首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Laboratory scale activated sludge systems were operated under regimes of continuous or intermittent feeding of the waste water. Industrial waste waters from breweries, a dairy plant and a petro-chemical plant were investigated. The systems were started up with sludge from a municipal waste water plant or more often with sludges obtained from the corresponding industrial waste water treatment plants. It was found that intermittently fed systems produced sludges with better settleability characteristics than systems that were continuously supplemented with waste water. Our previous hypothesis that in intermittent systems floc forming bacteria become dominant as a result of higher substrate uptake rates was confirmed and may thus be extended to waste waters containing readily available substrates such as carbohydrates (brewery-and dairy waste water) or acids (petro-chemical waste water). Supplementation of brewery waste water with urea had a negative influence on sludge settleability, especially in continuously operated systems.  相似文献   

2.
Aerobic granulation with brewery wastewater in a sequencing batch reactor   总被引:5,自引:0,他引:5  
Aerobic granular sludge was cultivated in a sequencing batch reactor fed with brewery wastewater. After nine-week operation, stable granules with sizes of 2-7 mm were obtained. With the granulation, the SVI value decreased from 87.5 to 32 mL/g. The granular sludge had an excellent settling ability with the settling velocity over 91 m/h. Aerobic granular sludge exhibited good performance in the organics and nitrogen removal from brewery wastewater. After granulation, high and stable removal efficiencies of 88.7% COD(t), 88.9% NH(4)(+)-N were achieved at the volumetric exchange ratio of 50% and cycle duration of 6h. The average COD(t) and COD(s) of the effluent were 212 and 134 mg/L, respectively, and the average effluent ammonium concentration was less than 14.4 mg/L. Nitrogen was removed due to nitrification and simultaneous denitrification in the inner core of granules.  相似文献   

3.
The present study was undertaken to determine if viruses were selectively eliminated during waste water treatment. Human enteric viruses were detected at all steps of treatment in a conventional activated sludge waste water treatment plant. Liquid overlays and large volume sampling with multiple passages on BGM cells permitted the detection of poliovirus (serotypes 1, 2, and 3), coxsackievirus B (serotypes 1, 2, 3, 4, and 5), and echovirus (serotypes 3, 14, and 22), as well as reoviruses. The mean virus concentration was 95.1 most probable number of infectious units per litre (mpniu/L) in raw sewage, 23.3 in settled water, 1.4 in effluent after activated sludge treatment, and 40.3 mpniu/L in sludge samples. All samples of raw sewage and settled water, 79% of effluent water, and 94% of sludge samples contained viruses. The mean reduction was 75% after settling and 98% after activated sludge treatment. Poliovirus type 3 was rarely isolated after the activated sludge treatment, but was still detected in about one-third of the sludge samples. Reoviruses and coxsackieviruses were detected at similar rates from all samples and appear to be more resistant to the activated sludge treatment than poliovirus type 3. Poliovirus types 1 and 2 were present in almost every sample of raw sewage and settled water and still found in about half of the effluent and sludge samples, indicating a level of resistance similar to that of reoviruses and coxsackieviruses.  相似文献   

4.
The performance of a full-scale upflow anaerobic sludge blanket (UASB) reactor treating brewery wastewater was investigated by microbial analysis and kinetic modelling. The microbial community present in the granular sludge was detected using fluorescent in situ hybridization (FISH) and further confirmed using polymerase chain reaction. A group of 16S rRNA based fluorescent probes and primers targeting Archaea and Eubacteria were selected for microbial analysis. FISH results indicated the presence and dominance of a significant amount of Eubacteria and diverse group of methanogenic Archaea belonging to the order Methanococcales, Methanobacteriales, and Methanomicrobiales within in the UASB reactor. The influent brewery wastewater had a relatively high amount of volatile fatty acids chemical oxygen demand (COD), 2005 mg/l and the final COD concentration of the reactor was 457 mg/l. The biogas analysis showed 60–69 % of methane, confirming the presence and activities of methanogens within the reactor. Biokinetics of the degradable organic substrate present in the brewery wastewater was further explored using Stover and Kincannon kinetic model, with the aim of predicting the final effluent quality. The maximum utilization rate constant U max and the saturation constant (K B) in the model were estimated as 18.51 and 13.64 g/l/day, respectively. The model showed an excellent fit between the predicted and the observed effluent COD concentrations. Applicability of this model to predict the effluent quality of the UASB reactor treating brewery wastewater was evident from the regression analysis (R 2?=?0.957) which could be used for optimizing the reactor performance.  相似文献   

