首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have shown previously that certain proteases can modulate the affinity of human Fc gamma RII for IgG. To study whether proteolytic events not only increase FcR affinity, but are essential for Fc gamma R functioning, we evaluated the effect of different protease inhibitors on binding mediated by two classes of human monocyte IgG FcR. These R, Fc gamma RI and Fc gamma RII, can be analyzed selectively in rosetting assays by employing E sensitized by either human IgG or mouse IgG1. Rosetting by both classes of R was inhibited profoundly by incubation of monocytes with different types of serine protease inhibitors such as diisopropylfluorophosphate, PMSF, or N alpha-tosyl-L-lysyl-chloromethylketone. The type II Fc gamma R was much more sensitive to inhibition than Fc gamma RI. We, therefore, studied these effects in more detail by using cell line K562, which expresses only Fc gamma RII. PMSF, diisopropylfluorophosphate, and N alpha-tosyl-L-lysyl-chloromethylketone were, again, inhibiting Fc gamma RII-mediated binding dose-dependently, whereas several inhibitors of metal, aspartic, or thiol proteases proved ineffective. Furthermore, Fc gamma RII-mediated rosetting on both cell types was profoundly inhibited by the addition of different small synthetic substrates of serine esterases. In an attempt to discriminate whether the proteolytic event is an intra- or extracellular process, macromolecular antiproteases such as soybean or ovomucoid trypsin inhibitor or alpha 1-antiprotease were tested. Fc gamma RII-mediated binding by K562 cells was not susceptible to macromolecular antiproteases, in contrast to monocytes. In the presence of drugs which interfere both with receptor recycling and intracellular traffic between endosomal compartments (e.g., primaquine or monensin), the effects of inhibitors were largely abrogated. This showed that endocytosis of inhibitors might be essential, indicating the proteolytic event to be intracellular. Our findings suggest that human monocyte Fc gamma RII-mediated functioning is dependent upon the action of one or more serine proteases.  相似文献   

2.
Cross-linking of Fc gamma R on human monocytes with human IgG has been shown to induce secretion of the inflammatory and immunoregulatory cytokine TNF. In the present study we examined the role of both constitutively expressed monocyte Fc gamma R, the 72-kDa high affinity Fc gamma R (Fc gamma RI), and the 40-kDa low affinity receptor (Fc gamma RII), in the induction of TNF secretion. On the basis of preferential binding of the Fc moiety of murine mAb of different isotype, Fc gamma RI and Fc gamma RII were selectively cross-linked by using either solid-phase murine (m)IgG2a, or solid-phase mIgG1, respectively. On freshly isolated, untreated monocytes only cross-linking of Fc gamma RI with solid-phase mIgG2a induced TNF secretion. The interaction between Fc gamma RII and mIgG1 could be enhanced by treatment of monocytes with proteases or with the desialylating enzyme neuraminidase. After treatment of monocytes with these enzymes, TNF secretion was effectively induced by solid-phase mIgG1, apparently through cross-linking of Fc gamma RII. However, mIgG1-induced TNF secretion differed between protease-treated monocytes from high responder individuals and monocytes from low responder individuals, TNF secretion being considerably less in the latter population. Protease-treated monocytes and mononuclear cells from individuals with an inherited defect in cell membrane expression of Fc gamma RI were induced to secrete TNF by solid-phase human IgG, confirming the capacity of Fc gamma RII to induce TNF secretion. It was not possible to induce TNF secretion by cross-linking Fc gamma RI or Fc gamma RII with anti-Fc gamma R mAb and soluble or solid-phase anti-mIgG, indicating that high affinity Fc-Fc gamma R interactions are necessary to induce release of this cytokine.  相似文献   

