首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Isolated microtubule-associated protein 2 (MAP2), τ factor, and tubulin were phosphorylated by a purified Ca2+, calmodulin-dependent protein kinase (640K enzyme) from rat brain. The phosphorylation of MAP2 and τ factor separately induced the inhibition of microtubule assembly, in accordance with the degree. Tubulin phosphorylation by the 640K enzyme induced the inhibition of microtubule assembly, whereas the effect of tubulin phosphorylation by the catalytic subunit was undetectable. The effects of tubulin and MAPs phosphorylation on microtubule assembly were greater than that of either tubulin or MAPs phosphorylation. Because MAP2, τ factor, and tubulin were also phosphorylated by the catalytic subunit of type-II cyclic AMP-dependent protein kinase from rat brain, the kinetic properties and phosphorylation sites were compared. The amount of phosphate incorporated into each microtubule protein was three to five times higher by the 640K enzyme than by the catalytic subunit. The K m values of the 640K enzyme for microtubule proteins were four to 24 times lower than those of the catalytic subunit. The peptide mapping analysis showed that the 640K enzyme and the catalytic subunit incorporated phosphate into different sites on MAP2, τ factor, and tubulin. Investigation of phosphoamino acids revealed that only the seryl residue was phosphorylated by the catalytic subunit, whereas both seryl and threonyl residues were phosphorylated by the 640K enzyme. These data suggest that the Ca2+, calmodulin system via phosphorylation of MAP2, τ factor, and tubulin by the 640K enzyme is more effective than the cyclic AMP system on the regulation of microtubule assembly.  相似文献   

2.
Abstract: Light activation of rhodopsin in the Drosophila photoreceptor induces a G protein-coupled signaling cascade that results in the influx of Ca2+ into the photoreceptor cells. Immediately following light activation, phosphorylation of a photoreceptor-specific protein, phosrestin I, is detected. Strong sequence similarity to mammalian arrestin and electroretinograms of phosrestin mutants suggest that phosrestin I is involved in light inactivation. We are interested in identifying the protein kinase responsible for the phosphorylation of phosrestin I to link the transmembrane signaling to the light-adaptive response. Type II Ca2+/calmodulin-dependent kinase is one of the major classes of protein kinases that regulate cellular responses to transmembrane signals. We show here that partially purified phosrestin I kinase activity can be immunodepleted and immunodetected with antibodies to Ca2+/calmodulin-dependent kinase II and that the kinase activity exhibits regulatory properties that are unique to Ca2+/calmodulin-dependent kinase II such as Ca2+ independence after autophosphorylation and inhibition by synthetic peptides containing the Ca2+/calmodulin-dependent kinase II autoinhibitory domain. We also show that Ca2+/calmodulin-dependent kinase II activity is present in Drosophila eye preparations. These results are consistent with our hypothesis that Ca2+/calmodulin-dependent kinase II phosphorylates phosrestin I. We suggest that Ca2+/calmodulin-dependent kinase II plays a regulatory role in Drosophila photoreceptor light adaptation.  相似文献   

3.
Abstract A protein kinase from Dictyostelium discoideum which phosphorylates the synthetic peptide, calmodulin-dependent protein kinase substrate (CDPKS, amino acid sequence: PLRRTLSVAA) and is stimulated by Ca2+/calmodulin is described. This is the first report of a protein kinase with these characteristics in D. discoideum . The enzyme was partially purified by Q-Sepharose chromatography. The protein kinase is very labile, and rapidly loses Ca2+/calmodulin-dependence upon standing at 4°C, even in the presence of protease inhibitors, making further purification and characterisation difficult. In the active fractions, a 55 kDa polypeptide is labelled with [γ-32 P]ATP in vitro under conditions in which intramolecular rather than intermolecular reactions are favoured. The phosphorylation of this peptide is stimulated in the presence of Ca2+ and calmodulin but not Ca2+ alone. Ca2+/calmodulin-dependent stimulation is inhibited in the presence of the calmodulin antagonist, trifluoperazine (TFP). It is proposed that the 55 kDa polypeptide may represent the autophosphorylated form of the enzyme.  相似文献   

