首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zou H  Volonte D  Galbiati F 《PloS one》2012,7(6):e39379
Caveolin-1, the structural protein component of caveolae, acts as a scaffolding protein that functionally regulates signaling molecules. We show that knockdown of caveolin-1 protein expression enhances chemotherapeutic drug-induced apoptosis and inhibits long-term survival of colon cancer cells. In vitro studies demonstrate that caveolin-1 is a novel Ku70-binding protein, as shown by the binding of the scaffolding domain of caveolin-1 (amino acids 82-101) to the caveolin-binding domain (CBD) of Ku70 (amino acids 471-478). Cell culture data show that caveolin-1 binds Ku70 after treatment with chemotherapeutic drugs. Mechanistically, we found that binding of caveolin-1 to Ku70 inhibits the chemotherapeutic drug-induced release of Bax from Ku70, activation of Bax, translocation of Bax to mitochondria and apoptosis. Potentiation of apoptosis by knockdown of caveolin-1 protein expression is greatly reduced in the absence of Bax expression. Finally, we found that overexpression of wild type Ku70, but not a mutant form of Ku70 that cannot bind to caveolin-1 (Ku70 Φ→A), limits the chemotherapeutic drug-induced Ku70/Bax dissociation and apoptosis. Thus, caveolin-1 acts as an anti-apoptotic protein in colon cancer cells by binding to Ku70 and inhibiting Bax-dependent cell death.  相似文献   

2.
Syndecan-2 was found to detach from RACK1 and associate with caveolin-2 and Ras in cells transformed with oncogenic ras. Most of syndecan-2 from transformed cells was revealed with negligible phosphorylations at tyrosine residues. We experimented with HeLa cells transfected with plasmids encoding syndecan-2 and its mutants (syndecan-2(Y180F), syndecan-2(Y192F), and syndecan-2(Y180,192F)) to provide evidences that PY180 of syndecan-2 is a binding site for RACK1 and is deprived in cells transfected with oncogenic ras. However, in HeLa cells transfected with syndecan-2(Y180F), RACK1 was found to sustain its reactions with syndecan-2 independent of phosphorylation. The finding of syndecan-2 reactive with caveolin-2/Ras suggests the molecular complex most likely to obstruct RACK1 for functional attachment at syndecan-2, as revealed in cells transfected with oncogenic ras. We provided evidences to reinforce the view that molecular rearrangements upon transformation are specific and interesting.  相似文献   

3.
Numerous components of thecAMP-based signaling cascade, namely G-proteins and G- protein coupledreceptors, adenylyl cyclase, and protein kinase A (PKA) have beenlocalized to caveolae and shown to be regulated by the caveolar markerproteins, the caveolins. In order to gain mechanistic insights intothese processes in vivo, we have assessed the functional interaction ofcaveolin-1 (Cav-1) with PKA using mutational analysis. As two regionsof Cav-1 had previously been implicated in PKA signaling in vitro, weconstructed Cav-1 molecules with mutations/deletions in one or both ofthese domains. Examination of these mutants shows that Cav-1 requiresthe presence of either the scaffolding domain or the COOH-terminaldomain (but not both) to functionally interact with and inhibit PKA.Interestingly, in contrast to the wild-type protein, these Cav-1mutants are not localized to caveolae microdomains. However, uponcoexpression with wild-type Cav-1, a substantial amount of the mutantswas recruited to the caveolae membrane fraction. Using the Cav-1 doublemutant with both disrupted scaffolding and COOH-terminal domains, weshow that wild-type Cav-1's inhibition of PKA signaling can bepartially abrogated in a dose-responsive manner; i.e., the mutant actsin a dominant-negative fashion. Thus, this dominant-negative caveolin-1mutant will be extremely valuable for assessing the functional role ofendogenous caveolin-1 in regulating a variety of other signaling cascades.