3.
Human FcR for IgG can be divided into three classes (Fc gamma RI, II, and III) based on their structure and reactivity with mAb. Fc gamma RII can be further subdivided into two categories based on functional and biochemical assays. These two Fc gamma RII subtypes were initially recognized by the failure of T cells from 40% of individuals to proliferate in response to mAb Leu 4 (mouse IgG1, anti-CD3), a response that requires the binding of the Fc region of the Leu 4 mAb to Fc gamma RII on monocyte accessory cells. Inas-much as mouse IgG1, does not bind efficiently to the nonresponder form of Fc gamma RII, mAb Leu 4 is unable to induce proliferation in these individuals. IEF data on Fc gamma RII from Leu 4 responder and nonresponder individuals suggested that the structural gene for Fc gamma RII consisted of two allelic forms R (responder) and N (nonresponder) producing the phenotypes RR, RN, and NN. Thus, exclusive expression of the nonresponder allele in monocytes of "nonresponder" individuals, appeared to be responsible for the lack of proliferation observed. In cooperation with the IVth International Conference on Human Leukocyte Differentiation Antigens, we analyzed CDw32 mAb to determine if they could distinguish the responder and nonresponder forms of Fc gamma RII. We report that mAb 41H16 binds preferentially to the responder allotypic form of Fc gamma RII expressed on human monocytes. When quantitative flow cytometry is used to measure the binding of both mAb 41H16 (responder Fc gamma RII) and mAb IV.3 (all myeloid cell Fc gamma RII), we are able to subdivide the responder population into homozygous and heterozygous responders. In addition, mAb 41H16 blocks the binding of mAb IV.3 to monocytes and inhibits proliferation when added to cells before addition of mAb Leu 4. We also show that polymorphonuclear leukocytes and platelets have the same allotypic differences in the binding of 41H16 as do monocytes. However, a subset of lymphocytes (previously shown to be B cells) expresses the 41H16 epitope with no evidence for donor to donor variability.  相似文献   

4.
The erythroleukemic cell line K562 bears a 40-kDa Fc receptor (Fc gamma RII) serologically related to and with a similar molecular weight as the Fc gamma R present on a broad range of leukocytes. The human IgG subclass specificity of the Fc gamma R on K562 was investigated using IgG aggregates of defined size, obtained from purified human myeloma proteins. The monoclonal antibody IV.3, which reacts with the Fc gamma RII present on various cell types, totally prevented binding of 125I-IgG2 trimers to K562. Experiments with radiolabeled IgG2 trimers showed that K562 cells bound a mean of 156,764 +/- 9895 molecules per cell with an association constant (Ka) of 1.8 +/- 0.7 X 10(8) M-1. Similar results were obtained with IgG3 oligomers. IgG3 and IgG2 trimers were about two- to threefold more effective in inhibiting binding of 125I-IgG2 trimers to K562 than IgG1 and IgG4 trimers. These results were confirmed by inhibition experiments using IgG monomers. The subclass specificity of the Fc gamma RII on K562 (i.e., IgG2 = IgG3 greater than IgG1 = IgG4) is quite distinct from the one reported for the Fc gamma RI and III of human cells (i.e., IgG1 = IgG3 greater than IgG4 and IgG2).  相似文献   

5.
As part of an effort to define the cytotoxic trigger molecules on human myeloid cells, the ability of the different Fc receptors for IgG (Fc gamma R) to mediate killing of tumor cell lines by monocytes and granulocytes was examined. This was accomplished by studying cytolysis of hybridoma cell (HC) targets bearing surface antibody directed toward the different Fc gamma R. The HC line, HC IV.3A, which bears Ig directed to the low affinity Fc gamma R (Fc gamma RII) on monocytes and neutrophils was lysed by human monocytes. The extent of lysis of HC IV.3A was approximately equal to that of anti-Fc gamma RI (the high affinity Fc gamma R on human monocytes) bearing HC lines (HC 32.2A and HC 62A) and was not augmented by treatment of the monocytes with interferon-gamma (IFN-gamma). In contrast, neutrophils lysed HC IV.3A and HC 32.2A only after activation with IFN-gamma. Since Fc gamma RI is not detectable on untreated neutrophils and is induced by IFN-gamma on these cells, lysis of HC 32.2A by IFN-gamma-activated neutrophils correlated with receptor induction. On the other hand, Fc gamma RII was present at equal levels on untreated and IFN-gamma-treated neutrophils, but only IFN-gamma-treated neutrophils mediated cytotoxicity via Fc gamma RII. In this case, enhanced killing appeared to be due to events other than an increase in Fc gamma RII number. Neither untreated nor IFN-gamma-treated neutrophils mediated the lysis of the anti-Fc gamma RIII bearing HC 3G8A. Thus, binding to the tumor target via this Fc receptor does not lead to lysis and may initiate signals distinct from those triggered through Fc gamma RI or Fc gamma RII. Surprisingly, HC bearing high amounts of mouse IgG1 antibody of irrelevant specificity were also lysed by monocytes. This lysis was blocked by soluble IV.3 antibody and thus appeared to be due to binding of the Fc portion of the surface Ig to Fc gamma RII on monocytes. Furthermore, monocytes from donors with a form of Fc gamma RII incapable of binding aggregated mouse IgG1 did not lyse these HC, but displayed normal lysis of HC IV.3, demonstrating that this structurally different Fc gamma RII remained a functional trigger molecule. Overall, these studies have demonstrated the specificity of Fc receptors in triggering monocyte- and granulocyte-mediated antibody-dependent tumor cell killing and have begun to dissect functional similarities and differences among the three defined Fc gamma R on human myeloid cells.  相似文献   

