首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aspirin (acetylsalicylic acid) inhibits prostaglandin synthesis by acetylating an active site portion of the enzyme, prostaglandin synthetase. In the current study, the site of acetylation has been demonstrated to be a seryl residue at the NH2 terminus of the enzyme. Purified [3H]acetyl enzyme was prepared from seminal vesicle homogenates treated with [acetyl-3H]aspirin. The [3H]acetate to protein bond was stable to hydroxylamine, indicating an N-acetyl linkage. The [3H]acetyl enzyme was fragmented sequentially with cyanogen bromide, trypsin, and pronase. The 3H material isolated from the pronase digest was identified as N-acetylserine. This finding indicates that the oxygenase portion of prostaglandin synthetase has an NH2-terminal serine which is involved in enzymatic activity and is susceptible to acetylation by aspirin.  相似文献   

2.
We previously presented evidence that aspirin (acetylsalicylic acid) inhibits prostaglandin synthetase by acetylating and active site of the enzyme. In the current work, we have labeled the enzyme from an aceton-pentane powder of sheep vesicular gland using [acetyl-3H]aspirin and purified the [3H]acetyl-protein to near homogeneity. The final preparation contains protein of a single molecular weight (85 000) and an amino-terminal sequence of Asp-Ala-Gly-Arg-Ala. The [3H]acetyl-protein contained 0.5 mol of acetyl residues per mol of protein based on amino acid composition but only a single sequence was found.  相似文献   

3.
N-Acetylneuraminic acid cytidylyltransferase (EC 2.7.7.43) (CMP-NeuAc synthetase) catalyzes the formation of cytidine monophosphate N-acetylneuraminic acid. We have purified CMP-NeuAc synthetase from an Escherichia coli O18:K1 cytoplasmic fraction to apparent homogeneity by ion exchange chromatography and affinity chromatography on CDP-ethanolamine linked to agarose. The enzyme has a specific activity of 2.1 mumol/mg/min and migrates as a single protein and activity band on nondenaturing polyacrylamide gel electrophoresis. The enzyme has a requirement for Mg2+ or Mn2+ and exhibits optimal activity between pH 9.0 and 10. The apparent Michaelis constants for the CTP and NeuAc are 0.31 and 4 mM, respectively. The CTP analogues 5-mercuri-CTP and CTP-2',3'-dialdehyde are inhibitors. The purified CMP-N-acetylneuraminic acid synthetase has a molecular weight of approximately 50,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The gene encoding CMP-N-acetylneuraminic acid synthetase is located on a 3.3-kilobase HindIII fragment. The purified enzyme appears to be identical to the 50,000 Mr polypeptide encoded by this gene based on insertion mutations that result in the loss of detectable enzymatic activity. The amino-terminal sequence of the purified protein was used to locate the start codon for the CMP-NeuAc synthetase gene. Both the enzyme and the 50,000 Mr polypeptide have the same NH2-terminal amino acid sequence. Antibodies prepared to a peptide derived from the NH2-terminal amino acid sequence bind to purified CMP-NeuAc synthetase.  相似文献   

4.
G J Roth  E T Machuga  J Ozols 《Biochemistry》1983,22(20):4672-4675
Aspirin (acetylsalicylic acid) inhibits prostaglandin synthesis by acetylating a single internal serine residue of the initial enzyme in the biosynthetic pathway, prostaglandin synthetase. In this study, the region of the enzyme that is modified by aspirin has been isolated, and its amino acid sequence has been determined. Sheep vesicular gland [acetyl-3H]prostaglandin synthetase was purified following treatment with [acetyl-3H]aspirin and digest with pepsin. An acetyl-3H-labeled peptic peptide of approximately 25 residues was isolated by high-pressure liquid chromatography, and its amino acid sequence was determined to be Ile-Glu-Met-Gly-Ala-Pro-Phe-Ser-Leu-Lys-Gly-Leu-Gly-Asn-Pro-Ile-Glu-Ser-Pro-Glu-Tyr. The acetylated serine residue was located at position 8 in this sequence. The current study marks this polypeptide sequence as a region related to an active site of the enzyme.  相似文献   