4.
Abstract: Reversible spinal cord ischemia in rabbits induced a rapid loss of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) activity measured as incorporation of phosphate into exogenous substrates. About 70% of the activity was lost from the cytosolic fraction of spinal cord homogenates after 15 min of ischemia preceding irreversible paraplegia, which takes 25 min in this model. The loss of enzyme activity correlated with a loss of in situ renaturable autophosphorylation activity and a loss of CaM kinase II α and β subunits in the cytosol detected by immunoblotting. CaM kinase II activity in the particulate fraction also decreased but the protein levels of the a and β subunits increased. Thus ischemia resulted in an inactivation of CaM kinase II and a sequential or concurrent subcellular redistribution of the enzyme. However, denaturation and renaturation in situ of the CaM kinase subunits immobilized on membranes partly reversed the apparent inactivation of the enzyme in the particulate fraction. CaM kinase II activity was restored after reperfusion following short (≤25 min) durations of ischemia but not after longer durations (60 min) that result in irreversible paraplegia. The ischemia-induced inactivation of CaM kinase II, which phosphorylates proteins regulating many cellular processes, may be important in the cascade of events leading to delayed neuronal cell death.  相似文献   

5.
Abstract: Calcium is required to sustain fast axonal transport in sensory neurons of frog and cat. We studied the Ca2+ dependence of fast axonal transport in the motoneurons of the lower spinal cord from frog. The accumulation of acetylcholinesterase at a crush on the ventral roots was used to follow axonal transport. Two types of experiments were performed: modification of the medium bathing the ventral roots, alone, and modification of the medium bathing the spinal cord and ventral roots. Incubation (17-18 h) of the ventral roots in Ca2+-free medium markedly inhibited acetylcholinesterase transport, a finding that demonstrates a Ca2+ requirement for fast axonal transport in motoneurons; when 4 m M MgCl2 was added to the Ca2+-free medium, transport was also greatly reduced. During incubation of the ventral roots in normal medium supplemented with 0.18 m M CoCl2 transport proceeded normally; but when the Co2+ concentration was raised to 1.8 m M , transport was diminished as drastically as in the Ca2+-free medium. Incubation of the spinal cord and ventral roots in medium containing 0.18 m M CoCl2 did not reduce the accumulation of acetylcholinesterase at the crush. Similarly, accumulation of acetylcholinesterase at a crush on the dorsal root was not significantly reduced by exposure of the dorsal root ganglion and root to 0.18 m M Co2+. Exposure of sensory cell bodies to 0.18 m M Co2+ thus produces differential effects on transport of acetylcholinesterase and on transport of newly synthesized radiolabeled protein.  相似文献   

6.
Ca2+ influx through NMDA-type glutamate receptor at excitatory synapses causes activation of post-synaptic Ca2+/calmodulin-dependent protein kinase type II (CaMKII) and its translocation to the NR2B subunit of NMDA receptor. The major binding site for CaMKII on NR2B undergoes phosphorylation at Ser1303, in vivo . Even though some regulatory effects of this phosphorylation are known, the mode of dephosphorylation of NR2B-Ser1303 is still unclear. We show that phosphorylation status at Ser1303 enables NR2B to distinguish between the Ca2+/calmodulin activated form and the autonomously active Thr286-autophosphorylated form of CaMKII. Green fluorescent protein–α-CaMKII co-expressed with NR2B sequence in human embryonic kidney 293 cells was used to study intracellular binding between the two proteins. Binding in vitro was studied by glutathione- S -transferase pull-down assay. Thr286-autophosphorylated α-CaMKII or the autophosphorylation mimicking mutant, T286D-α-CaMKII, binds NR2B sequence independent of Ca2+/calmodulin unlike native wild-type α-CaMKII. We show enhancement of this binding by Ca2+/calmodulin. Phosphorylation or a phosphorylation mimicking mutation on NR2B (NR2B-S1303D) abolishes the Ca2+/calmodulin-independent binding whereas it allows the Ca2+/calmodulin-dependent binding of α-CaMKII in vitro . Similarly, the autonomously active mutants, T286D-α-CaMKII and F293E/N294D-α-CaMKII, exhibited Ca2+-independent binding to non-phosphorylatable mutant of NR2B under intracellular conditions. We also show for the first time that phosphatases in the brain such as protein phosphatase 1 and protein phosphatase 2A dephosphorylate phospho-Ser1303 on NR2B.  相似文献   

