首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein methylase II (AdoMet:protein-carboxyl O-methyltransferase, EC 2.1.1.24) was identified and purified 115-fold from Helicobacter pylori through Q-Sepharose ion exchange column, AdoHcy-Sepharose 4B column, and Superdex 200 HR column chromatography using FPLC. The purified preparation showed two protein bands of about 78 kDa and 29 kDa molecular mass on SDS-PAGE. On non-denaturing gel electrophoresis, the enzyme migrated as a single band with a molecular mass of 410 kDa. In addition, MALDI-TOF-MS analysis and Superdex 200 HR column chromatography of the purified enzyme showed a major mass signal with molecular mass values of 425 kDa and 430 kDa, respectively. Therefore, the above results led us to suggest that protein methylase II purified from H. pylori is composed of four heterodimers with 425 kDa (4x(78+29)=428 kDa). This magnitude of molecular mass is unusual for protein methylases II so far reported. The enzyme has an optimal pH of 6.0, a K(m) value of 5.0x10(-6) M for S-adenosyl-L-methionine and a V(max) of 205 pmol methyl-(14)C transferred min(-1) mg(-1) protein.  相似文献   

2.
An aldehyde oxidase, which oxidizes various aliphatic and aromatic aldehydes using O(2) as an electron acceptor, was purified from the cell-free extracts of Pseudomonas sp. KY 4690, a soil isolate, to an electrophoretically homogeneous state. The purified enzyme had a molecular mass of 132 kDa and consisted of three non-identical subunits with molecular masses of 88, 39, and 18 kDa. The absorption spectrum of the purified enzyme showed characteristics of an enzyme belonging to the xanthine oxidase family. The enzyme contained 0.89 mol of flavin adenine dinucleotide, 1.0 mol of molybdenum, 3.6 mol of acid-labile sulfur, and 0.90 mol of 5'-CMP per mol of enzyme protein, on the basis of its molecular mass of 145 kDa. Molecular oxygen served as the sole electron acceptor. These results suggest that aldehyde oxidase from Pseudomonas sp. KY 4690 is a new member of the xanthine oxidase family and might contain 1 mol of molybdenum-molybdpterin-cytosine dinucleotide, 1 mol of flavin adenine dinucleotide, and 2 mol of [2Fe-2S] clusters per mol of enzyme protein. The enzyme showed high reaction rates toward various aliphatic and aromatic aldehydes and high thermostability.  相似文献   

3.
Aldehyde oxidase (AO; EC 1.2.3.1) that could oxidize indole-3-acetaldehyde into indole-3-acetic acid was purified approximately 2000-fold from coleoptiles of 3-d-old maize (Zea mays L.) seedlings. The apparent molecular mass of the native enzyme was about 300 kD as estimated by gel-filtration column chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the enzyme was composed of 150-kD subunits. It contained flavin adenine dinucleotide, iron, and molybdenum as prosthetic groups and had absorption peaks in the visible region (300-600 nm). To our knowledge, this is the first demonstration of the presence of flavin adenine dinucleotide and metals in plant AO. Other aromatic aldehydes such as indole-3-aldehyde and benzaldehyde also served as good substrates, but N-methylnicotinamide, a good substrate for animal AO, was not oxidized. 2-Mercaptoethanol, p-chloromercu-ribenzoate, and iodoacetate partially inhibited the activity, but well-known inhibitors of animal AO, such as menadione and estradiol, caused no reduction in activity. These results indicate that, although maize AO is similar to animal enzymes in molecular mass and cofactor components, it differs in substrate specificity and susceptibility to inhibitors. Immunoblotting analysis with mouse polyclonal antibodies raised against the purified maize AO showed that the enzyme was relatively rich in the apical region of maize coleoptiles. The possible role of this enzyme is discussed in relation to phytohormone biosynthesis in plants.  相似文献   