5.
Incubation of purified prostaglandin endoperoxide synthetase from sheep vesicular glands with aspirin results in a covalent binding of the acetyl group of acetylsalicylic acid to the protein. During this acetylation, the cyclooxygenase activity is lost, but not the peroxidase activity. The reaction is completed when almost one acetyl group is bound per polypeptide chain (Mr = 68 000). After proteolysis of [3H]acetyl-protein with pronase, radioactive N-acetylserine was obtained. Originally, however, the hydroxyl group of an internal serine residue in the chain is acetylated. The formation of N-acetylserine can be explained by a rapid O leads to N acetyl shift as soon as the NH2 group of serine is liberated. A radioactive dipeptide was isolated from a thermolysin digest of the [3H]acetyl-enzyme containing phenylalanine and serine, phenylalanine being its N-terminal amino acid. Automatic Edman degradation of native and acetylated enzyme showed that only one polypeptide sequence was present: Ala-Asp-Pro-Gly-Ala-Pro-Ala-Pro-Val-Asn-Pro-X-X-Tyr-. The N-terminal sequence has an apolar character.  相似文献   

6.
Six cathepsin D isozymes have been purified from porcine spleen using a large scale purification procedure. Five isozymes, I to V, have an identical molecular weight of 50,000 and are similar in specific activity. Isozymes I to IV contained two polypeptide chains each. The light and heavy chains have Mr = 15,000 and 35,000, respectively. Isozyme V is a single polypeptide. The molecular weight of the sixth isozyme is about 100,000 and it has only 5% of the specific activity of the other isozymes. On Ouchterlony immunodiffusion, an antiserum formed precipitin lines against the urea-denatured isozyme with Mr = 100,000. This immunoreactivity showed immunoidentity with those formed against other isozymes. The NH2-terminal sequence of light chains was identical for the isozymes. This sequence is homologous to the NH2-terminal sequence of other acid proteases, especially near the region of the active center aspartate-32. The NH2-terminal sequence of the single chain, isozyme V, Is apparently the same as the light chain sequence. The NH2-terminal sequence analysis of the heavy chain from isozyme I produced two sets of related sequences, suggesting the prescene of structural microheterogeneity. The carbohydrate analysis of the isozymes, the light chain, and the heavy chain revealed the presence of possibly four attachment sites, with one in the light chain and three in the heavy chain. Each carbohydrate unit contains 2 residues of mannose and 1 residue of glucosamine. The results suggest that the high molecular weight cathepsin D (Mr = 100,000) is the probable precursor of the single chain (Mr = 50,000), which in turn produces the two-chain isozymes. These are likely in vivo processes.  相似文献   

7.
The tRNA modifying enzyme, tRNA (guanine-1)methyltransferase has been purified to near homogeneity from an overproducing Escherichia coli strain harboring a multicopy plasmid carrying the structural gene of the enzyme. The preparation gives a single major band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme is probably a single polypeptide chain of molecular weight 32,000. The amino acid composition is presented and the NH2-terminal amino acid sequence was established to be H2N-Met-Trp-Ile-Gly-Ile-Ile-Ser-Leu-Phe-Pro. The enzyme has a pI of 5.2. The tRNA (guanine-1)-methyltransferase has a pH optimum of 8.0-8.5, an apparent Km of 5 microM for S-adenosylmethionine. S-adenosylhomocysteine is a competitive inhibitor for the enzyme with an apparent Ki of 6 microM. Spermidine or putrescine are not required for activity, but they stimulate the rate of methylation 1.2-fold with optima at 2 and 6 mM, respectively. Ammonium ion is not required and is inhibitory at concentrations above 0.15 M. Magnesium ion inhibited the activity at a concentration as low as 2 mM. Sodium and potassium ions were inhibitory at concentrations above 0.1 M. The molecular activity of tRNA (guanine-1)-methyltransferase was calculated to 10.0 min-1. It was estimated that the enzyme is present at 80 molecules/genome in cells growing with a specific growth rate of 1.0.  相似文献   