7.
Abstract: To study the phosphorylation state of τ in vivo, we have prepared antisera by immunizing rabbits with synthetic phosphopeptides containing phosphoamino acids at specific sites that are potential targets for τ protein kinase II. Immunoblot experiments using these antisera demonstrated that τ in microtubule-associated proteins is phosphorylated at Ser144 and at Ser315. Almost all τ variants separated on two-dimensional gel electrophoresis were phosphorylated at Ser144 and nearly one-half of them at Ser315. Phosphorylation at Ser144 and at Thr147 of τ isolated from heat-stable brain extracts was shown to be developmentally regulated, with the highest level of phosphorylation found at postnatal week 1. In vitro phosphorylation of τ by τ protein kinase I, a kinase responsible for abnormal phosphorylation of τ found in paired helical filaments of patients with Alzheimer's disease, was enhanced by prior phosphorylation of τ by τ protein kinase II. Thus, we suggest that τ protein kinase II is indirectly involved, at least in part, in the regulation of the phosphorylation state of τ in neuronal cells.  相似文献   

8.
Abstract: The growth cone is responsible for axonal elongation and pathfinding by responding to various modulators for neurite growth, including neurotransmitters, although the sensor mechanisms are not fully understood. Among neurotransmitters, GABA is most likely to demonstrate activity in vivo because GABA and the GABAA receptor appear even in early stages of CNS development. We investigated the GABAA receptor-mediated signaling pathway in the growth cone using isolated growth cones (IGCs). Both the GABAA binding site and the benzodiazepine modulatory site were enriched in the growth cone membrane. In the intact IGC, GABA induced picrotoxin-sensitive Cl flux (not influx but efflux) and increased the intracellular Ca2+ concentration in a picrotoxin- and verapamil-sensitive manner. Protein kinase C (PKC)-dependent phosphorylation of two proteins identified as GAP-43 and MARCKS protein was enhanced in the intact IGC stimulated by GABA, resulting in the release of MARCKS protein and GAP-43 from the membrane. Collectively, our results suggest the following scheme: activation of the functional GABAA receptor localized in the growth cone membrane → Cl efflux induction through the GABAA-associated Cl channel → Ca2+ influx through an L-type voltage-sensitive Ca2+ channel → Ca2+-dependent phosphorylation of GAP-43 and MARCKS protein by PKC.  相似文献   

9.
Abstract: The influence of brain ischemia on the subcellular distribution and activity of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) was studied in various cortical rat brain regions during and after cerebral ischemia. Total CaM kinase II immunoreactivity (IR) and calmodulin binding in the crude synaptosomal fraction of all regions studied increase but decrease in the microsomal and cytosolic fractions, indicative of a translocation of CaM kinase II to synaptosomes. The translocation of CaM kinase II to synaptic junctions occurs but not to synaptic vesicles. The translocation in neocortex and CA3/DG (dentate gyrus) is transient, whereas in the hippocampal CA1 region, it persists for at least 1 day of reperfusion. The Ca2+/calmodulin-dependent activity of CaM kinase II in the subsynaptosomal fractions of neocortex is persistently decreased by up to 85%, despite the increase in CaM kinase II IR. The decrease in activity is more pronounced than the decline in IR, suggesting that CaM kinase II is covalently modified in the postischemic phase. The persistent translocation of CaM kinase II in the vulnerable ischemic CA1 region indicates that a pathological process is sustained in the area after the reperfusion phase and this may be of significance for ischemic brain injury.  相似文献   

10.
Abstract: τ protein kinase I (TPKI) phosphorylates τ and forms paired helical filament epitopes in vitro. We studied temporal expression and histochemical distribution of τ phosphoserine epitopes at sites known to be phosphorylated by TPKI. Antibodies directed against phosphorylated Ser199 (anti-PS 199) or phosphorylated Ser396 (C5 or anti-PS 396) were used. TPKI is abundantly expressed in the young rat brain and the highly phosphorylated juvenile form of τ occurs in the same period. The activity peak of TPKI coincided with the high level of phosphorylation of Ser199 and Ser396 in juvenile τ at around postnatal day 8. By immunohistochemistry on the hippocampus and neocortex of 3–11-day-old rats, phosphorylated Ser396 was found in young axonal tracts and neuropil, where TPKI immunoreactivity was also detected. TPKI and phospho-Ser199 immunoreactivities were also detected in the perikarya of pyramidal neurons. TPKI immunoreactivity had declined to a low level and phosphorylated serine immunoreactivities were undetectable in the sections of adult brain. These findings implicate TPKI in paired helical filament-like phosphorylation of juvenile form of τ in the developing brain.  相似文献   