4.
The synthesis of nitric oxide (NO) from L-arginine has been demonstrated in several cell types. Both constitutive and inducible forms of NO synthase have been described in different cells. We purified the constitutive form of NO synthase enzyme in human neutrophils using a two-column procedure. Crude 100,000g supernatant of human neutrophils was passed through a 2'-5'-ADP-agarose column followed by a DEAE-Bio-Gel A anion exchange column. NO synthase enzyme migrated as a single band (MW approximately 130,000) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Its activity was dependent upon nicotinamide adenine dinucleotide phosphate (NADPH) and (6R)-tetrahydro-L-biopterin (BH4). In addition, flavin adenine dinucleotide (FAD) was also found to be essential for its maximal activity. A second NADPH, FAD-dependent component (MW approximately 22kD) was also found consistently on the SDS-PAGE gel. These observations suggest co-regulation between NO synthase enzyme and this NADPH, FAD-dependent component, which may be associated with the superoxide radical generating system.  相似文献   

5.
2-Oxoglutarate:ferredoxin oxidoreductase from a thermophilic, obligately autotrophic, hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6, was purified to homogeneity by precipitation with ammonium sulfate and by fractionation by DEAE-Sepharose CL-6B, polyacrylate-quaternary amine, hydroxyapatite, and Superdex-200 chromatography. The purified enzyme had a molecular mass of about 105 kDa and comprised two subunits (70 kDa and 35 kDa). The activity of the 2-oxoglutarate:ferredoxin oxidoreductase was detected by the use of 2-oxoglutarate, coenzyme A, and one of several electron acceptors in substrate amounts (ferredoxin isolated from H. thermophilus, flavin adenine dinucleotide, flavin mononucleotide, or methyl viologen). NAD, NADP, and ferredoxins from Chlorella spp. and Clostridium pasteurianum were ineffective. The enzyme was extremely thermostable; the temperature optimum for 2-oxoglutarate oxidation was above 80 degrees C, and the time for a 50% loss of activity at 70 degrees C under anaerobic conditions was 22 h. The optimum pH for a 2-oxoglutarate oxidation reaction was 7.6 to 7.8. The apparent Km values for 2-oxoglutarate and coenzyme A at 70 degrees C were 1.42 mM and 80 microM, respectively.  相似文献   

6.
This work describes the purification and partial characterization of a novel antibacterial compound, here named marinocine, produced by Marinomonas mediterranea, a melanogenic marine bacterium with rich secondary metabolism. The antibacterial compound is a protein detected in the medium at death phase of growth. It has been purified to apparent homogeneity from the supernatants of cultures by means of ethanol precipitation followed by column chromatographies on DEAE-Sephadex and Sephacryl HR-200. The protein has an apparent molecular mass of 140-170 kDa according to gel permeation chromatography and non-denaturing SDS-PAGE, although in denaturing SDS-PAGE two mayor bands of 97 and 185 kDa appear. Marinocine is relatively heat-stable and shows a great resistance against many hydrolytic enzymes such as glycosidases, lipase, and proteases. The antibacterial range of the molecule includes Gram-positive and Gram-negative microorganisms, as well as some nosocomial isolates, Staphylococcus aureus and Pseudomonas sp., highly resistant to classical antibiotics. By contrast, marinocine did not show any effect on the eukaryotic microorganisms tested. Regarding eukaryotic CHO cells, the decrease on viability was much lower than the one observed on bacterial cells.  相似文献   

7.
8.
Abstract

The rapid and effective purification of soluble fumarate reductase from baker's yeast achieved by Blue Sepharose CL–6B chromatography. Cibacron Blue F3GA, the chromophore of Blue Sepharose, inhibited the activity of fumarate reductase. The enzyme bound to the column was selectively eluted by flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN) or riboflavin. The purified enzyme was essentially homogeneous as indicated by polyacrylamide gel electrophoresis under non-denaturing conditions and under denaturing conditions in sodium dodecylsulfate. By this procedure, the enzyme could be rapidly purified with high yield from yeast cells.  相似文献   

