首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have studied Ca transport and the Ca-activated Mg-ATPase in plasma membrane vesicles prepared from normal human lymphocytes. Membrane vesicles that were exposed to oxalate as a Ca-trapping agent accumulated Ca in the presence of Mg2+ and ATP. ADP, AMP, GTP, UTP, ITP, TTP, or CTP did not substitute for ATP in energizing uptake. The Vmax for Ca uptake was 2.4 pmol of Ca/micrograms of protein/min, and the Km values for Ca and ATP were 1.0 and 80 microM, respectively. One microM A23187, added initially, completely inhibited net Ca uptake and, if added later, caused the release of Ca accumulated previously. Cyanide, oligomycin, ouabain, or varying Na+ or K+ concentrations had no effect on Ca uptake. A Ca-activated ATPase was present in the same membrane vesicles, which had a Vmax of 25 pmol of Pi/micrograms of protein/min at a free Ca concentration of 4-5 microM. This Ca-ATPase had Km values for Ca and ATP of 0.6 and 90 microM, respectively. These kinetic parameters were similar to those observed for uptake of Ca by the vesicles. The Ca-ATPase activity was insensitive to azide, oligomycin, ouabain, or varying Na+ or K+ concentrations. No Ca-activated hydrolysis of GTP or UTP was observed. Both Ca transport and the Ca-ATPase activity of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid-treated lymphocyte plasma membranes were stimulated 2-fold by a cytoplasmic component (calmodulin) that was purified 500-fold from lymphocyte cytoplasm. Thus, human lymphocyte plasma membranes have both a Ca transport activity and a Ca-stimulated ATPase activity with similar substrate affinities and specificities and similar sensitivities to calmodulin.  相似文献   

2.
1. Calcium transport and ATPase activities were determined in microsomal vesicles from pancreatic tissue enriched in endoplasmic reticulum membranes. 2. Calcium transport and ATPase share the following properties: (i) magnesium was required with a K0.5 of 0.7 mM and maximal pumping ATPase activity at 5 mM Mg-ATP; (ii) at saturating magnesium concentrations, calcium increased ATP splitting activity up to three times with an apparent K0.5 close to 0.3 microM calcium; (iii) potassium stimulated the high calcium affinity Mg2+-dependent ATPase and calcium transport. 3.The properties of the calcium pumping system fulfil the cationic and substrate requirements from a physiological point of view.  相似文献   

3.
We have studied the mechanisms involved in calcium (Ca2+) transport through the basal plasma membranes (BPM) of the syncytiotrophoblast cells from full-term human placenta. These purified membranes were enriched 25-fold in Na+/K(+)-adenosine triphosphate (ATPase), 37-fold in [3H] dihydroalprenolol binding sites, and fivefold in alkaline phosphatase activity compared with the placenta homogenates. In the absence of ATP and Mg2+, a basal Ca2+ uptake was observed, which followed Michaelis-Menten kinetics, with a Km Ca2+ of 0.18 +/- 0.05 microM and Vmax of 0.93 +/- 0.11 nmol/mg/min. The addition of Mg2+ to the incubation medium significantly decreased this uptake in a concentration-dependent manner, with a maximal inhibition at 3 mM Mg2+ and above. The Lineweaver-Burk plots of Ca2+ uptake in the absence and in the presence of 1 mM Mg2+ suggest a noncompetitive type of inhibition. Preloading the BPM vesicles with 5 mM Mg2+ had no significant effect on Ca2+ uptake, eliminating the hypothesis of a Ca2+/Mg2+ exchange mechanism. This ATP-independent Ca2+ uptake was not sensitive to 10(-6) M nitrendipine nor to 10(-4) M verapamil. An ATP-dependent Ca2+ transport was also detected in these BPM, whose Km Ca2+ was 0.09 +/- 0.02 microM and Vmax 3.4 +/- 0.2 nmoles/mg/3 min. This Ca2+ transport requires Mg2+, the optimal concentration of Mg2+ being approximately 1 mM. Preincubation of the membrane with 10(-6) M calmodulin strongly enhanced the initial ATP-dependent Ca2+ uptake. Finally, no Na+/Ca2+ exchange process could be demonstrated.  相似文献   

