while the CTAB-treated cells gave no clear-cut dielectric dispersion. These observations are interpreted on the basis of Maxwell-Wagner's theory as indicating the changes in the intracellular conductivity, the membrane capacitance and the membrane conductance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号