5.
本文对以猪肝为原料生产过氧化氢酶过程中产生的废渣、废水进行了深入处理,采用胃蛋白酶进行酶解后提取出一种富含氨基酸和多种营养成分的物质——复合氨基酸粉,并实现了废渣废水零排放的清洁生产工艺。并对胃蛋白酶酶解废渣、废水的条件进行了优化,得到最佳酶解条件为:酶解温度35℃,pH 2,酶解时间12 h。  相似文献   

6.
Summary A sequence of a substrate rich and substrate starvation phase (feast and famine strategy) is created in both compartmentalized reactors and reactors with premixing tanks. This condition is known to be essential in the control of bulking. With a synthetic waste water containing glucose a reactor with 12 compartments was effective in the control of filamentous bulking. With a dairy industrial waste water, containing a slowly biodegradable COD-fraction, this reactor could not suppress the growth of filamentous bacteria. With dairy and brewery waste water, reactors with premixing tanks were used to create a more pronounced exogenous (substrate rich) phase. Using three or more premixing tanks filamentous bulking could be controlled. During the exogenous phase the floc-forming microorganisms, having a higher substrate uptake rate, can take up the largest amount of substrate and can survive better during the endogenous phase.Substrate concentration and respiration rate profiles were studied and the concentration of the reserve materials was monitored.For each type of waste water the sludge loading and the fraction of readily available COD will determine the system's design.  相似文献   

7.
The incidence pattern of cadmium tolerance and antibiotics resistance by Escherichia coli was examined periodically from the samples of water, sludge and intestine of fish raised in waste stabilization ponds in a sewage treatment plant. Samples of water and sludge were collected from all the selected ponds and were monitored for total counts of fecal coliform (FC), total coliform (TC) and the population of Escherichia coli, which was also obtained from the intestine of fishes. Total counts of both FC and TC as well as counts of E. coli were markedly reduced from the facultative pond to the last maturation pond. Tolerance limit to cadmium by E. coli tended to decline as the distance of the sewage effluent from the source increased; the effective lethal concentration of cadmium ranged from 0.1 mM in split chamber to 0.05 mM in first maturation pond. E. coli isolated from water, sludge and fish gut were sensitive to seven out of ten antibiotics tested. It appears that holistic functions mediated through the mutualistic growth of micro algae and heterotrophic bacteria in the waste stabilization ponds were responsible for the promotion of water quality and significant reduction of coliform along the sewage effluent gradient.  相似文献   

8.
Summary Anaerobic treatment of gelatine-containing model waste water and baker's yeast manufacturing effluent was investigated in upflow anaerobic sludge blanket (UASB) reactors. During start up a correlation between coenzyme F 420 content and methane production in the reactor was observed. By monitoring coenzyme F 420 concentrations a certain prediction of methanogenic activities was possible.  相似文献   

9.
Recirculating aquaculture systems are highly intensive culture systems that actively filter and reuse water, thus minimizing water requirements and creating relatively small volumes of concentrated waste (compared to flow-through aquaculture systems). Vermicomposting, which uses earthworms to stabilize and transform organic wastes into valuable end-products, has been proposed as an alternative treatment technology for high-moisture-content organic wastes from agricultural, industrial and municipal sources. This study was conducted to determine if the effluent solids from a large recirculating aquaculture facility (Blue Ridge Aquaculture, Martinsville, Virginia) were suitable for vermicomposting using the earthworm Eisenia fetida. In two separate experiments, worms were fed mixtures of solids removed from aquaculture effluent (sludge) and shredded. Mixtures containing 0%, 5%, 10%, 15%, 20%, 25%, and 50% aquaculture sludge (dry weight basis) were fed to the worms over a 12-week period and their growth (biomass) was measured. Worm mortality, which occurred only in the first experiment, was not influenced by feedstock sludge concentration. In both experiments worm growth rates tended to increase with increasing sludge concentration, with the highest growth rate occurring with feedstocks containing 50% aquaculture sludge. Effluent solids from recirculating aquaculture systems mixed with shredded cardboard appear to be suitable feedstocks for vermicomposting.  相似文献   

10.
The importance of having a rapid method for determining the viable biomass in activated-sludge wastewater treatment plants (WWTP) for process control and development is well recognized. The firefly bioluminescence ATP assay has been proposed for this purpose. Such an assay using partially purified firefly luciferase and synthetic firefly luciferin for the bioluminescence reaction, a liquid scintillation counter in the out-of-coincidence mode as luminescence detector, and a sludge ATP extraction technique involving dimethyl sulfoxide at room temperature is described. Experiments with several pure bacteria cultures were done to demonstrate the feasibility of applying this assay to activated sludge to activated sludge WWTP investigation and control. The ATP content of samples taken from various points in a 350000 gal/day brewery activated-sludge WWTP was monitored for 4.5 months. Good linear correlation between ATP and mixed-liquor suspended solids, return sludge suspended solids, and effluent suspended solids were observed. Percentage viabilities of the various sludge samples were derived from the ATP results.  相似文献   

