首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of genes coding for the four core histones (H2A, H2B, H3, and H4) was studied in tsAF8 cells. These baby hamster kidney-derived cells are a temperature-sensitive (ts) mutant of the cell cycle that arrest in G1 at the restrictive temperature. When serum-deprived tsAF8 cells are stimulated with serum, they enter the S phase at the permissive temperature of 34 degrees C, but are blocked in G1 at the nonpermissive temperature of 39.6 degrees C. Northern blot analysis using cloned human histone DNA probes detected only very low levels of histone RNA either in quiescent tsAF8 cells or in cells serum stimulated at the nonpermissive temperature for 24 h. Cellular levels of histone RNA were markedly increased in cells serum stimulated at 34 degrees C for 24 h. Temperature shift-up experiments after serum stimulation of quiescent populations showed that the amount of histone RNA was related to the number of cells that entered the S phase. Those cells that synthesized histone RNA and entered the S phase were capable of dividing. This is the first demonstration in a mammalian G1-specific ts mutant that the expression of H2A, H2B, H3, and H4 histone genes depends on the entry of cells into the S phase of the cell cycle.  相似文献   

2.
To gain insight into the mechanism of the antiproliferative effects of heparin on vascular smooth muscle cells (SMC), the influence of this glycosaminoglycan on cell cycle progression and the expression of the c-fos, c-myc, and c-myb proto-oncogenes and two other growth-regulated genes was examined. SMC, synchronized by a serum-deprivation protocol, enter S phase 12-16 h after serum stimulation. Pretreatment with heparin for 48 h blocked the induction of histone H3 RNA, an S phase-expressed product, and prevented cell replication. Thus, heparin prevents entry of cells into S phase. Conversely, heparin had essentially no effect on changes in expression of the c-fos and c-myc proto-oncogenes during the G0 to G1 transition. Normal increases in c-fos and c-myc RNA were observed 30 min and 2 h following serum addition, respectively. However, the increase in expression of the mRNA of the c-myb proto-oncogene and the mitochondrial ATP/ADP carrier protein, 2F1, which begins to occur 8 h following serum addition to SMC, was completely inhibited by heparin. Two-dimensional polyacrylamide gel electrophoresis of the products of a rabbit reticulocyte cell-free translation of RNA isolated at various times confirmed this temporal assessment of the effects of heparin. These results suggest that heparin does not inhibit cell proliferation by blocking the G0 to G1 transition. Rather, heparin may affect a critical event in the mid-G1 phase of the cell cycle which is necessary for subsequent DNA synthesis.  相似文献   

3.
4.
5.
6.
In the cell cycle of the budding yeast Saccharomyces cerevisiae, expression of the histone genes H2A and H2B of the TRT1 and TRT2 loci is regulated by the performance of "start," the step that also regulates the cell cycle. Here we show that histone production is also subject to an additional form of regulation that is unrelated to the mitotic cell cycle. Expression of histone genes, as assessed by Northern (RNA) analysis, was shown to increase promptly after the stimulation, brought about by fresh medium, that activates stationary-phase cells to reenter the mitotic cell cycle. The use of a yeast mutant that is conditionally blocked in the resumption of proliferation at a step that is not part of the mitotic cell cycle (M.A. Drebot, G.C. Johnston, and R.A. Singer, Proc. Natl. Acad. Sci. 84:7948, 1987) showed that this increased gene expression that occurs upon stimulation of stationary-phase cells took place in the absence of DNA synthesis and without the performance of start. This stimulation-specific gene expression was blocked by the mating pheromone alpha-factor, indicating that alpha-factor directly inhibits expression of these histone genes, independently of start.  相似文献   

7.
8.
9.
本文用双参数FCM技术,对同一个细胞的DNA和RNA含量进行相关测量,比较了ACM B对小鼠L_(1210)白血病细胞周期和RNA含量的影响.结果发现在一次给药后8小时可导致早、中期S的积累,并抑制S期细胞的DNA合成;到24小时DNA合成恢复正常,并进入G_2期,但由于G_2期细胞进入M期受阻,造成G_2期细胞的积累,这时被阻断在G_2期的细胞RNA含量显著增加,形成正不平衡生长,而给药剂量较大的实验组(1/1.5LD_(50))S期细胞的RNA含量不随着DNA含量的增加而增加,形成负不平衡生长,ACM A和ACM B对体内Li_(210)细胞周期作用相同.  相似文献   