9.
Methanobacterium thermoautotrophicum (strain Marburg) was found to grow on media supplemented with tungstate rather than with molybdate. The Archaeon then synthesized a tungsten iron-sulfur isoenzyme of formylmethanofuran dehydrogenase. The isoenzyme was purified to apparent homogeneity and shown to be composed of four different subunits of apparent molecular masses 65 kDa, 53 kDa, 31 kDa, and 15 kDa and to contain per mol 0.4 mol tungsten, <0.05 mol molybdenum, 8 mol non-heme iron, 8 mol acid-labile sulfur and molybdopterin guanine dinucleotide. Its molecular and catalytic properties were significantly different from those of the molybdenum isoenzyme characterized previously. The two isoenzymes also differed in their metal specificity: the active molybdenum isoenzyme was only synthesized when molybdenum was available during growth whereas the active tungsten isoenzyme was also generated during growth of the cells on molybdate medium. Under the latter conditions the tungsten isoenzyme was synthesized containing molybdenum rather than tungsten.Abbreviations MFR methanofuran - CHO-MFR N-formylmethanofuran - MGD molybdopterin guanine dinucleotide - MAD molybdopterin adenine dinucleotide - MHD molybdopterin hypoxanthine dinucleotide - FPLC fast protein liquid chromatography - SDS/PAGE sodium dodecylsulfate/polyacrylamide gel electrophoresis - ICP-MS inductively coupled plasma mass spectrometry  相似文献   

10.
A bacterial strain able to degrade various sulfated galactans (carrageenans and agar) was isolated from the marine red alga Delesseria sanguinea. From the cell-free supernatant of cultures grown on crude lambda-carrageenan, a kappa-carrageenase was purified by ammonium sulfate fractionation, gel filtration on Sephacryl S 200 HR and ion-exchange chromatography on DEAE--Sepharose-CL6B. The purified kappa-carrageenase was detected as a single protein upon SDS/PAGE. Its molecular mass was estimated at 40 kDa. Activity was observed against kappa-carrageenan over the pH range 5.0-8.5 and was optimal at pH 7.2 in Tris buffer or 7.0 in Mops buffer. The enzyme activity remained stable at 30 degrees C, but only for up to 1 h at 40 degrees C. Analysis of the degradation products of the kappa-carrageenase by gel filtration and 13C-NMR spectroscopy indicated that the enzyme degrades kappa-carrageenan down to the level of the kappa-neocarratetraose sulfate. The properties of this new enzyme are compared with those of previously characterized carrageenases.  相似文献   

11.
Lee D  Won JH  Auh CK  Park YM 《Molecules and cells》2003,16(3):361-367
A cytosolic phospholipase A2 (PLA2) was purified 640-fold from rat liver by sequential anion-exchange chromatography, Ca2+-precipitation/KCl-solubilization, gel filtration chromatography, and affinity chromatography. A single peak of PLA2 activity was eluted at an apparent molecular mass of 197 kDa from a Superdex 200HR gel filtration column. In the presence of Ca2+, the purified enzyme catalyzed the hydrolysis of 81.8 nmol of phosphatidylethanolamine per hour per mg of protein. The apparent Km was 1.83 nM. The enzyme was inhibited by arachidonyl trifluoromethyl ketone (AACOCF3), an inhibitor of cPLA2. However, it was not inhibited by bromoenol lactone (BEL), an inhibitor of iPLA2, and p-bromophenacyl bromide (p-BPB), an inhibitor of sPLA2. These data suggest that the purified enzyme is a novel Ca2+-dependent cytosolic PLA2.  相似文献   