  相似文献   

4.
Subsequent to our identification of the novel immunoglobulin-like cell adhesion molecule hepaCAM, we demonstrated that hepaCAM is capable of modulating cell growth and cell–extracellular matrix interactions. In this study, we examined the localization of hepaCAM in lipid rafts/caveolae as well as the interaction of hepaCAM with the caveolar structural protein caveolin-1 (Cav-1). Our results revealed that a portion of hepaCAM resided in detergent-resistant membranes and co-partitioned with Cav-1 to low buoyant density fractions characteristic of lipid rafts/caveolae. In addition, co-localization and coimmunoprecipitation assays confirmed the association of hepaCAM with Cav-1. Deletion analysis of hepaCAM showed that the extracellular first immunoglobulin domain of hepaCAM was required for binding Cav-1. Furthermore, when co-expressed, Cav-1 induced the expression of hepaCAM as well as distributed hepaCAM to intracellular Cav-1-positive caveolar structures. Taken together, our findings indicate that hepaCAM is partially localized in the lipid rafts/caveolae and interacts with Cav-1 through its first immunoglobulin domain.  相似文献   

5.
Neurofibromin binds to caveolin-1 and regulates ras, FAK, and Akt   总被引:2,自引:0,他引:2  
Neurofibromin (Nf1) is an approximately 280 kDa protein having tumor suppressor function, presumably by virtue of its GTPase activating domain, but little is known regarding molecular aspects of its effector pathways. Caveolin-1 (Cav-1) regulates diverse signaling molecules and has itself been implicated as a tumor suppressor. Here we demonstrate that Nf1 binds to Cav-1's scaffolding domain and co-immunoprecipitates with Cav-1. Analysis of Nf1's primary structure reveals four potential caveolin binding domains, and interestingly, in individuals with neurofibromatosis I, missense mutations occur with high frequency in 3 of the 4 putative domains. We show that Nf1 modulates ras, Akt, and focal adhesion kinase pathways, thereby affecting cytoskeletal organization; moreover, Nf1's effects on signaling are altered when lipid rafts and caveolae are disrupted by cholesterol depletion. These novel findings provide insight into possible signaling mechanisms of Nf1 and suggest that together Nf1 and Cav-1 may coordinately regulate cell growth and differentiation.  相似文献   

6.
In order to characterize the interaction between the Saccharomyces cerevisiae Cdc25 protein and Harvey-ras (p21H-ras), we have constructed a yeast strain disrupted at the RAS1 and RAS2 loci, expressing both p21H-ras and the catalytic domain of the bovine GTPase activating protein (GAP) and containing the cdc25-2 mutation. Such a strain exhibits a temperature-sensitive phenotype. The shift to the nonpermissive temperature is accompanied by the loss of guanyl nucleotide-dependent activity of adenylylcyclase in vitro. The temperature-sensitive phenotype can be rescued by CDC25 itself, as well as by a plasmid containing a truncated SDC25 gene. In addition, wild type CDC25 significantly improves the guanyl nucleotide response observed in the background of the cdc25ts allele at the permissive temperature in a dosage-dependent manner and restores the guanyl nucleotide response at the restrictive temperature. Both CDC25 and a truncated SDC25 also restored p21H-ras-dependent guanyl nucleotide response in a strain isogenic to the one described above but containing a disrupted CDC25 locus instead of the temperature-sensitive allele. These results suggest that the S. cerevisiae Cdc25 protein interacts with p21H-ras expressed in yeast by promoting GDP-GTP exchange. It follows that the yeast system can be used for characterizing the interaction between guanyl nucleotide exchangers of Ras proteins and mammalian p21H-ras.  相似文献   

7.
The cytoplasmic domain of influenza M2 protein (M2c) consists of 54 amino acid (aa) residues from aa44 to aa97. In this paper, M2c and its deletion mutant M2cΔ47-55 were expressed using prokaryotic expression system. First, glutaraldehyde crosslinking assay showed that M2c had multimerization potential mediated by aa47-55. Then, M2c, instead of M2cΔ47-55, directed eGFP from the whole cell localization to a predominately perinuclear region in CHO cells, which indicated that aa47-55 of M2c mediated the localization. Moreover, M2c colocalized with caveolin-1 (Cav) when CHO cells were cotransfected with Cav. A caveolin-1 binding motif ΦxxxxΦxxΦ (Φ represents aromatic amino acid residues) in aa47-55 of M2c was found by sequence alignment and analysis. Further overlay ELISA result showed that M2c, but not M2cΔ47-55, bound to prokaryotically expressed cholesterol-free Cav2-101, which illustrated the interaction could be cholesterol-independent. That was the first report of cellular protein bound to M2c.  相似文献   

