首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salicylate was found to uniquely induce a 27-kDa protein in Mycobacterium tuberculosis complex organisms but not in Mycobacterium smegmatis or Escherichia coli. The structural analogue antitubercular para-amino-salicylate also induced the 27-kDa protein but to a somewhat lower level than salicylate. Other structural analogues such as benzoic acid and acetyl salicylic acid (aspirin) did not induce the 27-kDa protein. Western blot analysis indicated that the 27-kDa protein was localized mainly in the cytoplasm. The 27-kDa protein was not expressed at different growth phases in the absence of salicylate. The 27-kDa protein was identified as a putative benzoquinone methyltransferase (Rv0560c), which has several homologues in the M. tuberculosis genome. The cloned 27-kDa gene was found to express constitutively in E. coli, M. smegmatis and BCG with or without salicylate.  相似文献   

2.
3.
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a major global health threat. During infection, bacteria are believed to encounter adverse conditions such as iron depletion. Mycobacteria synthesize iron-sequestering mycobactins, which are essential for survival in the host, via the intermediate salicylate. Salicylate is a ubiquitous compound which is known to induce a mild antibiotic resistance phenotype. In M. tuberculosis salicylate highly induces the expression of Rv0560c, a putative methyltransferase. We identified and characterized the promoter and regulatory elements of Rv0560c. P(Rv0560c) activity was highly inducible by salicylate in a dose-dependent manner. The induction kinetics of P(Rv0560c) were slow, taking several days to reach maximal activity, which was sustained over several weeks. Promoter activity could also be induced by compounds structurally related to salicylate, such as aspirin or para-aminosalicylic acid, but not by benzoate, indicating that induction is specific to a structural motif. The -10 and -35 promoter elements were identified and residues involved in regulation of promoter activity were identified in close proximity to an inverted repeat spanning the -35 promoter element. We conclude that Rv0560c expression is controlled by a yet unknown repressor via a highly-inducible promoter.  相似文献   

4.
Chang Y  Fox BG 《Biochemistry》2006,45(45):13476-13486
DesA3 is a membrane-bound stearoyl-CoA Delta(9)-desaturase that produces oleic acid, a precursor of mycobacterial membrane phospholipids and triglycerides. The sequence of DesA3 is homologous with those of other membrane desaturases, including the presence of the eight-His motif proposed to bind the diiron center active site. This family of desaturases function as multicomponent complexes and thus require electron transfer proteins for efficient catalytic turnover. Here we present evidence that Rv3230c from Mycobacterium tuberculosis H37Rv is a biologically relevant electron transfer partner for DesA3 from the same pathogen. For these studies, Rv3230c was expressed as a partially soluble protein in Escherichia coli; recombinant DesA3 was expressed in Mycobacterium smegmatis as a catalytically active membrane protein. The addition of E. coli lysates containing Rv3230c to lysates of M. smegmatis expressing DesA3 gave strong conversion of [1-(14)C]-18:0-CoA to [1-(14)C]-cis-Delta(9)-18:1-CoA and of [1-(14)C]-16:0-CoA to [1-(14)C]-cis-Delta(9)-16:1-CoA. Both M. tuberculosis proteins were required for reconstitution of activity, as various combinations of control lysates lacking either Rv3230c or DesA3 gave minimal or no activity. Furthermore, the specificity of interaction between Rv3230c and DesA3 was implied by the inability of other related redox systems to substitute for Rv3230c. The reconstituted activity was dependent upon the presence of NADPH, could be saturated by increasing the amount of Rv3230c added, and was also sensitive to the salt concentration in the buffer. The results are consistent with the formation of a protein-protein complex, possibly with electrostatic character. This work defines a multiprotein, acyl-CoA desaturase complex from M. tuberculosis H37Rv to minimally consist of a soluble Rv3230c reductase and integral membrane DesA3 desaturase. Further implications of this finding relative to the properties of other multiprotein iron-enzyme complexes are discussed.  相似文献   

5.
After fusion of small unilamellar phospholipid liposomes with mitochondrial inner membranes, the rate of electron transfer between membrane dehydrogenases and cytochrome c decreases as the average distance between integral membrane proteins increases, suggesting that electron transfer is mediated through a diffusional process in the membrane plane (Schneider, H., Lemasters, J. J., H?chli, M., and Hackenbrock, C. R. (1980)., J. Biol. Chem. 255, 3748-3756). The role of ubiquinone in this process was evaluated by fusing liposomes containing ubiquinone-10 or ubiquinone-6, with inner membranes. In control membranes enriched with phospholipid only, ubiquinol-cytochrome c reductase and NADH- and succinate-cytochrome c reductase activities decreased proportionally to the increase in bilayer lipid. These decreases were restored substantially in phospholipid plus ubiquinone-supplemented membranes. The degree to which restoration occurred was dependent upon the length of the isoprenoid side chain of the ubiquinone with the shorter chain length ubiquinone-6, always giving greater restoration than ubiquinone-10. It is concluded that electron transfer between flavin-linked dehydrogenases (Complexes I and II) and cytochrome bc1 (Complex III) occurs by independent, lateral diffusion of ubiquinone as well as independent, lateral diffusion of ubiquinone as well as the protein complexes within the plane of the membrane.  相似文献   