8.
[3H]Pyridoxal-P can be covalently incorporated into Escherichia coli B mutant strain AC70R1 ADP-glucose synthase by reduction with NaBH4. Two distinct lysine residues can be modified by the allosteric activator pyridoxal-P. Incorporation of [3H]pyridoxal-P in the presence of substrate ADP-glucose + MgCl2 prevents pyridoxylation of an ADP-glucose-protected site and allows modification of the allosteric activator site. Incorporation of [3H]pyridoxal-P in the presence of the allosteric effector, 1,6-hexanediol-P2, protects against pyridoxylation of the allosteric activator site and allows modification of the ADP-glucose-protected site. The activator site CNBr [3H]pyridoxyl-P peptide was purified to homogeneity in the presence of urea by Sephadex G-50 and CM-cellulose chromatography. The peptide consists of 59 residues, with a molecular weight of 6750. The NH2-terminal of the peptide has a 16-residue sequence overlap with the previously determined NH2-terminal sequence of the native enzyme. The activator site pyridoxyl-P lysine is identified as residue 38 of the native enzyme's NH2 terminus. The ADP-glucose-protected site CNBr [3H]pyridoxyl peptide was purified to homogeneity by Sephadex G-50 and DEAE-cellulose chromatography. The peptide consists of 21 residues, with a molecular weight of 2460. The sequence of this peptide has been elucidated.  相似文献   

9.
Structural characterization of the glycinin precursors   总被引:21,自引:0,他引:21  
Poly(A)-RNAs enriched for glycinin coding sequences were injected into frog oocytes and translated in the presence of either [3H]leucine or [3H]isoleucine. Sodium dodecyl sulfate electrophoresis indicated that radioactive proteins similar in size to the authentic acidic and basic polypeptide components of glycinin were not present among the glycinin-related proteins synthesized. Instead, high molecular weight precursors (Mr = 58,000-67,000) were immunoprecipitated. Unlike disulfide-linked native glycinin complexes which were cleaved by disulfide reduction, products purified from either rabbit reticulocyte lysate or oocyte translation systems were insensitive to reducing agents. The glycinin-related proteins synthesized in the oocyte were 1000 to 2000 daltons smaller than those synthesized in the reticulocyte lysate system. This result, which suggested that the oocyte system had removed NH2-terminal leader sequences of the preglycinin polypeptides, was confirmed by NH2-terminal sequence analysis of proteins synthesized in oocytes. Radioactive label was found exactly at the positions predicted by the NH2-terminal sequences of the acidic polypeptide component of native glycinin. Glycinin precursors, therefore, have an NH2-terminal leader sequence followed by the acidic peptide component and then the basic polypeptide component, joined in peptide linkage.  相似文献   

10.
The sn-glycerol-3-phosphate acyltransferase from Escherichia coli, an integral membrane protein whose activity is dependent on phospholipids, was purified to near homogeneity (Green, P. R., Merrill, A. H., Jr., and Bell, R. M., (1981) J. Biol. Chem. 256, 11151-11159). Determination of a partial NH2-terminal sequence and the COOH terminus permitted alignment of the polypeptide on the sequenced sn-glycerol-3-phosphate acyltransferase structural gene (Lightner, V. A., Bell, R. M., and Modrich, P. (1983) J. Biol. Chem. 258, 10856-10861). Processing of the sn-glycerol-3-phosphate acyltransferase is apparently limited to the removal of the NH2-terminal formylmethionine. Thirteen of 27 possible cyanogen bromide peptides predicted from the DNA sequence were purified, characterized, and assigned to their location in the primary structure. Three peptides located at positions throughout the sequence were partially sequenced by automated Edman degradation. The partial sequence analysis of the homogeneous sn-glycerol-3-phosphate acyltransferase is fully in accord with the primary structure inferred from the DNA sequence.  相似文献   