11.
Abstract: A Ca2+- and calmodulin-dependent protein kinase was purified from rat brain cytosol fraction to apparent homogeneity at approximately 800-fold and with a 5% yield. The purified enzyme had a molecular weight of 640,000 as determined by gel filtration analysis on Sephacryl S-300 and a sedimentation coefficient of 15.3 S by sucrose density gradient centrifugation, and resulted in a single protein band of MW 49,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results suggest that the native enzyme has a large molecular weight and consists of 11 to 14 identical subunits. The purified enzyme exhibited K m values of 109 and 30 μM for ATP and chicken gizzard myosin light chain, respectively, and K a values of 12 n M and 1.9 μM for brain calmodulin and Ca2+, respectively. In addition to myosin light chain, myelin basic protein, casein, arginine-rich histone, microtubule protein, and synaptosomal proteins were phosphorylated by the enzyme in a Ca2+- and calmodulin-dependent manner. The purified enzyme was phosphorylated without the addition of the catalytic subunit of cyclic AMP-dependent protein kinase. Our findings indicate that there is a multifunctional Ca2+- and calmodulin-dependent protein kinase in the brain and that this enzyme may regulate the reactions of various endogenous proteins.  相似文献   

12.
Abstract: To investigate the physiological role of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) in neuronal differentiation, we transfected the cDNA of the α subunit of mouse CaM kinase II (CaM kinase IIα) into PC12 cells and established clonal cell lines that constitutively express the transfected CaM kinase IIα gene. The expression of CaM kinase IIα was confirmed by northern blot and immunoblot analyses. Northern blot analysis showed that the γ and δ subunits of CaM kinase II are mainly expressed in PC12 cells. Treatment of the cells with ionomycin activated CaM kinase IIα through autophosphorylation and generation of the Ca2+/calmodulin-independent form. It is interesting that the neurite outgrowth induced by dibutyryl cyclic AMP was inhibited in these cell lines in accordance with the activities of overexpressed CaM kinase IIα. The activity of cyclic AMP-dependent protein kinase showed similar levels among these cell lines. These results suggest that CaM kinase II is involved in the modulation of the neurite outgrowth induced by activation of the cyclic AMP system.  相似文献   

13.
Abstract: The protein kinases and protein phosphatases that act on tyrosine hydroxylase in vivo have not been established. Bovine adrenal chromaffin cells were permeabilized with digitonin and incubated with [γ-32P]ATP, in the presence or absence of 10 µ M Ca2+, 1 µ M cyclic AMP, 1 µ M phorbol dibutyrate, or various kinase or phosphatase inhibitors. Ca2+ increased the phosphorylation of Ser19 and Ser40. Cyclic AMP, and phorbol dibutyrate in the presence of Ca2+, increased the phosphorylation of only Ser40. Ser31 and Ser8 were not phosphorylated. The Ca2+-stimulated phosphorylation of Ser19 was incompletely reduced by inhibitors of calcium/calmodulin-stimulated protein kinase II (46% with KN93 and 68% with CaM-PKII 273–302), suggesting that another protein kinase(s) was contributing to the phosphorylation of this site. The Ca2+-stimulated phosphorylation of Ser40 was reduced by specific inhibitors of protein kinase A (56% with H89 and 38% with PKAi 5–22 amide) and protein kinase C (70% with Ro 31-8220 and 54% with PKCi 19–31), suggesting that protein kinases A and C contributed to most of the phosphorylation of this site. Results with okadaic acid and microcystin suggested that Ser19 and Ser40 were dephosphorylated by PP2A.  相似文献   

14.
Studies on hippocampal glycine release are extremely rare. We here investigated release from mouse hippocampus glycinergic terminals selectively pre-labelled with [3H]glycine through transporters of the GLYT2 type. Purified synaptosomes were incubated with [3H]glycine in the presence of the GLYT1 blocker NFPS to abolish uptake (∼ 30%) through GLYT1. The non-GLYT1-mediated uptake was entirely sensitive to the GLYT2 blocker Org25543. Depolarization during superfusion with high-K+ (15–50 mmol/L) provoked overflows totally dependent on external Ca2+, whereas in the spinal cord the 35 or 50 mmol/L KCl-evoked overflow (higher than that in hippocampus) was only partly dependent on extraterminal Ca2+. In the hippocampus, the Ca2+-dependent 4-aminopyridine (1 mmol/L)-evoked overflow was five-fold lower than that in spinal cord. The component of the 10 μmol/L veratridine-induced overflow dependent on external Ca2+ was higher in the hippocampus than that in spinal cord, although the total overflow in the hippocampus was only half of that in the spinal cord. Part of the veratridine-evoked hippocampal overflow occurred by GLYT2 reversal and part by bafilomycin A1-sensitive exocytosis dependent on cytosolic Ca2+ generated through the mitochondrial Na+/Ca2+ exchanger. As glycine sites on NMDA receptors are normally not saturated, understanding mechanisms of glycine release should facilitate pharmacological modulation of NMDA receptor function.  相似文献   