10.
11.
The MDA-468 human breast cancer cell line displays the unusual phenomenon of growth inhibition in response to pharmacological concentrations of EGF. This study was initiated with the objective of elucidating the cellular mechanisms involved in EGF-induced growth inhibition. Following EGF treatment the percentage of MDA-468 cells in G1 phase increased, together with a concomitant depletion in S and G2/M phase populations, as revealed by flow cytometry of DNA content. The apparent G1 block in the cell cycle was confirmed by treating the cells with vinblastine. DNA synthesis was reduced to about 35% of that measured in control, untreated cells after 48 h of EGF treatment, as measured by the incorporation of [3H]thymidine. DNA synthesis returned to normal following the removal of EGF from the growth-arrested cells. In order to locate the EGF-induced event responsible for the G1 arrest more precisely, we examined the expression of certain cell cycle-dependent genes by Northern blot analysis. EGF treatment did not alter either the induction of the early G1 marker, c-myc, or the expression of the late G1 markers, proliferating cell nuclear antigen, and thymidine kinase. However, EGF-treated cells revealed down regulation of p53 and histone 3.2 expression, which are expressed at the G1/S boundary and in S phase, respectively. These results indicate that EGF-induced growth inhibition in MDA-468 human breast cancer cells is characterized by a reversible cell cycle block at the G1/S boundary.  相似文献   

12.
The growth of a human B lymphoma cell line B104, an experimental model for mature B cells, was inhibited by ionomycin but not 12-O-tetradecanoylphorbol-13-acetate (TPA). Ionomycin inhibited B104 cells from entering into the M phase of the cell cycle without affecting DNA synthesis. The inhibition of cell division of B104 cells by ionomycin occurred within 24 h after stimulation. Because such a mode of action resembles that of anti-IgM antibodies, signals transduced by Ca2+ may be responsible for the inhibition of cell division of B104 cells by anti-IgM antibodies. Indeed, EGTA suppressed the inhibition of cell division of B104 cells caused not only by ionomycin, but also by anti-IgM antibody. Although TPA itself did not have any ability to promote the growth of B104 cells, it could cancel the inhibition of cell division of B104 cells by ionomycin and increase the proportion of B104 cells entering into the M phase of the cell cycle. Staphylococcus aureus Cowan I causes the greatest proliferation of normal human peripheral blood B cells during the period from 48 to 72 h after stimulation. When ionomycin was added to S. aureus Cowan I-stimulated peripheral blood B cells at 48 h of culture, it inhibited cell division during this period without affecting DNA synthesis. In the presence of TPA, this activity of ionomycin was suppressed, and the proportion of M-phase cells increased. These results suggest that cell division of mature B cells is regulated by the signals mediated by Ca2+ and protein kinase C in a mode quite different from that of regulation of DNA synthesis.  相似文献   

13.
Cyclin B1 mRNA expression varies markedly through the cell cycle with its peak in G2/M and lowest level in G1. Cyclin B1 mRNA levels are also transiently reduced in HeLa cells after gamma-irradiation, coincident with the radiation-induced G2 block. In order to understand the mechanisms underlying these variations, we have measured cyclin B1 mRNA stability in HeLa cells during different phases of the cell cycle. The half-life of the mRNA measured after actinomycin D administration is 1.1-1.8 h in both early and late G1, 8 h in S and 13 h in G2/M. We therefore conclude that altered RNA stability is important in modulating cyclin B1 mRNA levels through the HeLa cell cycle. Furthermore, 3 h after irradiation of HeLa cells in S phase with 10 Gy, the half-life of cyclin B1 mRNA is reduced to 5 h; it is further reduced to 2-3 h at 14 h after irradiation. Thus, decreased stability contributes to the reduction in cyclin B1 mRNA following irradiation.  相似文献   

14.
Inhibitory diffusible factor IDF45, a G1 phase inhibitor   总被引:1,自引:0,他引:1  
C Blat  G Chatelain  G Desauty  L Harel 《FEBS letters》1986,203(2):175-180
An inhibitory diffusible factor of 45 kDa (IDF45) was isolated from medium conditioned by dense cultures of 3T3 cells. The procedure involved Bio-Gel P150 chromatography and 2 reverse-phase FPLC. After the final step of purification, 60 ng/ml of IDF45 inhibited 50% of alpha-globulin-stimulated DNA synthesis. It was shown that IDF45 acted in the G1 phase of the cell cycle. When added for 8 h in the G1 phase of the cell cycle, it was able to inhibit DNA synthesis in the S phase which followed this G1 phase. Furthermore, IDF45 inhibited the early stimulation of RNA synthesis induced by alpha-globulin.  相似文献   