11.
An advanced primary treatment process for a municipal waste water was systematically studied, using a bio‐flocculation‐adsorption, sedimentation and stabilzation process (BSS). It was shown that the organic removal efficiency was higher than that of the traditional primary treatment processes but lower than that of the traditional secondary treatment processes. Both adsorption and bio‐flocculation played an important role in the removal of pollutants. The activated sludge within the bio‐flocculation‐adsorption tank could be considered a bio‐flocculent which improved the quality of the effluent from the primary treatment process. As the effluent of the BSS process did not meet the requirements for a typical secondary effluent, the process may be regarded as an advanced (or enhanced) primary treatment process, suitable for waste water containing a high concentration of suspended solids and colloidal particles.  相似文献   

12.
The effect of addition of organic carbon sources (acetic acid and waste activated sludge alkaline fermentation liquid) on anaerobic–aerobic (low dissolved oxygen, 0.15–0.45 mg/L) biological municipal wastewater treatment was investigated. The results showed that carbon source addition affected not only the transformations of polyhydroxyalkanoates (PHA), glycogen, nitrogen and phosphorus, but the net removal of nitrogen and phosphorus. The removal efficiencies of TN and TP were, respectively, 61% and 61% without organic carbon source addition, 81% and 95% with acetic acid addition, and 83% and 97% with waste activated sludge alkaline fermentation liquid addition. It seems that the alkaline fermentation liquid of waste biosolids generated in biological wastewater treatment plant can be used to replace acetic acid as an additional carbon source to improve the anaerobic–aerobic (low dissolved oxygen) municipal wastewater nutrients removal although its use was observed to cause a slight increase of effluent BOD and COD concentrations.  相似文献   

13.
When primary domestic sewage sludge was combined with settled sewage or secondary-treatment plant effluent, synergism resulted. The activity (measured by oxygen uptake, and the removal of Kjeldahl nitrogen and orthophosphate from solution) which resulted from incubating sludge together with settled sewage exceeded the sum of the activities when these components were incubated separately. A similar synergistic effect occurred with sludge and effluent. The sewage sludges were deficient in readily available nitrogen, but no shortage of phosphorus was demonstrated. The addition of ammonium and orthophosphate salts to sludge, in concentrations equivalent to those found in settled sewage and effluent, stimulated sludge oxygen uptake at least 80% as much as settled sewage or effluent. It is suggested that the synergism reflects increased microbial activity resulting from widened carbon-nitrogen and carbon-phosphorus ratios achieved by combining sludge with nutrient-rich settled sewage or effluent.  相似文献   

14.
Three different instruments for the determination of turbidity in liquid media are described. The SLP-2 was developed for the control of high biomass concentrations in fermenters and is fitted with a self-cleaning mechanism. The SLP-3 is used for control of very small turbidities, e.g. in brewery products or in drinking water. The SLP-4 is designed for continuous measurement of higher turbidities in (waste) water or in different products flowing through pipe-lines. It may be used alternatively as a submerged probe.  相似文献   

15.
Batch and continuous culture laboratory-scale experiments were conducted to quantify the effect of combining chrome and nickel electroplating effluent (EE) and brewery effluent as substrate for established anaerobic digester granules. EE at a 1:12 ratio in brewery effluent was inhibitory to anaerobic digestion but acclimation at a 1:24 ratio occurred during continuous culture experiments. At least 90% of the chromium and nickel was absorbed by the granules with nickel attaching to granule perimeters while chromium penetrated into deeper recesses. © Rapid Science Ltd. 1998  相似文献   

16.
It has been shown that phages are present in natural and engineered ecosystems and influence the structure and performance of prokaryotic communities. However, little has been known about phages occurring in anaerobic ecosystems, including those in methanogenic digesters for waste treatment. This study investigated phages produced in an upflow anaerobic sludge blanket methanogenic digester treating brewery wastes. Phage-like particles (PLPs) in the influent and effluent of the digester were concentrated and purified by sequential filtration and quantified and characterized by transmission electron microscopy (TEM), fluorescence assay, and field inversion gel electrophoresis (FIGE). Results indicate that numbers of PLPs in the effluent of the digester exceeded 1 × 109 L−1 and at least 10 times greater than those in the influent, suggesting that substantial amounts of PLPs were produced in the digester. A production rate of the PLPs was estimated at least 5.2 × 107 PLPs day−1 L−1. TEM and FIGE showed that a variety of phages were produced in the digester, including those affiliated with Siphoviridae, Myoviridae, and Cystoviridae.  相似文献   