15.
Abstract: The endogenous phospholipid mediator lysophosphatidic acid (LPA) caused growth cone collapse, neurite retraction, and cell flattening in differentiated PC12 cells. Neurite retraction was blocked by cytochalasin B and ADP-ribosylation of the small-molecular-weight G protein Rho by the Clostridium botulinum C-3 toxin. LPA induced a transient rise in the level of inositol 1,4,5-trisphosphate, and retraction was blocked by inhibitors of phospholipase β. Repeated application of LPA elicited homologous desensitization of the Ca2+ mobilization response. The activation of the phosphoinositide (PIP)-Ca2+ second messenger system played a permissive role in the morphoregulatory response. Blockers of protein kinase C—chelerythrine, a myristoylated pseudosubstrate peptide, staurosporine, and depletion of protein kinase C from the cells by long-term phorbol ester treatment—all diminished neurite retraction by interfering with LPA-induced Ca2+ mobilization, which was required for the withdrawal of neurites. A brief 15-min treatment with 4β-phorbol 12-myristate 13-acetate also blocked retraction and Ca2+ mobilization, by inactivating the LPA receptor. Inhibition of protein tyrosine phosphorylation by herbimycin diminished retraction. Although activation of the PIP-Ca2+ second messenger system appears necessary for the Rho-mediated rearrangements of the actin cytoskeleton, bradykinin, which activates similar signaling events, failed to cause retraction, indicating that a yet unidentified novel mechanism is also involved in the LPA-induced morphoregulatory response.  相似文献   

16.
Abstract: A possible role for protein kinases in the regulation of free cytosolic Ca2+ levels in nerve endings was investigated by testing the effect of several kinase inhibitors on the increase in cytosolic Ca2+ (monitored with the Ca2+-sensitive dye fura-2) induced by depolarization with 15 or 30 mM K+. The ability of various drugs to inhibit the cytosolic Ca2+ response appeared to correlate with their reported mechanism of action in inhibiting protein kinases. W-7 and trifluoperazine, drugs reported to inhibit calmodulin-dependent events, were effective inhibitors of the increase in cytosolic Ca2+ induced by high K+ depolarization, as was sphingosine, a drug that inhibits protein kinase C by binding to the regulatory site, but which also inhibits calcium/calmodulin kinase. On the other hand, drugs that inhibit protein kinases by binding to the catalytic site, such as H-7 (1 m/W ), staurosporine (1μ M ), and K252a(1μ M ), were ineffective. Activation of protein kinase C, which is blocked by each of these drugs, does not appear to be essential to the maintenance of elevated cytosolic Ca2+ in depolarized synaptosomes. All of the drugs, including sphingosine, that functionally inhibit the depolarization-induced elevation in cytosolic Ca2+ have in common the ability to bind to calmodulin. Because the drugs that inhibit protein kinases by competing with ATP binding at the active catalytic site did not block the response in this system, we suggest that a calmodulin or a calmodulin-like binding site participates in the regulation of Ca2+ increases after depolarization.  相似文献   

17.
Abstract: Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been implicated in various neuronal functions, including synaptic plasticity. To examine the physiological regulation of its activated, autophosphorylated state in relation to acute neuronal excitation in vivo, we studied the effect of electroconvulsive treatment in rats on CaMKII activity and in situ autophosphorylation levels. As early as 30 s after the electrical stimulation, a profound but transient decrease in its Ca2+/calmodulin-independent activity, as well as in the level of its autophosphorylation at Thr286 (α)/Thr287 (β) measured by using phosphorylation state-specific antibodies, was observed in homogenate from hippocampus and parietal cortex, which was reversible in 5 min. In the later time course, a moderate, reversible increase, which peaked at around 60 min after the electrical stimulation, was observed in parietal cortex but not in hippocampus. The early-phase decrease was found to occur exclusively in the soluble fraction. In addition, partial translocation of CaMKII from the soluble to the particulate fraction seems to have occurred in this early phase. Thus, the activated, autophosphorylated state of CaMKII is under dynamic and precise regulation in vivo, and its regulatory mechanisms seem to have regional specificity.  相似文献   