12.
Purification and properties of urease from the leaf of mulberry, Morus alba   总被引:2,自引:0,他引:2  
Urease was purified from leaves of mulberry (Morus alba, L.) by ammonium sulfate fractionation, acetone fractionation and sequential column chromatography including Q-Sepharose HP, Phenyl-Sepharose HP, Superdex 200 HR and Mono Q. The enzyme was purified 5700-fold to apparent homogeneity with a recovery of 3.6%. The molecular mass of the enzyme was determined to be 90.5 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and 175 kDa by gel filtration, indicating that the enzyme was a homodimer. In the western blot analysis, 90.5 kDa subunit of the mulberry leaf urease cross-reacted with antiserum raised against jack bean seed urease. The N-terminal sequence of the first 20 residues of the enzyme revealed that it has a high similarity (80-90%) to ureases from other plant sources, suggesting that the mulberry leaf urease is closely related to other plant ureases. However, the mulberry leaf enzyme showed an optimum pH for activity of 9.0, while the optimum pH of most ureases isolated from plants and bacterial is neutral. In addition, the K(m) value for urea was 0.16 mM, which is lower than those of ureases from other sources. It is also proposed that urease activity ingested by browsing silkworm releases ammonia that is subsequently used in silkworm protein synthesis.  相似文献   

13.
Creatine kinase and guanylate cyclase were purified from Hemicentrotus pulcherrimus spermatozoa. The molecular weight of the purified sperm tail creatine kinase was estimated to be 137,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Sperm tail guanylate cyclase was purified by chromatography on a WGA-Sepharose column connected to a Concanavalin A-Sepharose column, and a Superose 12 HR column. The molecular weight of the tail guanylate cyclase was estimated to be 128,000 by SDS-PAGE. The specific activity of the purified enzyme was 8.25 μmol of cGMP formed/min/mg protein. Sperm-activating peptide I (SAP-I) causes an electrophoretic mobility shift of H. pulcherrimus sperm guanylate cyclase from 131 kDa to 128 kDa. The 131 kDa form of guanylate cyclase was co-purified with a 76 kDa protein, whose molecular mass is similar to that of a SAP-I receptor. The purified 131 kDa form of guanylate cyclase had higher activity than the 128 kDa form. The 131 kDa and 128 kDa forms of guanylate cyclase contained 23.83 ± 0.65 and 4.16 ± 0.45 moles of phosphate per mol protein (mean ± S.D.; n = 3), respectively. The activities of guanylate cyclase and creatine kinase increased during the testis development. During spermatogenesis, sperm tail creatine kinase was detected immunohistochemically only in mature spermatozoa.  相似文献   

14.
Alkene monooxygenase, a multicomponent enzyme system which catalyzes the epoxidation of short-chain alkenes, is induced in Mycobacterium strain E3 when it is grown on ethene. We purified the NADH reductase component of this enzyme system to homogeneity. Recovery of the enzyme was 19%, with a purification factor of 920-fold. The enzyme is a monomer with a molecular mass of 56 kDa as determined by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It is yellow-red with absorption maxima at 384, 410, and 460 nm. Flavin adenine dinucleotide (FAD) was identified as a prosthetic group at a FAD-protein ratio of 1:1. Tween 80 prevented irreversible dissociation of FAD from the enzyme during chromatographic purification steps. Colorimetric analysis revealed 2 mol each of iron and acid-labile sulfide, indicating the presence of a [2Fe-2S] cluster. The presence of this cluster was confirmed by electron paramagnetic resonance spectroscopy (g values at 2.011, 1.921, and 1.876). Anaerobic reduction of the reductase by NADH resulted in formation of a flavin semiquinone.  相似文献   