8.
Receptor-activity-modifying protein (RAMP) 1 is an accessory protein of the G protein-coupled calcitonin receptor-like receptor (CLR). The CLR/RAMP1 heterodimer defines a receptor for the potent vasodilatory calcitonin gene-related peptide. A wider tissue distribution of RAMP1, as compared to that of the CLR, is consistent with additional biological functions. Here, glutathione S-transferase (GST) pull-down, coimmunoprecipitation and yeast two-hybrid experiments identified beta-tubulin as a novel RAMP1-interacting protein. GST pull-down experiments indicated interactions between the N- and C-terminal domains of RAMP1 and beta-tubulin. Yeast two-hybrid experiments confirmed the interaction between the N-terminal region of RAMP1 and beta-tubulin. Interestingly, alpha-tubulin was co-extracted with beta-tubulin in pull-down experiments and immunoprecipitation of RAMP1 coprecipitated alpha- and beta-tubulin. Confocal microscopy indicated colocalization of RAMP1 and tubulin predominantly in axon-like processes of neuronal differentiated human SH-SY5Y neuroblastoma cells. In conclusion, the findings point to biological roles of RAMP1 beyond its established interaction with G protein-coupled receptors.  相似文献   

9.
10.
In an attempt to identify high affinity, fatty acid binding proteins present in 3T3-L1 adipocytes plasma membranes, we labeled proteins in purified plasma membranes with the photoreactive fatty acid analogue, 11-m-diazirinophenoxy[11-3H]undecanoate. A single membrane protein of 22 kDa was covalently labeled after photolysis. This protein fractionated with caveolin-1 containing caveolae and was immunoprecipitated by an anti-caveolin-1 monoclonal antibody. Furthermore, 2D-PAGE analysis revealed that both the alpha and beta isoforms of caveolin-1 could be labeled by the photoreactive fatty acid upon photolysis, indicating that both bind fatty acids. The saturable binding of the photoreactive fatty acid suggests caveolin-1 has a lipid binding site that may either operate during intracellular lipid traffic or regulate caveolin-1 function.  相似文献   

11.
12.
Using turbidometry, electron microscopy and immunofluorescent microscopy experiments we studied the effect of captan, a widely used pesticide on mammalian microtubules and microfilaments. Turbidometry at 350 nm showed a dose-dependent inhibition of tubulin assembly incubated with captan. The pesticide, given at equimolar concentration with tubulin (30 microM), caused the total inhibition of microtubule formation, while at lower concentrations (5-20 microM) the inhibition of tubulin polymerization was less extensive. At the same concentration range (5-30 microM), captan also promoted the disassembly of performed microtubules. The results of the in vitro effects of captan with microtubules were confirmed in parallel by electron microscopic studies. In vivo, captan caused also depolymerization of microtubules in cultured mouse fibroblasts as shown by indirect immunofluorescent staining of tubulin. The extent of microtubules disassembly was concentration- and time-dependent. While incubation of the cells with 10 microM captan for 3 h disturbs totally the microtubular structures, incubation with 5 microM captan needs 12 h for the same effect. Recovery of microtubules was observed, when preincubated cells were extensively washed. No interaction of this drug with equimolar concentration of G- or F-actin could be observed in vitro, as shown by polymerization experiments. In line with this, the fluorescent actin pattern in mouse fibroblasts incubated with 10 mM captan for up to 12 h did not seem to be altered. From these results it is concluded that captan interacts in equimolar concentrations with tubulin affecting the assembly and disassembly of microtubules in vitro and in cultures of mammalian cells.  相似文献   

13.
Interaction of ras oncogene product p21 with guanine nucleotides   总被引:2,自引:0,他引:2  
The nucleotide exchange reaction was observed with purified ras oncogene product p21 overproduced in Escherichia coli (Hattori, S. et al. (1985) Mol. Cell Biol. 5, 1449-1455) under various conditions. (NH4)2SO4 increased the rate of dissociation of bound GDP from c-rasH and v-rasH p21. The dissociation kinetics were those of a first order reaction, and there was a linear relationship between the rate constant and the (NH4)2SO4 concentration. At any concentration of (NH4)2SO4, the exchange rate was faster with v-rasH p21 than that with c-rasH p21. EDTA and (NH4)2SO4 synergetically stimulated the dissociation reaction. Nucleotide-free p21 was prepared by gel filtration on Sephadex G-25 in the presence of 5 mM EDTA and 200 mM (NH4)2SO4 at room temperature. The free p21 was quite thermolabile, but the addition of GDP or GTP completely protected p21 from thermal inactivation. The dissociation constants for GDP and GTP were determined with free p21 to be 8.9 and 8.2 nM, respectively, for v-rasH p21, and 1.0 and 2.6 nM for c-rasH p21. In the presence of 200 mM (NH4)2SO4, these dissociation constants increased 3- to 12-fold.  相似文献   