6.
We have utilized gene transfer experiments to investigate the role of a human monocyte receptor for IgG (Fc gamma RII) in mouse IgG1 anti-CD3 (Leu 4)-induced lymphoproliferation in vitro. Mouse Ltk- cells expressing human Fc gamma RII or a mutant of Fc gamma RII lacking the entire cytoplasmic domain of the receptor mediate anti-CD3-induced lymphoproliferation in cultures of adherent cell-depleted human PBMC. Expression of an Fc gamma RII mutant lacking transmembrane and cytoplasmic domains (soluble Fc gamma RII) in COS7 cells yielded a secreted receptor which retained affinity for IgG, even in the absence of the mutant receptor's N-linked oligosaccharides. Soluble Fc gamma RII inhibits rosette formation by human IgG-sensitized RBC and the Fc gamma RII-bearing cell line K562, but does not sitmulate anti-CD3-induced lymphoproliferation under the conditions tested.  相似文献   

7.
8.
Cellular receptors for IgG (Fc gamma R) mediate important protective functions. By using site-specific mutants of a chimeric antibody (mouse V H domain and L chain; human IgG3 C H domains), we have demonstrated that human Fc gamma RI interacts with a site in the lower hinge of human IgG (residues 234 to 237) and that this interaction dictates Fc gamma RI-mediated superoxide generation. Mutations at position 235 resulted in the most profound reductions in Fc gamma RI recognition. We have also mapped an interaction site for Fc gamma RII to the same region; however, mutations at position 234 and 237 resulted in the greatest reductions in Fc gamma RII recognition. The two receptors appear to recognize overlapping but nonidentical sites on the lower hinge of IgG. Deviations from the optimal motif 234-Leu-Leu-Gly-Gly-237 may then explain the human IgG subclass specificity profile for human Fc gamma RI and Fc gamma RII.  相似文献   

9.
Aglycosylated human IgG1 and IgG3 monoclonal anti-D (Rh) and human IgG1 and IgG3 chimaeric anti-5-iodo-4-hydroxy-3-nitrophenacetyl (anti-NIP) monoclonal antibodies produced in the presence of tunicamycin have been compared with the native glycosylated proteins with respect to recognition by human Fc gamma RI and/or Fc gamma RII receptors on U937, Daudi or K562 cells. Human red cells sensitized with glycosylated IgG3 form rosettes via Fc gamma RI with 60% of U937 cells. Inhibition of rosette formation required greater than 35-fold concentrated more aglycosylated than glycosylated human monoclonal anti-D (Rh) antibody. Unlabelled polyclonal human IgG and glycosylated monoclonal IgG1 and anti-D (Rh) antibody inhibited the binding of 125I-labelled monomeric human IgG binding by U937 Fc gamma RI at concentrations greater than 50-fold lower than the aglycosylated monoclonal IgG1 anti-D (Rh) (K50 approximately 3 x 10(-9) M and approximately 6 x 10(-7) M respectively). Similar results were obtained using glycosylated and aglycosylated monoclonal human IgG1 or IgG3 chimaeric anti-NIP antibody-sensitized red cells rosetting with Fc gamma RI-/Fc gamma RII+ Daudi and K562 cells. Rosette formation could be inhibited by the glycosylated form (at greater than 10(-6) M) but not by the aglycosylated form. Haemagglutination analysis using a panel of murine monoclonal antibodies specific for epitopes located on C gamma 2, C gamma 3 or C gamma 2/C gamma 3 interface regions did not demonstrate differences in Fc conformation between the glycosylated or aglycosylated human monoclonal antibodies. These data suggest that the Fc gamma RI and Fc gamma RII sites on human IgG are highly conformation-dependent and that the carbohydrate moiety serves to stabilize the Fc structure rather than interacting directly with Fc receptors.  相似文献   