11.
Disulfide bond (Dsb) formation is catalyzed in the periplasm of prokaryotes by the Dsb proteins. DsbB, a key enzyme in this process, generates disulfides de novo by using the oxidizing power of quinones. To explore the mechanism of this newly described enzymatic activity, we decided to study the ubiquinone-protein interaction and identify the ubiquinone-binding domain in DsbB by cross-linking to photoactivatable quinone analogues. When purified Escherichia coli DsbB was incubated with an azidoubiquinone derivative, 3-azido-2-methyl-5-[(3)H]methoxy-6-decyl-1,4-benzoquinone ([(3)H]azido-Q), and illuminated with long wavelength UV light, the decrease in enzymatic activity correlated with the amount of 3-azido-2-methyl-5-methoxy-6-decyl-1,4-benzoquinone (azido-Q) incorporated into the protein. One azido-Q-linked peptide with a retention time of 33.5 min was obtained by high performance liquid chromatography of the V8 digest of [(3)H]azido-Q-labeled DsbB. This peptide has a partial NH(2)-terminal amino acid sequence of NH(2)-HTMLQLY corresponding to residues 91-97. This sequence occurs in the second periplasmic domain of the inner membrane protein DsbB in a loop connecting transmembrane helices 3 and 4. We propose that the quinone-binding site is within or very near to this sequence.  相似文献   

12.
Acylpeptide hydrolase activity from erythrocytes   总被引:3,自引:0,他引:3  
Acylpeptide hydrolase, which cleaves the NH2-terminal acetylated or formylated amino acid from a blocked peptide, has been purified to apparent homogeneity from human erythrocytes. The enzyme catalyzes the hydrolysis of a diverse number of peptides and displays different pH optima for certain substrates in doing so. Zinc inhibits to the same extent the hydrolysis of both the most efficient and the least efficient substrates. This enzyme may play a pivotal role in the processing of polypeptide chains during biosynthesis.  相似文献   

13.
Highly purified hepatic microsomal epoxide hydrase, which had been purified in the presence of proteolytic enzyme inhibitors, was subjected to carboxypeptidase Y digestion, automated Edman degradation, and carbohydrate analysis. Carboxypeptidase Y digestion resulted in the near stoichiometric release of leucine, the COOH-terminal amino acid. Automated Edman degradation permitted the identification of the first 20 amino acid residues of epoxide hydrase. Methionine was identified as the NH2-terminal residue. The NH2-terminal region of epoxide hydrase is similar in hydrophobicity to the NH2-terminal precursor segments of several secretory proteins and the NH2-terminal regions of several microsomal cytochromes P-450. Carbohydrate analyses of the enzyme revealed the presence of 0.5 to 1.0 mol of mannose/50,000 g of protein. These results provide evidence for the presence of a single polypeptide chain in our purified enzyme preparations and suggest that there may be only one enzymic form of epoxide hydrase in microsomes from phenobarbital-treated rats.  相似文献   

14.
Human thymidylate synthase [EC 2.1.1.45] was purified to homogeneity and its NH2-terminal amino acid sequence was determined taking advantage of the following facts: i) The source of the enzyme was a transformant of mouse FM3A mutant cells which lacks mouse thymidylate synthase but overproduces human thymidylate synthase. ii) The enzyme could be purified on two kinds of affinity column, Cibacron blue dye-bound agarose and methotrexate-bound Sepharose. iii) The enzyme could finally be separated from a trace of impurities by electrophoresis on polyacrylamide gel containing sodium dodecyl sulfate. The purified human thymidylate synthase had a subunit with a molecular weight of 33,000, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme was subjected to Edman degradation and the NH2-terminal 24 amino acids were sequenced by successive use of a high-sensitivity gas-phase protein sequencer and high performance liquid chromatography to be as follows: Pro-Val-Ala-Gly-Ser-Glu-Leu-Pro-Arg-Arg-Pro-Leu-Pro-Pro-Ala-Ala-Gln-Glu- Arg-Asp -Ala-Glu-Pro-Arg-.  相似文献   