4.
Low concentrations of free Ca2+ stimulated the hydrolysis of ATP by plasma membrane vesicles purified from guinea pig neutrophils and incubated in 100 mM HEPES/triethanolamine, pH 7.25. In the absence of exogenous magnesium, apparent values obtained were 320 nM (EC50 for free Ca2+), 17.7 nmol of Pi/mg X min (Vmax), and 26 microM (Km for total ATP). Studies using trans- 1,2-diaminocyclohexane- N,N,N',N',-tetraacetic acid as a chelator showed this activity was dependent on 13 microM magnesium, endogenous to the medium plus membranes. Without added Mg2+, Ca2+ stimulated the hydrolysis of several other nucleotides: ATP congruent to GTP congruent to CTP congruent to ITP greater than UTP, but Ca2+-stimulated ATPase was not coupled to uptake of Ca2+, even in the presence of 5 mM oxalate. When 1 mM MgCl2 was added, the vesicles demonstrated oxalate and ATP-dependent calcium uptake at approximately 8 nmol of Ca2+/mg X min (based on total membrane protein). Ca2+ uptake increased to a maximum of approximately 17-20 nmol of Ca2+/mg X min when KCl replaced HEPES/triethanolamine in the buffer. In the presence of both KCl and MgCl2, Ca2+ stimulated the hydrolysis of ATP selectively over other nucleotides. Apparent values obtained for the Ca2+-stimulated ATPase were 440 nM (EC50 for free Ca2+), 17.5 nmol Pi/mg X min (Vmax) and 100 microM (Km for total ATP). Similar values were found for Ca2+ uptake which was coupled efficiently to Ca2+-stimulated ATPase with a molar ratio of 2.1 +/- 0.1. Exogenous calmodulin had no effect on the Vmax or EC50 for free Ca2+ of the Ca2+-stimulated ATPase, either in the presence or absence of added Mg2+, with or without an ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N',-tetraacetic acid pretreatment of the vesicles. The data demonstrate that calcium stimulates ATP hydrolysis by neutrophil plasma membranes that is coupled optimally to transport of Ca2+ in the presence of concentrations of K+ and Mg2+ that appear to mimic intracellular levels.  相似文献   

5.
Calcium accumulation by two fractions of sarcoplasmic reticulum presumably derived from longitudinal tubules (light vesicles) and terminal cisternae (heavy vesicles) was examined radiochemically in the presence of various free Mg2+ concentrations. Both fractions of sarcoplasmic reticulum exhibited a Mg2+-dependent increase in phosphate-supported calcium uptake velocity, though half-maximal velocity in heavy vesicles occurred at a much higher free Mg2+ concentration than that in light vesicles (i.e., approx. 0.90 mM vs. approx. 0.02 mM Mg2+). Calcium uptake velocity in light vesicles correlated with Ca2+-dependent ATPase activity, suggesting that Mg2+ stimulated the calcium pump. Calcium uptake velocity in heavy vesicles did not correlate with Ca2+-dependent ATPase activity, although a Mg2+-dependent increase in calcium influx was observed. Thus, Mg2+ may increase the coupling of ATP hydrolysis to calcium transport in heavy vesicles. Analyses of calcium sequestration (in the absence of phosphate) showed a similar trend in that elevation of Mg2+ from 0.07 to 5 mM stimulated calcium sequestration in heavy vesicles much more than in light vesicles. This difference between the two fractions of sarcoplasmic reticulum was not explained by phosphoenzyme (EP) level or distribution. Analyses of calcium uptake, Ca2+-dependent ATPase activity, and unidirectional calcium flux in the presence of approx. 0.4 mM Mg2+ suggested that ruthenium red (0.5 microM) can also increase the coupling of ATP hydrolysis to calcium transport in heavy vesicles, with no effect in light vesicles. These functional differences between light and heavy vesicles suggest that calcium transport in terminal cisternae is regulated differently from that in longitudinal tubules.  相似文献   