15.
Pseudomonas sp. strain C4 metabolizes carbaryl (1-naphthyl-N-methylcarbamate) as the sole source of carbon and energy via 1-naphthol, 1,2-dihydroxynaphthalene, and gentisate. 1-Naphthol-2-hydroxylase (1-NH) was purified 9.1-fold to homogeneity from Pseudomonas sp. strain C4. Gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the enzyme is a homodimer with a native molecular mass of 130 kDa and a subunit molecular mass of 66 kDa. The enzyme was yellow, with absorption maxima at 274, 375, and 445 nm, indicating a flavoprotein. High-performance liquid chromatography analysis of the flavin moiety extracted from 1-NH suggested the presence of flavin adenine dinucleotide (FAD). Based on the spectral properties and the molar extinction coefficient, it was determined that the enzyme contained 1.07 mol of FAD per mol of enzyme. Although the enzyme accepts electrons from NADH, it showed maximum activity with NADPH and had a pH optimum of 8.0. The kinetic constants K(m) and V(max) for 1-naphthol and NADPH were determined to be 9.6 and 34.2 microM and 9.5 and 5.1 micromol min(-1) mg(-1), respectively. At a higher concentration of 1-naphthol, the enzyme showed less activity, indicating substrate inhibition. The K(i) for 1-naphthol was determined to be 79.8 microM. The enzyme showed maximum activity with 1-naphthol compared to 4-chloro-1-naphthol (62%) and 5-amino-1-naphthol (54%). However, it failed to act on 2-naphthol, substituted naphthalenes, and phenol derivatives. The enzyme utilized one mole of oxygen per mole of NADPH. Thin-layer chromatographic analysis showed the conversion of 1-naphthol to 1,2-dihydroxynaphthalene under aerobic conditions, but under anaerobic conditions, the enzyme failed to hydroxylate 1-naphthol. These results suggest that 1-NH belongs to the FAD-containing external flavin mono-oxygenase group of the oxidoreductase class of proteins.  相似文献   

16.
An S-adenosyl-L-methionine-dependent O-methyl-transferase capable of methylating 2-hydroxy-3-alkyl-pyrazine (HP) was purified 7,300-fold to apparent homogeneity with an 8.2% overall recovery from Vitis vinifera L. (cv. Cabernet Sauvignon) through a purification procedure including column chromatography on DEAE-Sepharose FF, Ether-5PW, hydroxyapatite, G2000SWXL, and DEAE-5PW. The relative molecular mass of the native enzyme estimated on gel permeation chromatography was 85 kDa, and the subunit molecular mass was estimated to be 41 kDa on SDS-polyacrylamide gel electrophoresis. The enzyme also methylates caffeic acid. The Vmax for IBHP and caffeic acid were 0.73 and 175 pkatals/mg, respectively, and the respective Km for IBHP and caffeic acid were 0.30 and 0.032 mM. The optimum pH for IBHP (8.5) was different from that for caffeic acid (7.5).  相似文献   

17.
An S-adenosyl-L-methionine-dependent O-methyltransferase capable of methylating 2-hydroxy-3-alkylpyrazine (HP) was purified 7,300-fold to apparent homogeneity with an 8.2% overall recovery from Vitis vinifera L. (cv. Cabernet Sauvignon) through a purification procedure including column chromatography on DEAE-Sepharose FF, Ether-5PW, hydroxyapatite, G2000SW(XL), and DEAE-5PW. The relative molecular mass of the native enzyme estimated on gel permeation chromatography was 85 kDa, and the subunit molecular mass was estimated to be 41 kDa on SDS-polyacrylamide gel electrophoresis. The enzyme also methylates caffeic acid. The Vmax for IBHP and caffeic acid were 0.73 and 175 pkatals/mg, respectively, and the respective Km for IBHP and caffeic acid were 0.30 and 0.032 mm. The optimum pH for IBHP (8.5) was different from that for caffeic acid (7.5).  相似文献   