10.
Chimeric Fc gamma R have been generated between the mouse high affinity receptor for IgG (Fc gamma RI) and the low affinity receptor for IgG (Fc gamma RII) by exchanging the first two domains of the three-domain extracellular structure of Fc gamma RI with the homologous two-domain extracellular structure of Fc gamma RII. Studies of the affinity and specificity of binding of mouse Ig classes to these receptors defined functional regions of Fc gamma RI and showed some surprising results. After removal of the third extracellular domain of Fc gamma RI, the remaining two domains (domains 1 and 2) retained the capacity to bind Ig in the form of immune complexes, however, they bound monomeric IgG2a with a reduced affinity. Surprisingly, these two domains in the absence of the third domain bound not only IgG2a but also IgG1 and IgG2b, i.e., the third domain of Fc gamma RI suppresses the intrinsic capacity of the first two domains to act as a low affinity Fc gamma RII-like molecule. Linking the third extracellular domain of Fc gamma RI to the two extracellular domains of Fc gamma RII resulted in a receptor that retained the specificity and affinity of Fc gamma RII. Thus, the removal of domain 3 from Fc gamma RI resulted in the conversion of Fc gamma RI to an "Fc gamma RII-like" receptor. These findings indicate that domains 1 and 2 of Fc gamma RI form an Ig-binding motif, and although domain 3 is not essential for Fc binding by Fc gamma RI, it plays a crucial role in determining the specific high affinity interaction of Fc gamma RI with IgG2a.  相似文献   

11.
Monocytes can express three classes of FcR for IgG: Fc gamma RI, Fc gamma RII, and Fc gamma RIII (CD64, CD32, and CD16, respectively) of which the Fc gamma RIII is expressed after prolonged culture. Fc gamma R expression is regulated by IFN-gamma. Because IFN-gamma and IL-4 have antagonistic effects on the expression of the FcR for IgE on human monocytes, we studied the effect of IL-4 on Fc gamma R expression and function. We show that IL-4 down-regulates Fc gamma RI, Fc gamma RII, and Fc gamma RIII expression of cultured monocytes and inhibits IFN-gamma enhanced Fc gamma RI expression. Exposure of monocytes to IL-4 for 40 h resulted in a dose-dependent decrease of the expression of all three Fc gamma R that persisted throughout the whole culture period (7 days). Anti-IL-4 antibodies completely reversed the IL-4 effect. In addition the impaired Fc gamma R expression correlated directly with reduced Fc gamma R-mediated function because monocytes cultured in the presence of IL-4 have a reduced capacity to lyse human E opsonized with human IgG anti-D or mouse antiglycophorin A antibodies. These observations, together with the previous finding that IL-4 induces Fc epsilon RIIb expression on monocytes, indicate that IL-4 and IFN-gamma may control the Fc gamma R-mediated immune response by differentially regulating Fc gamma R expression.  相似文献   