6.
Purified plasma membrane vesicles from GH3 rat anterior pituitary cells exhibit a Mg2+-ATP-dependent Ca2+ transport activity. Concentrative uptake of Ca2+ is abolished by exclusion of either Mg2+ or ATP or by inclusion of the Ca2+ ionophore A23187. Furthermore, addition of A23187 to vesicles which have reached a steady state of ATP-supported Ca2+ accumulation rapidly and completely discharges accumulated cation. Ca2+ uptake is unaffected by treatment of vesicles with oligomycin, the uncoupler CCCP, or valinomycin and is greatly reduced in non-plasma membrane fractions. Likewise, Ca2+ accumulation is not stimulated by oxalate, consistent with the plasma membrane origin of this transport system. (Na+, K+)-ATPase participation in the Ca2+ transport process (i.e. via coupled Na+/Ca2+ exchange) was eliminated by omitting Na+ and including ouabain in the reaction medium. Ca2+ transport activity in GH3 vesicles has a similar pH dependence as that seen in a number of other plasma membrane systems and is inhibited by orthovanadate in the micromolar range. Inhibition is enhanced if the membranes are preincubated with vanadate for a short time. A kinetic analysis of transport indicates that the apparent Km for free Ca2+ and ATP are 0.7 and 125 microM, respectively. The average Vmax is 3.6 nmol of Ca2+/min/mg of protein at 37 degrees C. Addition of exogenous calmodulin or calmodulin antagonists had no significant effect on these kinetic properties. GH3 plasma membranes also contain a Na+/Ca2+ exchange system. The apparent Km for Ca2+ is almost 10-fold higher in this system than that for ATP-driven Ca2+ uptake. When both processes are compared under similar conditions, the Vmax of the exchanger is approximately 2-3 times that of ATP-dependent Ca2+ accumulation. Similar results are obtained when purified plasma membranes from bovine anterior pituitary glands were investigated. It is suggested that both Na+/Ca2+ exchange and the (Ca2+ + Mg2+)-ATPase are important in controlling intracellular levels of Ca2+ in anterior pituitary cells.  相似文献   

7.
We report here characterization of calmodulin-stimulated Ca2+ transport activities in synaptic plasma membranes (SPM). The calcium transport activity consists of a Ca2+-stimulated, Mg2+-dependent ATP hydrolysis coupled with ATP-dependent Ca2+ uptake into membraneous sacs on the cytosolic face of the synaptosomal membrane. These transport activities have been found in synaptosomal subfractions to be located primarily in SPM-1 and SPM-2. Both Ca2+-ATPase and ATP-dependent Ca2+ uptake require calmodulin for maximal activity (KCm for ATPase = 60 nM; KCm for uptake = 50 nM). In the reconstituted membrane system, KCa was found to be 0.8 microM for Ca2+-ATPase and 0.4 microM for Ca2+ uptake. These results demonstrate for the first time the calmodulin requirements for the Ca2+ pump in SPM when Ca2+ ATPase and Ca2+ uptake are assayed under functionally coupled conditions. They suggest that calmodulin association with the membrane calcium pump is regulated by the level of free Ca2+ in the cytoplasm. The activation by calmodulin, in turn, regulates the cytosolic Ca2+ levels in a feedback process. These studies expand the calmodulin hypothesis of synaptic transmission to include activation of a high-affinity Ca2+ + Mg2+ ATPase as a regulator for cytosolic Ca2+.  相似文献   