15.
It has been documented widely that when the generation times of eucaryotic cells are lengthened by slowing the rate of protein synthesis, the duration of the chromosome cycle (S, G2, and M phases) remains relatively invariant. Paradoxically, when the growth of exponentially growing cultures of CHO cells is partially inhibited with inhibitors of protein synthesis, the immediate effect is a proportionate reduction in the rate of total protein, histone protein, and DNA synthesis. However, on further investigation it was found that over the next 2 h the rates of histone protein and DNA synthesis recover, in some cases completely to the uninhibited rate, while the synthesis rates of other proteins do not recover. We called this process chromosome cycle compensation. The amount of compensation seen in CHO cell cultures can account quantitatively for the relative invariance in the length of the chromosome cycle (S, G2, and M phases) reported for these cells. The mechanism for this compensation involves a specific increase in the levels of histone mRNAs. An invariant chromosome cycle coupled with a lengthening growth cycle must result in a disproportionate lengthening of the G1 phase. Thus, these results suggest that chromosome cycle invariance may be due more to specific cellular compensation mechanisms rather than to the more usual interpretation involving a rate-limiting step for cell cycle progression in the G1 phase.  相似文献   

16.
Human embryonic stem (ES) cells have an expedited cell cycle ( approximately 15 h) due to an abbreviated G1 phase ( approximately 2.5 h) relative to somatic cells. One principal regulatory event during cell cycle progression is the G1/S phase induction of histone biosynthesis to package newly replicated DNA. In somatic cells, histone H4 gene expression is controlled by CDK2 phosphorylation of p220(NPAT) and localization of HiNF-P/p220(NPAT) complexes with histone genes at Cajal body related subnuclear foci. Here we show that this 'S point' pathway is operative in situ in human ES cells (H9 cells; NIH-designated WA09). Immunofluorescence microscopy shows an increase in p220(NPAT) foci in G1 reflecting the assembly of histone gene regulatory complexes in situ. In contrast to somatic cells where duplication of p220(NPAT) foci is evident in S phase, the increase in the number of p220(NPAT) foci in ES cells appears to precede the onset of DNA synthesis as measured by BrdU incorporation. Phosphorylation of p220(NPAT) at CDK dependent epitopes is most pronounced in S phase when cells exhibit elevated levels of cyclins E and A. Our data indicate that subnuclear organization of the HiNF-P/p220(NPAT) pathway is rapidly established as ES cells emerge from mitosis and that p220(NPAT) is subsequently phosphorylated in situ. Our findings establish that the HiNF-P/p220(NPAT) gene regulatory pathway operates in a cell cycle dependent microenvironment that supports expression of DNA replication-linked histone genes and chromatin assembly to accommodate human stem cell self-renewal.  相似文献   

17.
The temperature-sensitive mutant cell line tsBN2, was derived from the BHK21 cell line and has a point mutation in the RCC1 gene. In tsBN2 cells, the RCC1 protein disappeared after a shift to the non-permissive temperature at any time in the cell cycle. From S phase onwards, once RCC1 function was lost at the non-permissive temperature, p34cdc2 was dephosphorylated and M-phase specific histone H1 kinase was activated. However, in G1 phase, shifting to the non-permissive temperature did not activate p34cdc2 histone H1 kinase. The activation of p34cdc2 histone H1 kinase required protein synthesis in addition to the presence of a complex between p34cdc2 and cyclin B. Upon the loss of RCC1 in S phase of tsBN2 cells and the consequent p34cdc2 histone H1 kinase activation, a normal mitotic cycle is induced, including the formation of a mitotic spindle and subsequent reformation of the interphase-microtubule network. Exit from mitosis was accompanied by the disappearance of cyclin B, and a decrease in p34cdc2 histone H1 kinase activity. The kinetics of p34cdc2 histone H1 kinase activation correlated well with the appearance of premature mitotic cells and was not affected by the presence of a DNA synthesis inhibitor. Thus the normal inhibition of p34cdc2 activation by incompletely replicated DNA is abrogated by the loss of RCC1.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号