12.
In this report we present evidence that not all human peripheral blood monocytes mediate antibody-dependent cellular cytotoxicity (ADCC), and that this function may be determined on an individual cell by both the type and level of expression of FcR, and by the state of cellular activation and/or differentiation. Although the diverse range of effector and regulatory functions performed by human monocytes suggests the possibility of distinct subsets, it is not clear whether observed functional heterogeneity reflects the presence of true monocyte subpopulations, or whether this diversity represents a continuum of maturational states present in the peripheral circulation. In an attempt to address this question, we investigated the ability of human monocytes to carry out ADCC at the single cell level, with emphasis on the role of the three FcR for IgG (Fc gamma RI, Fc gamma RII, and Fc gamma RIII) in mediating cytotoxicity. Using a modified plaque assay, 58.3% +/- 4.9 of freshly isolated monocytes mediated ADCC, as evidenced by the formation of lytic plaques in monolayers of ox erythrocyte (oxE) target cells. Significant increases in the number of plaque-forming cells were observed after positive selection by flow microfluorimetry for those monocytes expressing high levels of Fc gamma RI and Rc gamma RII, but not Fc gamma RIII. Bispecific antibodies composed of Fab fragments of anti-oxE antibody covalently coupled to Fab fragments of anti-Fc gamma R antibodies were used to independently evaluate the ability of Fc gamma RI, Fc gamma RII, and Fc gamma RIII to mediate single cell cytotoxicity. Significant increases in the number of plaque-forming cells were observed in the presence of anti-Fc gamma RI x anti-oxE and anti-Fc gamma RII x anti-oxE bispecific antibodies, confirming the efficiency of Fc gamma RI and Fc gamma RII as cytotoxic trigger molecules on human monocytes. Incubation of monocytes with purified rIFN-gamma and granulocyte macrophage-CSF, but not IL-2, IL-3, IL-4, IL-6, or TNF-alpha, also resulted in significant increases in the number of monocytes mediating cytotoxicity, suggesting that cytotoxic ability at the single cell level may be influenced by factors which effect monocyte activation and differentiation, respectively. Overall, these studies demonstrate that freshly isolated human monocytes are heterogeneous in their ability to mediate ADCC, and suggest that this functional diversity arises not from discrete subpopulations of cells, but from a continuum of maturational/activational states present within the peripheral circulation.  相似文献   

13.
T cell activation induced by mouse anti-CD3 mAb has shown to be dependent on the Ig isotype of these antibodies. A study of isotype dependency of human antibodies, however, seems more relevant to human effector systems, especially in view of the availability of humanized antibodies for clinical applications. We constructed a panel of mouse and mouse/human chimeric anti-CD3 mAb, which differ only in their CH region and hence have identical binding sites and affinity. By using these antibodies, we now studied their ability to induce T cell proliferation in human PBMC and analyzed the classes of IgG FcR involved in these responses. The human (h)IgG1, hIgG3, and hIgG4, as well as mouse (m)IgG2a and mIgG3 anti-CD3 mAb induced an Fc gamma RI (CD64)-dependent T cell proliferation in all donors. Activation with hIgG2 and mIgG1 anti-CD3 mAb was observed to be mediated via the low affinity Fc gamma RII (CD32). It was found that leukocytes in a normal donor population display a functional polymorphism with respect to hIgG2 anti-CD3 responsiveness. This polymorphism was found to be inversely related to the previously defined Fc gamma RII-polymorphism to mIgG1 anti-CD3 mAb. Monocytes expressing the Fc gamma RII mIgG1 low responder (LR) allele support hIgG2 anti-CD3 induced T cell proliferation efficiently, whereas cells homozygous for the Fc gamma RII mIgG1 high responder (HR) allele do not. This observation could be confirmed in T cell activation studies using hFc gamma RIIa-transfected mouse fibroblasts, expressing either the mIgG1 anti-CD3 HR or LR Fc gamma RII-encoding cDNA.  相似文献   

14.
A major new challenge for vaccine development is to target APC such as monocytes and macrophages for efficient Ag processing and presentation. It has been shown that Fc gamma R-mediated uptake of Ag-antibody complexes can enhance Ag presentation by myeloid cells at least 100-fold, and directing Ag to Fc gamma R in mice brings about a substantial increase in the effectiveness of immunization while eliminating the requirement for adjuvant. It has not been determined which of the three subclasses of human Fc gamma R on myeloid cells (Fc gamma RI, Fc gamma RII, or Fc gamma RIII) function to enhance Ag presentation. We have targeted our Ag (TT) to each of the three subclasses of human Fc gamma R on monocytes using Fc gamma R subclass-specific mAb-TT conjugates, and have measured TT presentation by monitoring T cell proliferation in response to TT. In addition, we have examined enhanced Ag presentation mediated by a human IgG1 (HIgG1) anti-TT mAb. All anti-Fc gamma R-TT conjugates enhanced Ag presentation. HIgG1 anti-TT, in monomeric form, enhanced Ag presentation through Fc gamma RI only. Anti-Fc gamma RI-Ag conjugates appear to be optimal for application as vaccines. They are monocyte/macrophage-specific, are very efficiently processed and presented, and enhance Ag presentation despite occupation of Fc gamma RI with HIgG.  相似文献   