8.
Calcium accumulation by purified vesicles derived from basolateral membranes of kidney proximal tubules was reversibly inhibited by micromolar concentrations of 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), an inhibitor of anion transport. The inhibitory effect of this compound on Ca2+ uptake cannot be attributed solely to the inhibition of anion transport: (Ca(2+)+Mg2+)ATPase and ATP-dependent Ca2+ transport, respectively. The rate constant of EGTA-induced Ca2+ efflux from preloaded vesicles was not affected by DIDS, indicating that this compound does not increase the permeability of the membrane vesicles to Ca2+. In the presence of DIDS, the effects of the physiological ligands Ca2+, Mg2+, and ATP on (Ca(2+)+Mg2+)ATPase activity were modified. The Ca2+ concentration that inhibited (Ca(2+)+Mg2+)ATPase activity in the low-affinity range decreased from 91 to 40 microM, but DIDS had no effect on the Km for Ca2+ in the high-affinity, stimulatory range. Free Mg2+ activated (Ca(2+)+Mg2+)ATPase activity at a low Ca2+ concentration, and DIDS impaired this stimulation in a noncompetitive fashion. The inhibition by DIDS was eliminated when the free ATP concentration of the medium was raised from 0.3 to 8 mM, possibly due to an increase in the turnover of the enzyme caused by free ATP accelerating the E2----E1 transition, and leading to a decrease in the proportion of E2 forms under steady-state conditions. Alkaline pH totally abolished the inhibition of the (Ca(2+)+Mg2+)ATPase activity by DIDS, with a half-maximal effect at pH 8.3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Basolateral membrane vesicles were prepared from purified proximal and distal tubules of the rabbit kidney. The properties of the ATP-dependent Ca2+ transport were investigated. In both membranes, there was a high affinity, ATP-dependent Ca2+ transport system (Km = 0.1 microM). The optimal concentration of Mg2+ was 0.5 mM and the optimal concentration of ATP was 1 mM. The nucleotide specificity and pH dependence of the Ca2+ transport in both membranes were similar. In basolateral membrane vesicles, calmodulin had no effect on Ca2+ transport. However, in basolateral membrane vesicles depleted of calmodulin, exogenous calmodulin increased the Ca2+ transport by increasing maximal velocity. There were no major differences in the properties of the ATP-dependent Ca2+ transport system in these two membranes. These findings are discussed in relation to why parathyroid hormone differentially modulates Ca2+ transport in these two segments of the nephron.  相似文献   

10.
Characterization of the plasma membrane ATPase of Candida tropicalis   总被引:1,自引:0,他引:1  
1) Plasma membrane vesicles from Candida tropicalis were isolated from protoplasts by differential centrifugation and purified in a continuous sucrose gradient. 2) The plasma membrane bound ATPase was characterized. It is highly specific for ATP and requires Mg2+. It is stimulated by K+, Na+ and NH4+. Lineweaver-Burk plots for ATPase activity are linear with a Vmax of 4.2 mumoles of ATP hydrolyzed min-1.mg-1 protein and a Km for ATP of 0.76 mM. The ATPase activity is inhibited competitively by ADP with a Ki of 1.7 mM and non competitively by vanadate with a Ki of 3 microM. The activity is unaffected by oligomycin or azide but is sensitive to DCCD.  相似文献   

11.
We have measured the uptake of arginine into vacuolar membrane vesicles from Neurospora crassa. Arginine transport was found to be dependent on ATP hydrolysis, Mg2+, time, and vesicle protein with transported arginine remaining unmodified after entry into the vesicles. The Mg2+ concentration required for optimal arginine transport varied with the ATP concentration so that maximal transport occurred when the MgATP2- concentration was at a maximum and the concentrations of free ATP and Mg2+ were at a minimum. Arginine transport exhibited Michaelis-Menten kinetics when the arginine concentration was varied (Km = 0.4 mM). In contrast, arginine transport did not follow Michaelis-Menten kinetics when the MgATP2-concentration was varied (S0.5 = 0.12 mM). There was no inhibition of arginine transport when glutamine, ornithine, or lysine were included in the assay mixture. In contrast, arginine transport was inhibited 43% when D-arginine was present at a concentration 16-fold higher than that of L-arginine. Measurements of the internal vesicle volume established that arginine is concentrated 14-fold relative to the external concentration. Arginine transport was inhibited by dicyclohexylcarbodiimide, carbonyl cyanide m-chlorophenyl-hydrazone, and potassium nitrate (an inhibitor of vacuolar ATPase activity). Inhibitors of the plasma membrane or mitochondrial ATPase such as sodium vanadate or sodium azide did not affect arginine transport activity. In addition, arginine transport had a nucleoside triphosphate specificity similar to that of the vacuolar ATPase. These results suggest that arginine transport is dependent on vacuolar ATPase activity and an intact proton channel and proton gradient.  相似文献   