15.
A selective acetylation of the prostaglandin-forming fatty acid oxygenase (part of the prostaglandin "synthetase" system) occurs with 100 muM concentrations of aspirin (acetylsalicylic acid). The amount of acetylation, measured by counting the [3H]acetyl-protein formed, was proportional to the amount of active, functional oxygenase in a sample. When samples were aged to allow spontaneous inactivation of the oxygenase, the amount of acetylation was proportional to the remaining measurable activity rather than the initial amount of oxygenase protein in the sample. Diethyl dithiocarbamate inhibited the oxygenase activity, but did not interfere with the subsequent acetylation by aspirin. Indomethacin, on the other hand, appeared to inactivate the oxygenase in a manner that interfered only partially with the action of aspirin as an acetylating reagent. The amount of acetylation appeared to be dependent upon the amount of native, undenatured enzyme. The results suggest that the acetylation may be dependent upon an essential functional group or conformation of groups in the catalytic peptide chain(s) that can be destroyed during spontaneous inactivation of the oxygenase, and altered by indomethacin.  相似文献   

16.
Rat kidney microsomal UDP-glucuronyltransferase activities toward phenoic xenobiotics were enhanced about 4-5-fold by treatment of the animal with beta-naphthoflavone. The transferase activity toward serotonin, an endogenous substrate, was also enhanced about 7.5-fold. A form of UDP-glucuronyltransferase was purified from kidney microsomes of beta-naphthoflavone-treated rat by solubilization with sodium cholate and two steps of column chromatography, the first with DEAE-Toyopearl (fast flow rate liquid chromatography:FFLC) and the second with UDP-hexanolamine Sepharose 4B (affinity chromatography). These procedures gave about 39-fold purification and 11.5% yield of the transferase activity toward 1-naphthol. The preparation, tentatively termed "GT-2," was highly purified as judged from the single protein band (Mr 54,000) on sodium dodecylsulfate (SDS)-polyacrylamide slab gel electrophoresis. It catalyzed the glucuronidation of not only phenolic xenobiotics such as 1-naphthol, 4-nitrophenol, and 4-methylumbelliferone but also serotonin. From the result that apparent molecular weight of GT-2 was reduced to 50,000 by endo-beta-N-acetylglucosaminidase H (Endo H)-treatment, GT-2 was found to be a 50,000 Da polypeptide carrying "high mannose" type oligosaccharide chain(s). The NH2-terminal sequence of 20 residues of GT-2 was determined to be Asp-Lys-Leu-Leu-Val-Val-Pro-Gln-Asp-Gly-Ser-His-Trp-Leu-Ser-Met-Lys-Glu- Ile-Val . It was observed that there are two amino acids substitutions in the seven NH2-terminal residues in comparison with GT-1, which was purified from liver microsomes of 3-methylcholanthrene-treated rat. The NH2-terminal sequence of GT-2 was found to be homologous with the NH2-terminal sequence from the 26th to 46th amino acid residue of various UDP-glucuronyltransferase cloned by other investigators.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
beta 1----4 Galactosyltransferase was purified from rat liver microsomes. Catalytic properties of the enzyme resembled those of previously purified soluble and membrane-bound beta 1----4 galactosyltransferases. The enzyme purified in the present study showed a major band around a molecular weight of 53,000 on SDS-PAGE. The NH2-terminal sequence of the enzyme was determined up to the 20th residue. The sequence was identical to the amino acid sequence from Ala-13 to Lys-32 deduced from mouse beta 1----4 galactosyltransferase cDNA. These results suggest that most of the mature enzyme in rat liver microsomes is produced by removal of the NH2-terminal 12 amino acids from a precursor polypeptide.  相似文献   