17.
Many beer breweries use high-rate anaerobic digestion (AD) systems to treat their soluble high-strength wastewater. Biogas from these AD systems is used to offset nonrenewable energy utilization in the brewery. With increasing nonrenewable energy costs, interest has mounted to also digest secondary residuals from the high-rate digester effluent, which consists of yeast cells, bacteria, methanogens, and small (hemi)cellulosic particles. Mesophilic (37 °C) and thermophilic (55 °C) lab-scale, low-rate continuously-stirred anaerobic digestion (CSAD) bioreactors were operated for 258 days by feeding secondary residuals at a volatile solids (VS) concentration of ∼40 g l−1. At a hydraulic retention time (HRT) of 15 days and a VS loading rate of 2.7 g VS l−1 day−1, the mesophilic bioreactor showed an average specific volumetric biogas production rate of 0.88 l CH4 l−1 day−1 and an effluent VS concentration of 22.2 g VS l−1 (43.0% VS removal efficiency) while the thermophilic bioreactor displayed similar performances. The overall methane yield for both systems was 0.21 l CH4 g−1 VS fed and 0.47–0.48 l CH4 g−1 VS removed. A primary limitation of thermophilic digestion of this protein-rich waste is the inhibition of methanogens due to higher nondissociated (free) ammonia (NH3) concentrations under similar total ammonium (NH4 +) concentrations at equilibrium. Since thermophilic AD did not result in advantageous methane production rates or yields, mesophilic AD was, therefore, superior in treating secondary residuals from high-rate AD effluent. An additional digester to convert secondary residuals to methane may increase the total biogas generation at the brewery by 8% compared to just conventional high-rate digestion of brewery wastewater alone. JIMB-2008: BioEnergy—Special issue.  相似文献   

18.
The dynamic behavior of a laboratory-scale activated sludge biological waste treatment process with recycle and wasting of sludge was investigated by subjecting the system to step changes in the influent waste concentration, the recycle flow rate, or the sludge wasting rate. The dynamic behavior of the system was examined by measuring adenosine triphosphate (ATP) in addition to dissolved chemical oxygen demand (COD) and cell dry weight in the aeration tank. Cell dry weight of the recyle flow and effluent COD were also measured. Analysis of the results and estimation of time constants assuming first order responses showed that the time constants characterizing the dynamic responses of the sludge were directly related to the sludge mean residence time. The time constants estimated from dissolved COD measurements were of the same order of magnitude as the fluid residence time in the aeration tank. The ATP transient response was frequently different from that of the cell dry weight in the aeration tank.  相似文献   

19.
Evolutionary operation (EVOP) was used to experimentally investigate the optimum steady state operating conditions for a step aeration activated sludge waste treatment process. A laboratory scale two tank step aeration activated sludge unit with fixed total volume, total influent flow rate, recycle flow rate, and sludge wasting rate was employed. The volume ratio and flow rate ratio which minimized effluent chemical oxygen demand were determined. The results indicate that EVOP is a useful technique for improving the performance of biological processes.  相似文献   

20.
Lignin and manganese peroxidase (LiP, MnP) and laccase production by Phanerocheate chrysosporium was optimized by response surface methodology for brewery waste and apple pomace. The effect of moisture, copper sulphate, and veratryl alcohol (VA) concentrations on enzyme production was studied. Moisture and VA had significant positive effect on MnP and LiP production and the viability of P. chrysosporium (p < 0.05) and copper sulphate produced a negative effect. However, moisture and copper sulphate had a significant positive (p < 0.05) effect on laccase production, but VA had an insignificant positive effect (p < 0.05). Higher values of MnP, LiP and viability of P. chrysosporium on apple pomace (1287.5 U MnP/gds (units/gram dry substrate), 305 U LiP/gds, and 10.38 Log 10 viability) and brewery waste (792 U MnP/gds and 9.83 Log 10 viability) were obtained with 80% moisture, 3 mmol/kg VA, and 0.5 mmol/kg copper. LiP production in brewery waste (7.87 U/gds) was maximal at 70% moisture, 2 mmol/kg VA, and 1 mmol/kg copper. Higher production of laccase in apple pomace (789 U/gds) and brewery waste (841 U/gds) were obtained with 80% moisture, 3 mmol/kg VA, and 1.5 mmol/kg copper. Thus, moisture along with VA and copper sulphate was pertinent for the production of ligninolytic enzymes and increased cell viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号