12.
We determined and characterized the Mg2+-dependent, Ca2+-stimulated ATPase (Ca-ATPase) activity in cell plasma membranes from the myometrium of pregnant women, and compared these characteristics to those of the active Ca2+-transport already demonstrated in this tissue. Similarly to the Ca2+-transport system, the Ca2+-ATPase is Mg2+-dependent, stimulated by calmodulin, and inhibited by vanadate. The Km for Ca2+ activation is 0.40 microM, very similar to that found for active calcium transport, i.e. 0.25 microM. Consequently, this Ca2+-ATPase can be responsible for the active calcium transport across the plasma membranes of smooth muscle cells.  相似文献   

13.
The primary structure of a region of the erythrocyte plasma membrane calcium pump which is phosphorylated by the cAMP-dependent protein kinase has been determined. The sequence is A-P-T-K-R-N-S-S(P)-P-P-P-S-P-D. The site is located between the calmodulin binding domain and the C-terminus of the ATPase. The ATPase is phosphorylated only at this site by the cAMP-dependent protein kinase, and the phosphorylation is inhibited by calmodulin. The effect of the phosphorylation is to decrease the Km for Ca2+ of the purified ATPase from about 10 microM to about 1.4 microM and to increase the Vmax of ATP hydrolysis about 2-fold.  相似文献   

14.
A unique cytoplast preparation from Ehrlich ascites tumor cells (G. V. Henius, P. C. Laris, and J. D. Woodburn (1979) Exp. Cell. Res. 121, 337-345), highly enriched in plasma membranes, was employed to characterize the high-affinity plasma membrane calcium-extrusion pump and its associated adenosine triphosphatase (ATPase). An ATP-dependent calcium-transport system which had a high affinity for free calcium (K0.5 = 0.040 +/- 0.005 microM) was identified. Two different calcium-stimulated ATPase activities were detected. One had a low (K0.5 = 136 +/- 10 microM) and the other a high (K0.5 = 0.103 +/- 0.077 microM) affinity for free calcium. The high-affinity enzyme appeared to represent the ubiquitous high-affinity plasma membrane (Ca2+ + Mg2+)-ATPase (calcium-stimulated, magnesium-dependent ATPase) seen in normal cells. Both calcium transport and the (Ca2+ + Mg2+)-ATPase were significantly stimulated by the calcium-dependent regulatory protein calmodulin, especially when endogenous activator was removed by treatment with the calcium chelator ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid. Other similarities between calcium transport and the (Ca2+ + Mg2+)-ATPase included an insensitivity to ouabain (0.5 mM), lack of activation by potassium (20 mM), and a requirement for magnesium. These similar properties suggested that the (Ca2+ + Mg2+)-ATPase represents the enzymatic basis of the high-affinity calcium pump. The calcium pump/enzyme system was inhibited by orthovanadate at comparatively high concentrations (calcium transport: K0.5 congruent to 100 microM; (Ca2+ + Mg2+)-ATPase: K0.5 greater than 100 microM). Upon Hill analysis, the tumor cell (Ca2+ + Mg2+)-ATPase failed to exhibit cooperative activation by calcium which is characteristic of the analogous enzyme in the plasma membrane of normal cells.  相似文献   

15.
A plasma membrane-enriched fraction from rat myometrium shows ATP-Mg2+-dependent active calcium uptake which is independent of the presence of oxalate and is abolished by the Ca2+ ionophore A23187. Ca2+ loaded into vesicles via the ATP-dependent Ca2+ uptake was released by extravesicular Na+. This showed that the Na+/Ca2+ exchange and the Ca2+ uptake were both occurring in plasma membrane vesicles. In a medium containing KCl, vanadate readily inhibited the Ca2+ uptake (K1/2 5 microM); when sucrose replaced KCl, 400 microM-vanadate was required for half inhibition. Only a slight stimulation of the calcium pump by calmodulin was observed in untreated membrane vesicles. Extraction of endogenous calmodulin from the membranes by EGTA decreased the activity and Ca2+ affinity of the calcium pump; both activity and affinity were fully restored by adding back calmodulin or by limited proteolysis. A monoclonal antibody (JA3) directed against the human erythrocyte Ca2+ pump reacted with the 140 kDa Ca2+-pump protein of the myometrial plasma membrane. The Ca2+-ATPase activity of these membranes is not specific for ATP, and is not inhibited by mercurial agents, whereas Ca2+ uptake has the opposite properties. Ca2+-ATPase activity is also over 100 times that of calcium transport; it appears that the ATPase responsible for transport is largely masked by the presence of another Ca2+-ATPase of unknown function. Measurements of total Ca2+-ATPase activity are, therefore, probably not directly relevant to the question of intracellular Ca2+ control.  相似文献   