18.
Bovine brain adenosine deaminase cytoplasmatic form was purified about 450 fold by salt fractionation, column chromatography on DEAE-cellulose, octyl-sepharose 4B and affinity chromatography on CH-sepharose 4B 9-(p-aminobenzyl)adenine. The purified enzyme was homogeneous on disc gel electrophoresis; the enzyme had a molecular mass of about 65 kDa with an isoelectric point at pH 4.87. The Km values for adenosine and 2'-deoxyadenosine were 4 x 10(-5) and 5.2 x 10(-5) M, respectively. The enzyme showed a great stability to temperature with a half life of 15 hours at 53 degrees C significantly different compared to that known for other mammalian forms of this enzyme. Aza and deaza analogs of adenosine and erythro-9-(2-hydroxy-3-nonyl) adenine were good inhibitors of the bovine brain enzyme with little difference with respect to those reported for the adenosine deaminases purified from other sources. Kinetic constants for the association and dissociation of coformycin and 2'-deoxycoformycin with the bovine brain adenosine deaminase are reported.  相似文献   

19.
A thiol oxidase was purified from porcine kidney cortex by chromatography of detergent-solubilized plasma membranes on cysteinylsuccinamidopropyl-glass beads, hydroxyapatite, and Sephacryl S-200. The oxidase was purified 2600-fold; 28% recovery of activity was obtained. With glutathione as substrate, the apparent Km was 0.73 mM and the V max was a 4.4 U/mg protein. The reaction catalyzed was 2 RSH + O2----RSSR + H2O2, and superoxide production was not detected during the reaction. Other low molecular weight thiols, including cysteine, dithiothreitol, N-acetylcysteine, and cysteamine, were substrates for the oxidase; 2-mercaptoethanol, reductively denatured ribonuclease A, and chymotrypsinogen A were not substrates. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed one band corresponding to 70 kDa; gel filtration on a Sephacryl column produced a single elution of activity with a protein corresponding to 120 kDa, indicating that the functional form is a dimer. On a high-pressure gel permeation column the protein eluted at 70 kDa under dilute conditions but at greater than 200 kDa at high concentrations, indicating that the protein also aggregates into larger multimers. Activity was inhibited by copper chelators, L-(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (acivicin), H2O2, and N-ethylmaleimide, suggesting the presence of copper and a sulfhydryl group at the active site. Following treatment with metal chelators, enzyme activity was reconstituted with CuSO4, but not with FeSO4. The purified enzyme contained 1 mol copper per subunit which was undetectable by electron paramagnetic resonance, suggesting that the copper is in a binuclear complex.  相似文献   

20.
Tong H  Chen W  Shi W  Qi F  Dong X 《Journal of bacteriology》2008,190(13):4716-4721
We previously demonstrated that Streptococcus oligofermentans suppressed the growth of Streptococcus mutans, the primary cariogenic pathogen, by producing hydrogen peroxide (H(2)O(2)) through lactate oxidase activity. In this study, we found that the lox mutant of S. oligofermentans regained the inhibition while growing on peptone-rich plates. Further studies demonstrated that the H(2)O(2) produced on peptone by S. oligofermentans was mainly derived from seven L-amino acids, i.e., L-aspartic acid, L-tryptophan, L-lysine, L-isoleucine, L-arginine, L-asparagine, and L-glutamine, indicating the possible existence of L-amino acid oxidase (LAAO) that can produce H(2)O(2) from L-amino acids. Through searching the S. oligofermentans genome for open reading frames with a conserved flavin adenine dinucleotide binding motif that exists in the known LAAOs, including those of snake venom, fungi, and bacteria, a putative LAAO gene, assigned as aao(So), was cloned and overexpressed in Escherichia coli. The purified protein, SO-LAAO, showed a molecular mass of 43 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and catalyzed H(2)O(2) formation from the seven L-amino acids determined above, thus confirming its LAAO activity. The SO-LAAO identified in S. oligofermentans differed evidently from the known LAAOs in both substrate profile and sequence, suggesting that it could represent a novel LAAO. An aao(So) mutant of S. oligofermentans did lose H(2)O(2) formation from the seven L-amino acids, further verifying its function as an LAAO. Furthermore, the inhibition by S. oligofermentans of S. mutans in a peptone-rich mixed-species biofilm was greatly reduced for the aao(So) mutant, indicating the gene's importance in interspecies competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号