15.
We have constructed a set of chimeric Ig by exchanging corresponding H chain C domains between human (hu) IgG1 and murine (m) IgE. We used this set of Ig to dissect the interaction of individual Ig domains with human Fc gamma receptors. Only one of the chimeras, epsilon/C gamma 2,3 (an mIgE with C epsilon 3 and C epsilon 4 replaced by C gamma 2 and C gamma 3 from huIgG1), binds tightly to the human Fc gamma RI on U937 cells. We found that epsilon/C gamma 2,3 has only twofold lower affinity for Fc gamma RI as compared to huIgG1. The gamma/C epsilon 4 (huIgG1 with C epsilon 4 replacing C gamma 3) binds weakly to Fc gamma RI. The other chimeric Ig, epsilon/C gamma 3, epsilon/C gamma 2, and gamma/C epsilon 3, as well as mIgE do not bind detectably to Fc gamma RI. From these data we conclude that the C gamma 2 domain is crucial for binding and contains the majority of the binding site for Fc gamma RI on IgG1. The C gamma 3 domain makes a smaller contribution to the binding, and the C gamma 1 domain and the hinge region have very little effect on the Fc gamma RI-IgG1 interaction. The chimeric epsilon/C gamma 2,3 and huIgG1 both mediate the formation of rosettes between K562 cells and antigen-sensitized E with similar concentration dependences. These results suggest similar ability to bind to Fc gamma RII. The other chimeric Ig do not cause rosettes in this assay system. Hence, both C gamma 2 and C gamma 3 seem to be required for binding to Fc gamma RII, but the C gamma 1-hinge region has no detectable effect.  相似文献   

16.
T cell-derived cytokines IFN-gamma and IL-4 have different regulatory effects on two functionally important molecules on human monocytes: MHC class II Ag and the Fc receptor for monomeric IgG, Fc gamma RI (CD64). MHC class II Ag, and Fc gamma RI are both upregulated in the presence of IFN-gamma. IL-4 induces MHC class II Ag expression but reduces Fc gamma RI expression. Recently, we showed that the cytokine IL-10 also affects MHC class II Ag expression. Here, we demonstrate that in contrast to the down-regulation of MHC class II Ag expression, IL-10 stimulates Fc gamma RI expression on human monocytes comparable to the levels of Fc gamma RI expression induced by IFN-gamma. The IL-10-induced Fc gamma RI expression is specific because anti-IL-10 antibodies completely reverse the IL-10-induced surface expression of Fc gamma RI and correlate with an enhanced capacity to lyse anti-D-coated human rhesus-positive erythrocytes. IL-10 fails to induce the expression of Fc gamma RII (CD32) and Fc gamma RIII (CD16). Furthermore, we demonstrate that IL-10 is able to prevent down-regulation in surface membrane expression of all three Fc gamma R that can be found when monocytes are cultured in the presence of IL-4. In contrast to IFN-gamma, IL-10 does not restore the reduced antibody-dependent cellular cytotoxicity (ADCC) activity of IL-4-cultured monocytes. Together, these results show that, similar to IFN-gamma, IL-10 is capable of enhancing Fc gamma R expression and ADCC activity, and that IFN-gamma, IL-4, and IL-10 have different regulatory effects on both monocyte Ag-presenting capacity and ADCC activity.  相似文献   