14.
We have determined the canine and feline N-, K-, and H-ras gene sequences from position +23 to +270 covering exons I and II which contain the mutational hot spot codons 12, 13, and 61. The results were used to assess the degree of similarity between ras gene DNA regions containing the critical domains affected in neoplastic disorders in different mammalian species. The comparative analyses performed included human, canine, feline, murine, rattine, and, whenever possible, bovine, leporine (rabbit), porcelline (guinea pig), and mesocricetine (hamster) ras gene sequences within the region of interest. Comparison of feline and canine nucleotide sequences with the corresponding regions in human DNA revealed a sequence similarity greater than 85% to the human sequence. Contemporaneous analysis of previously published ras DNA sequences from other mammalian species showed a similar degree of homology to human DNA. Most nucleotide differences observed represented synonymous changes without effect on the amino acid sequence of the respective proteins. For assessment of the phylogenetic evolution of ras gene family, a maximum parsimony dendrogram based on multiple sequence alignment of the common region of exons I and II in the N-, K-, and H-ras genes was constructed. Interestingly, a higher substitution rate among the H-ras genes became apparent, indicating accelerated sequence evolution within this particular clade. The most parsimonious tree clearly shows that the duplications giving rise to the three ras genes must have occurred before the mammalian radiation. Received: 23 July 1997 / Accepted: 30 October 1997  相似文献   

15.
Rotavirus nonstructural protein 4 (NSP4) is known to function as an intracellular receptor at the endoplasmic reticulum (ER) critical to viral morphogenesis and is the first characterized viral enterotoxin. Exogenously added NSP4 induces diarrhea in rodent pups and stimulates secretory chloride currents across intestinal segments as measured in Ussing chambers. Circular dichroism studies further reveal that intact NSP4 and the enterotoxic peptide (NSP4(114-135)) that is located within the extended, C-terminal amphipathic helix preferentially interact with caveola-like model membranes. We now show colocalization of NSP4 and caveolin-1 in NSP4-transfected and rotavirus-infected mammalian cells in reticular structures surrounding the nucleus (likely ER), in the cytosol, and at the cell periphery by laser scanning confocal microscopy. A direct interaction between NSP4 residues 112 to 140 and caveolin-1 was determined by the Pro-Quest yeast two-hybrid system with full-length NSP4 and seven overlapping deletion mutants as bait, caveolin-1 as prey, and vice versa. Coimmunoprecipitation of NSP4-caveolin-1 complexes from rotavirus-infected mammalian cells demonstrated that the interaction occurs during viral infection. Finally, binding of caveolin-1 from mammalian cell lysates to Sepharose-bound, NSP4-specific synthetic peptides confirmed the yeast two-hybrid data and further delineated the binding domain to amino acids 114 to 135. We propose that the association of NSP4 and caveolin-1 contributes to NSP4 intracellular trafficking from the ER to the cell surface and speculate that exogenously added NSP4 stimulates signaling molecules located in caveola microdomains.  相似文献   

16.
We previously identified TIARP (TNF(alpha)-induced adipose-related protein, where TNF(alpha) stands for tumour necrosis factor alpha), a novel plasma-membrane protein that is induced during 3T3-L1 preadipocytes differentiation by TNF(alpha). Whereas the biological function of TIARP is currently unknown, its protein sequence is reminiscent of transporter protein and/or NAD(P)/NAD(P)H-dependent oxidoreductase activities. We hypothesized that TIARP could be associated with the 3T3-L1 adipocyte plasma-membrane caveolae domains that contain many proteins involved in cellular trafficking and signalling processes. Studies by confocal microscopy showed that TIARP and caveolin-1, a major protein of caveolae, co-localized as patches at the plasma membrane. Immunoblot analysis of cell extracts indicated that TIARP was completely detergent-extractible from membranes, whereas caveolin-1 was present as both detergent-extractible and -insoluble pools. Since TIARP is compartmentalized with caveolin-1 within caveolae domains, we suggest this protein to be part of a signalling complex in association with caveolin-1 and regulatory proteins.  相似文献   