18.
Extracellular alpha-amylase was purified to homogeneity from a Marburg strain of Bacillus subtilis. The enzyme is a single polypeptide chain of molecular weight approximately 67,000. Its NH2-terminal amino acid sequence is Leu-Thr-Ala-Pro-Ser-Ile-Lys. A membrane-derived alpha-amylase was solubilizing from membrane vesicles by treatment with Triton X-100 and was highly purified by chromatography on an anti-alpha-amylase-protein A-Sepharose column. Membrane-derived alpha-amylase was indistinguishable from the soluble extracellular enzyme by sodium dodecyl sulfate-gel electrophoresis and radioimmunoassay. The membrane-derived enzyme contains phospholipid. Approximately 30 to 80% of the phospholipid was extracted from the purified enzyme by chloroform:methanol. The extracted phospholipid was predominately phosphatidylethanolamine. Treatment with phospholipase D released phosphatidic acid. Membrane-bound alpha-amylase was latent in membrane vesicles. Release of membrane-bound alpha-amylase from vesicles by an endogenous enzyme was maximal at pH 8.5, was inhibited by metal chelators and diisopropyl fluorophosphate and was stimulated by Ca2+ and Mg2+. The amount of membrane-bound alpha-amylase was related to the level of secretion.  相似文献   

19.
The Bacillus subtilis gene encoding glutamine phosphoribosylpyrophosphate amidotransferase (amidophosphoribosyltransferase) was cloned in pBR322. This gene is designated purF by analogy with the corresponding gene in Escherichia coli. B. subtilis purF was expressed in E. coli from a plasmid promoter. The plasmid-encoded enzyme was functional in vivo and complemented an E. coli purF mutant strain. The nucleotide sequence of a 1651-base pair B. subtilis DNA fragment was determined, thus localizing the 1428-base pair structural gene. A primary translation product of 476 amino acid residues was deduced from the DNA sequence. Comparison with the previously determined NH2-terminal amino acid sequence indicates that 11 residues are proteolytically removed from the NH2 terminus, leaving a protein chain of 465 residues having an NH2-terminal active site cysteine residue. Plasmid-encoded B. subtilis amidophosphoribosyltransferase was purified from E. coli cells and compared to the enzymes from B. subtilis and E. coli. The plasmid-encoded enzyme was similar in properties to amidophosphoribosyltransferase obtained from B. subtilis. Enzyme specific activity, immunological reactivity, in vitro lability to O2, Fe-S content, and NH2-terminal processing were virtually identical with amidophosphoribosyltransferase purified from B. subtilis. Thus E. coli correctly processed the NH2 terminus and assembled [4Fe-4S] centers in B. subtilis amidophosphoribosyltransferase although it does not perform these maturation steps on its own enzyme. Amino acid sequence comparison indicates that the B. subtilis and E. coli enzymes are homologous. Catalytic and regulatory domains were tentatively identified based on comparison with E. coli amidophosphoribosyltransferase and other phosphoribosyltransferase (Argos, P., Hanei, M., Wilson, J., and Kelley, W. (1983) J. Biol. Chem. 258, 6450-6457).  相似文献   

20.
AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) has been purified to apparent homogeneity from rat muscle. The preparation exhibits a single polypeptide band with a molecular weight of 60,000 on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme has a sedimentation coefficient of 11.3 S. Analysis by sedimentation equilibrium techniques showed the nat-ive enzyme to have a molecular weight of 238,000, whereas the enzyme, when analyzed in 6 M guanidine hydrochloride and 10 mM 2-mercaptoethanol, had a molecular weight of only 59,500. The amino acid composition of the enzyme was determined and peptide mapping was performed on a tryptic digest of S-carboxymethylated enzyme. NH2-terminal analysis by both the dansylation and cyanate procedures failed to identify a free NH2 terminus. Treatment of the enzyme with carboxypeptidase A resulted in the release of approximately 0.5 mol each of valine and leucine per 60,000 g of enzyme. The data presented indicate that hte native enzyme has a tetrameric structure consisting of four polypeptide chains each having a molecular weight of 60,000. The COOH-terminal analysis can be interpreted either as an indication of subunit heterogeneity or as a result of incomplete digestion of a -X-Leu-Val sequence at the end of a single type of polypeptide chain. Tryptic peptide maps strongly support the latter interpretation and suggest that the subunits are essentially identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号