17.
p72 high affinity receptors (Fc gamma RI) for the Fc portion of IgG molecules on human peripheral blood monocytes mediate a variety of beneficial functions, but also have deleterious effects in certain clinical situations. In the present study, the photosensitizing porphyrins hematoporphyrin derivative and dihematoporphyrin ether (DHE), which are known to preferentially affect the cell membrane, were found to significantly inhibit binding of mouse IgG2a antibodies to the ligand binding site of Fc gamma RI on human peripheral blood monocytes and the U937 human monocytic cell line. Fc gamma RI receptors could be identified with a monoclonal antibody which recognizes an epitope distinct from the ligand binding site, indicating that photosensitization induced a structural alteration rather than loss of the receptor molecule from the cell surface. The effect of DHE and light appeared to be highly specific, since binding of monoclonal antibodies to other surface structures was not decreased. DHE plus light-induced modulation of Fc gamma RI was found to be mediated by superoxide anions, since addition of a mimic of superoxide dismutase restored both binding of mouse IgG2a to Fc gamma RI as well as human monocyte accessory cell function. These studies identify porphyrin photosensitization as a unique mechanism by which to selectively down-regulate Fc gamma RI-mediated functions.  相似文献   

18.
We have investigated the role of protein tyrosine phosphorylation in transmembrane signaling via the IgG receptors Fc gamma RI and Fc gamma RII in the human monocytic cell line THP-1. Fc gamma RI and Fc gamma RII were selectively engaged using the anti-Fc gamma RI mAb 197 (IgG2a) and the anti-Fc gamma RII mAb IV.3 (IgG2b). Addition to cells of mAb 197, but not addition of IgG2a mAb of irrelevant specificity, resulted in the rapid induction of cytoplasmic protein tyrosine phosphorylation as assessed by antiphosphotyrosine immunoblotting. A similar pattern of tyrosine phosphorylation was induced by mAb IV.3, but not by control IgG2b mAb. The induction of tyrosine phosphorylation by anti-Fc gamma R mAb was not dependent on antibody Fc region-FcR interactions, because tyrosine phosphorylation was also induced by cross-linked anti-Fc gamma RI F(ab')2 fragments and by cross-linked anti-Fc gamma RII Fab fragments. To investigate the relationship of Fc gamma R-induced tyrosine phosphorylation and activation of phospholipase C, which is known to follow Fc gamma R engagement, we assessed the effect of the tyrosine kinase inhibitor herbimycin A on Fc gamma R-induced Ca2+ flux. Herbimycin A strongly inhibited cellular Ca2+ flux induced by mAb 197, but did not inhibit Ca2+ flux induced by aluminum fluoride, suggesting that tyrosine phosphorylation may be important in regulating Fc gamma R-mediated activation of phospholipase C. Consistent with this, mAb 197 induced rapid phosphorylation of the gamma-1 isoform of phospholipase C. Finally, herbimycin A strongly inhibited the induction of TNF-alpha mRNA accumulation by Fc gamma R cross-linking. These results suggest that protein tyrosine phosphorylation may play an important role in the activation of phospholipase C and in the induction of monokine gene expression that follows engagement of Fc gamma R in human monocytes.  相似文献   

19.
IL-6 is a multifunctional cytokine which is produced by a variety of cells. Therefore it was examined whether anti-CD3-induced T cell activation was associated with the induction of functionally relevant IL-6 in human monocyte accessory cells. Significantly increased amounts of IL-6 were detected in supernatants of anti-CD3-treated PBMC. Stimulation of FACS-sorted greater than 98% pure monocyte accessory cells, but not of highly purified T cells with anti-CD3, resulted in an increased IL-6 production. Furthermore, anti-CD3 significantly enhanced IL-6 mRNA expression in monocyte accessory cells. IL-6 production was not limited to anti-CD3, inasmuch as equivalent IL-6 stimulation could be achieved with a mouse IgG2a isotype control antibody. In contrast to solid phase-bound mouse IgG2a, the soluble form of this antibody failed to induce IL-6 secretion indicating a requirement for Fc gamma RI receptor cross-linking. Moreover, this property may be specific for the Fc gamma RI receptor inasmuch as mouse IgG1 antibodies binding to the Fc gamma RII receptor did not significantly enhance IL-6 production. The role of IL-6 being an additional signal in T cell activation was confirmed by the finding that an anti-IL-6 antiserum was able to suppress anti-CD3-induced T cell activation. These data indicate that binding of anti-CD3 to Fc gamma RI may generate an activation signal towards the monocyte accessory cell leading to the production and secretion of monocyte IL-6, which in turn augments T cell activation, and also may be relevant to a variety of antibody-mediated immune responses against viral and bacterial infections.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号