16.
The rate of calcium transport by sarcoplasmic reticulum vesicles from dog heart assayed at 25 degrees C, pH 7.0, in the presence of oxalate and a low free Ca2+ concentration (approx. 0.5 microM) was increased from 0.091 to 0.162 mumol . mg-1 . min-1 with 100 nM calmodulin, when the calcium-, calmodulin-dependent phosphorylation was carried out prior to the determination of calcium uptake in the presence of a higher concentration of free Ca2+ (preincubation with magnesium, ATP and 100 microM CaCl2; approx. 75 microM free Ca2+). Half-maximal activation of calcium uptake occurs under these conditions at 10-20 nM calmodulin. The rate of calcium-activated ATP hydrolysis by the Ca2+-, Mg2+-dependent transport ATPase of sarcoplasmic reticulum was increased by 100 nM calmodulin in parallel with the increase in calcium transport; calcium-independent ATP splitting was unaffected. The calcium-, calmodulin-dependent phosphorylation of sarcoplasmic reticulum, preincubated with approx. 75 microM Ca2+ and assayed at approx. 10 microM Ca2+ approaches maximally 3 nmol/mg protein, with a half-maximal activation at about 8 nM calmodulin; it is abolished by 0.5 mM trifluperazine. More than 90% of the incorporated [32P]phosphate is confined to a 9-11 kDa protein, which is also phosphorylated by the catalytic subunit of the cAMP-dependent protein kinase and most probably represents a subunit of phospholamban. The stimulatory effect of 100 nM calmodulin on the rate of calcium uptake assayed at 0.5 microM Ca2+ was smaller following preincubation of sarcoplasmic reticulum vesicles with calmodulin in the presence of approx. 75 microM Ca2+, but in the absence of ATP, and was associated with a significant degree of calmodulin-dependent phosphorylation. However, the stimulatory effect on calcium uptake and that on calmodulin-dependent phosphorylation were both absent after preincubation with calmodulin, without calcium and ATP, suggestive of a causal relationship between these processes.  相似文献   

17.
The role of the plasma membrane in the regulation of lens fiber cell cytosolic Ca2+ concentration has been examined using a vesicular preparation derived from calf lenses. Calcium accumulation by these vesicles was ATP dependent, and was releasable by the ionophore A23187, indicating that calcium was transported into a vesicular space. Calcium accumulation was stimulated by Ca2+ (K1/2 = 0.08 microM Ca2+) potassium (maximally at 50 mM K+), and cAMP-dependent protein kinase; it was inhibited by both vanadate (IC50 = 5 microM) and the calmodulin inhibitor R24571 (IC50 = 5 microM), indicating that this pump was plasma-membrane derived and likely calmodulin dependent. Valinomycin, in the presence of K+, stimulated calcium uptake, suggesting that the calcium pump either countertransports K+, or is regulated in an electrogenic fashion. Inhibition of calcium uptake by selenite and p-chloromercuribenzoate demonstrates the presence of an essential -SH group(s) in this enzyme. Calcium release from calcium-filled lens vesicles was enhanced by Na+, demonstrating that these vesicles also contain a Na:Ca exchange carrier. p-Chloromercuribenzoate and p-chloromercuribenzoate sulfonic acid also promoted calcium release from calcium-filled vesicles, suggesting that this release, like calcium uptake, is in part mediated by a cysteine-containing protein. We conclude that lens fiber cell cytosolic Ca2+ concentration could be regulated by a number of plasma membrane processes. The sensitivity of both calcium uptake and release to -SH reagents has implications in lens cataract formation, where oxidation of lens proteins has been proposed to account for the elevated cytosolic Ca2+ in this condition.  相似文献   