17.
We investigated the involvement of the p21ras-GTPase activating protein (GAP) in insulin-induced signal transduction. In cells overexpressing the insulin receptor, we did not observe association between GAP and the insulin receptor after insulin treatment nor the phosphorylation of GAP on tyrosine residues. However, after insulin treatment in the presence of the phosphotyrosine phosphatase inhibitor phenylarsine oxide (PAO), 5-10% of GAP was found to be associated with the insulin receptor, and, in addition, a fraction of total GAP was phosphorylated on tyrosine. Using in vitro binding we showed that the N-terminal part of GAP containing the src-homology domains 2 and 3 (SH2-SH3-SH2 region) is involved in binding to the autophosphorylated insulin receptor beta-chain. In vitro binding between GAP and the autophosphorylated insulin receptor occurred independently of PAO pretreatment. These results suggest that GAP can transiently interact with the insulin receptor after insulin treatment, and this interaction is arrested after PAO pretreatment.  相似文献   

18.
The IRA1 gene is a negative regulator of the RAS-cyclic AMP pathway in Saccharomyces cerevisiae. To identify other genes involved in this pathway, we screened yeast genomic DNA libraries for genes that can suppress the heat shock sensitivity of the ira1 mutation on a multicopy vector. We identified IRA2, encoding a protein of 3,079 amino acids, that is 45% identical to the IRA1 protein. The region homologous between the IRA1 protein and ras GTPase-activating protein is also conserved in IRA2. IRA2 maps 11 centimorgans distal to the arg1 locus on the left arm of chromosome XV and was found to be allelic to glc4. Disruption of the IRA2 gene resulted in (i) increased sensitivity to heat shock and nitrogen starvation, (ii) sporulation defects, and (iii) suppression of the lethality of the cdc25 mutant. Analysis of disruption mutants of IRA1 and IRA2 indicated that IRA1 and IRA2 proteins additively regulate the RAS-cyclic AMP pathway in a negative fashion. Expression of the IRA2 domain homologous with GAP is sufficient for complementation of the heat shock sensitivity of ira2, suggesting that IRA down regulates RAS activity by stimulating the GTPase activity of RAS proteins.  相似文献   

19.
V A Shepelev 《FEBS letters》1984,172(2):172-176
Binding constants have been measured for the interaction of the protein HMG1 with native DNA, denatured DNA and a number of polynucleotides at near-physiological ionic strengths, using gel filtration and thermal denaturation. The interaction of HMG1 with DNA is shown to be noncooperative and reversible. Nucleic acids form the following series in order of increasing binding constants: poly(U) integral of poly(A) less than poly(dA) less than dsDNA integral of poly(dA) X poly(dT) integral of poly(dG) X poly(dC) much less than poly[d(A-T]) integral of ssDNA.  相似文献   

20.
Decreased expression of prosurvival and progrowth-stimulatory pathways, in addition to an environment that inhibits neuronal growth, contribute to the limited regenerative capacity in the central nervous system following injury or neurodegeneration. Membrane/lipid rafts, plasmalemmal microdomains enriched in cholesterol, sphingolipids, and the protein caveolin (Cav) are essential for synaptic development/stabilization and neuronal signaling. Cav-1 concentrates glutamate and neurotrophin receptors and prosurvival kinases and regulates cAMP formation. Here, we show that primary neurons that express a synapsin-driven Cav-1 vector (SynCav1) have increased raft formation, neurotransmitter and neurotrophin receptor expression, NMDA- and BDNF-mediated prosurvival kinase activation, agonist-stimulated cAMP formation, and dendritic growth. Moreover, expression of SynCav1 in Cav-1 KO neurons restores NMDA- and BDNF-mediated signaling and enhances dendritic growth. The enhanced dendritic growth occurred even in the presence of inhibitory cytokines (TNFα, IL-1β) and myelin-associated glycoproteins (MAG, Nogo). Targeting of Cav-1 to neurons thus enhances prosurvival and progrowth signaling and may be a novel means to repair the injured and neurodegenerative brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号