18.
Abstract: We studied effects of Ca2+ in the incubation medium on [3H]dopamine ([3H]DA) uptake by rat striatal synaptosomes. Both the duration of the preincubation period with Ca2+ (0–30 min) and Ca2+ concentration (0–10 m M ) in Krebs-Ringer medium affected [3H]DA uptake by the synaptosomes. The increase was maximal at a concentration of 1 m M Ca2+ after a 10-min preincubation (2.4 times larger than the uptake measured without preincubation), which reflected an increase in V max of the [3H]DA uptake process. On the other hand, [3H]DA uptake decreased rapidly after addition of ionomycin in the presence of 1 m M Ca2+. The Ca2+-dependent enhancement of the uptake was still maintained after washing synaptosomes with Ca2+-free medium following preincubation with 1 m M Ca2+. Protein kinase C inhibitors did not affect apparently Ca2+-dependent enhancement of the uptake, whereas 1-[ N,O -bis(1,5-isoquinolinesulfonyl)- N -methyl- l -tyrosyl]-4-phenylpiperazine (KN-62; a Ca2+/calmodulin-dependent kinase II inhibitor) and wortmannin (a myosin light chain kinase inhibitor) significantly reduced it. Inhibitory effects of KN-62 and wortmannin appeared to be additive. N -(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7; a calmodulin antagonist) also remarkably inhibited the enhancement. These results suggest that Ca2+-dependent enhancement of [3H]DA uptake is mediated by activation of calmodulin-dependent protein kinases.  相似文献   

19.
Abstract: In fetal rat brain neurons, activation of voltage-dependent Na+ channels induced their own internalization, probably triggered by an increase in intracellular Na+ level. To investigate the role of phosphorylation in internalization, neurons were exposed to either activators or inhibitors of cyclic AMP- and cyclic GMP-dependent protein kinases, protein kinase C, and tyrosine kinase. None of the tested compounds mimicked or inhibited the effect of Na+ channel activation. An increase in intracellular Ca2+ concentration induced either by thapsigargin, a Ca2+-ATPase blocker, or by A23187, a Ca2+ ionophore, was unable to provoke Na+ channel internalization. However, Ca2+ seems to be necessary because both neurotoxin- and amphotericin B-induced Na+ channel internalizations were partially inhibited by BAPTA-AM. The selective inhibitor of Ca2+/calmodulin-dependent protein kinase II, KN-62, caused a dose-dependent inhibition of neurotoxin-induced internalization due to a blockade of channel activity but did not prevent amphotericin B-induced internalization. The rate of increase in Na+ channel density at the neuronal cell surface was similar before and after channel internalization, suggesting that recycling of internalized Na+ channels back to the cell surface was almost negligible. Pretreatment of the cells with an acidotropic agent such as chloroquine prevented Na+ channel internalization, indicating that an acidic endosomal/lysosomal compartment is involved in Na+ channel internalization in neurons.  相似文献   

20.
Abstract: The transduction pathways coupling muscarinic receptors to induction of fos and jun genes were investigated in neuroblastoma SH-SY5Y cells. Stimulation with carbachol induced expression of c- fos , fosB , c- jun , junB , and junD . This effect was abolished by pretreatment with atropine, indicating an involvement of muscarinic receptors. These genes were also induced by activation of protein kinase C with phorbol ester or by elevating the intracellular Ca2+ concentration with a Ca2+ ionophore. The Ca2+ effect was inhibited by KN-62, suggesting an induction through Ca2+/calmodulin-dependent kinase II. Inhibition of protein kinase C with GF109203X suppressed the carbachol-stimulated increase in mRNA levels of c- fos , fosB , and junB by ∼70% but had only minor effects on the expression of c- jun and junD . On the other hand, preincubation with KN-62 attenuated the carbachol-induced increase in c- jun and junD expression by 70% but had no effect on c- fos , fosB , and junB mRNA levels. Simultaneous inhibition of both protein kinase C and Ca2+/calmodulin-dependent kinase II completely abolished the carbachol-stimulated expression of c- jun and junD , but c- fos , fosB , and junB were still expressed to a certain extent under this condition. Comparison of the inhibitory effects of GF109203X and Gö 6976 suggests the involvement of classical protein kinase C isozymes in muscarinic receptor-stimulated expression of fos and jun genes. These results demonstrate that the muscarinic receptor-induced expression of individual fos and jun genes is regulated via different pathways, primarily protein kinase C or Ca2+/calmodulin-dependent kinase II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号