18.
The ATP production of human erythrocytes in the steady state (approximately 2 mmoles . 1 cells-1 . h-1, 37 degrees C, pHi 7.2) is maintained by glycolysis and the ATP consumption is essentially limited to the cell membrane. About 25% of the ATP consumption is used for ion transport ATPases. The bulk of the ATP consuming processes in intact erythrocytes remains poorly understood. "Isotonic" erythrocyte membranes prepared under approximate intracellular conditions after freeze-thaw hemolysis have high (Ca2+, Mg2+)-ATPase activities (80% of the total membrane ATPase activity). There is a great discrepancy between the high capacity of the (Ca2+, Mg2+)-ATPase in isotonic membranes and the actual activity in the intact cell. The (Ca2+, Mg2+)-ATPase of isotonic membranes has a "high" Ca2+-affinity (Ka less than 0.5 microM) and a "low" Mg-ATP affinity (Km approximately 760 microM). This state of (Ca2+, Mg2+)-ATPase is caused by the association of calmodulin and 30000 Dalton polypeptides (ATP affinity modulator protein). Hypotonic washings of isotonic membranes result in a loss of the 30 kD polypeptides. EGTA (0.5 mM) extracts derived from isotonic membranes contain the 30 kD modulator protein and restore the properties of the (Ca2+, Mg2+)-ATPase of hypotonic membrane preparations to the isotonic characteristics. The Mg-ATP affinity modulator protein is assumed to form a complex with calmodulin and (Ca2+, Mg2+)-ATPase.  相似文献   

19.
A calcium pump in plasma membrane vesicles from Leishmania braziliensis   总被引:2,自引:0,他引:2  
A subcellular fraction highly enriched in plasma membrane vesicles was prepared from Leishmania promastigotes. This fraction showed (Ca2+ + Mg2+)-ATPase activity. This, however, represented a small fraction (about 25%) of the overall ATPase activity. The Ca2(+)-ATPase showed general characteristics common to plasma membrane ATPases involved in Ca2+ transport. Thus, the Ca2(+)-ATPase was activated by Ca2+ with a high affinity (Km about 0.7 microM), saturating at about 5 microM Ca2+. Furthermore, it was stimulated by calmodulin (about 70-80% with 5 micrograms/ml) and almost fully inhibited by trifluoperazine (100 microM). The above vesicles accumulated Ca2+ against a concentration gradient and released it after the addition of A23187, as shown independently by 45Ca2+ and Arsenazo III studies. The transport mechanism showed the same kinetics parameters as described for the enzyme, indicating a single molecular entity. In addition, Ca2(+)-ATPase activity and Ca2+ uptake were completely inhibited by vanadate (20 microM), indicating that an E1-E2 type mechanism is involved. The results clearly demonstrate the presence of a Ca2+ pump in the plasma membrane of Leishmania which is capable of maintaining a low cytoplasmic Ca2+ concentration.  相似文献   

20.
Calcium uptake was examined in sealed plasma membrane vesicles isolated from the plant pathogenic fungus, Phytophthora megasperma f. sp. glycinea. Calcium uptake was ATP-dependent and by the addition of various ionophores in the presence of ATP, it was shown that Ca2+ transport was mediated by a nH+/Ca2+ antiport. Further evidence for this antiport mechanism included Ca2+ uptake driven by an imposed pH gradient and the observation that calcium could dissipate a steady-state pH gradient across the vesicle membrane. Transport mediated by the nH+/Ca2+ antiport was optimal at pH 7.0, and demonstrated saturation kinetics for Ca2+ with a Km of about 7 microM. Glyceollin, a soybean phytoalexin, was found to inhibit Ca2+ transport consistent with its ability to increase H+ conductance. In the presence of glyceollin, calcium leakage from Phytophthora membrane vesicles also increased. This study provides basic information about calcium transport in a plant pathogenic fungus as well as demonstrating a possible mode of action of a phytoalexin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号