6.
Oxidant toxicity of indole was demonstrated by the induction of alkylhydroperoxide reductase subunit C (AhpC) in Escherichia coli K12 and by the constitutive overproduction of AhpC in a variant of E. coli JM109 with enhanced resistance to indole. Oxidant toxicity was also indicated in an indole-adapted variant of Brevibacterium flavum by the indole-inducible overproduction of a novel 36-kDa protein with N-terminal sequence similarity to proteins involved in superoxide and singlet oxygen resistance. It is proposed that indole dissolved in membrane lipids, which caused membrane derangement and enabled direct interaction of redox-cycling isoprenoid quinones and dioxygen, resulting in the generation of superoxide. A direct indication of membrane derangement in E. coli may be the indole-inducible overproduction of spheroplast protein y (Spy).  相似文献   

7.
Two major antigens from Mycobacterium tuberculosis were produced by Streptomyces lividans as secreted extracellular proteins. An expression-secretion vector had been constructed that contained the promoter of xylanase A and the signal sequence of cellulase A. The latter contained two initiation codons preceded by a Shine-Dalgarno sequence plus eight nucleotides complementary to the 16S rRNA. The genes encoding the 38-kDa (Rv0934) and 19-kDa (Rv3763) proteins, respectively, were amplified by polymerase chain reaction and cloned into that vector. The recombinant proteins were then purified from the culture supernatants of the clones. The yields after purification were 80 mg/L for the 38-kDa protein and 200 mg/L for the 19-kDa protein. Sequence analysis of the N-terminal sequences showed a deletion of seven or eight amino acids for the 38-kDa protein, while in the 19-kDa protein 22 or 23 amino acids were lost, as compared with the respective wild-type proteins. However, the 19 kDa recombinant protein had the same N-terminal sequence as the one recovered from the M. tuberculosis culture supernatant. The high yields obtained for these two proteins demonstrated the potential of S. lividans as an alternative host for the production of recombinant proteins from M. tuberculosis. The culture conditions have yet to be worked out to minimize proteolytic degradation and to recover intact products.  相似文献   

8.
The amino acid sequence of the ubiquinone binding protein (QP-C) in the cytochrome bc1 region of the mitochondrial electron transfer chain was determined by analysis of peptides obtained by cyanogen bromide cleavage and staphylococcal protease digestion of succinylated derivatives. It was found to consist of 110 amino acid residues and its amino terminus to be blocked by an acetyl group, as determined by mass spectrometry of the amino-terminal peptide and a comparison with peptides chemically synthesized on high-performance liquid chromatography. The molecular weight of this ubiquinone binding protein including the acetyl group was calculated to be 13,389. The predicted secondary structure of QP-C has alpha-helical content of about 50% and QP-C was classified as an "all-alpha" or "alpha + beta" protein. This is the first report describing the amino acid sequence of the ubiquinone binding protein. A comparison of this sequence with that of the 14-kDa subunit of the yeast ubiquinol-cytochrome c reductase complex from the nucleotide sequence showed these two sequences to be quite similar.  相似文献   

9.
Rv3487c (lipF), a member of the lipase family of Mycobacterium tuberculosis, is related to virulence of this pathogen. Real-time RT-PCR analysis indicated that Rv3487c was induced at low pH in M. tuberculosis cultured in vitro. The gene of Rv3487c was cloned and expressed as fusion protein in Escherichia coli. After removal of the N-terminal domain of the fusion partner by enterokinase treatment, the effect of pH, temperature, and detergents on the purified enzyme activity and stability was characterized. Rv3487c could efficiently hydrolyze short chain esters. The catalytic triad of Rv3487c consists of residues Ser90, Glu189, and His219 as demonstrated by amino acid sequence alignment, three-dimensional modeling, and site-directed mutagenesis.  相似文献   

10.
Ability of Mycobacterium tuberculosis to survive under oxidative stress in vivo is an important aspect of pathogenesis. Rv3303c gene from M. tuberculosis encodes an NAD(P)H quinone reductase. These enzymes have been shown to manage oxidative stress in other pathogenic bacteria. We have hypothesized that Rv3303c protein will remove reactive oxygen species released by the host and hence reduce oxidative stress to M. tuberculosis. rv3303c was PCR cloned and the purified recombinant enzyme reduced superoxide generator menadione. Antisense and sense RNA constructs of rv3303c were electroporated in M. tuberculosis H37Rv. The transformants were characterized by difference in expression of specific mRNA and protein. Antisense transformants were markedly reduced in virulence as compared to sense transformants as judged by several parameters such as weight and survival of infected mice, growth in vivo, colonization and histopathology of lungs. In the presence of menadione, the sense transformant was more resistant to killing in vitro than the antisense transformant. It may be concluded that the rv3303c gene contributes to virulence of M. tuberculosis in vivo and this might be mediated in part by increased resistance to reactive oxygen intermediates thereby enhancing intracellular growth and colonization.  相似文献   

11.
12.
13.
The gene encoding the Mycobacterium tuberculosis Rv2536 protein is present in the Mycobacterium tuberculosis complex (as assayed by PCR) and transcribed (as determined by RT-PCR) in M. tuberculosis H37Rv, M. tuberculosis H37Ra, M. bovis BCG, and M. africanum strains. Rabbits immunized with synthetic polymer peptides from this protein produced antibodies specifically recognizing a 25-kDa band in mycobacterial sonicate. U937 and A549 cells were used in binding assays involving 20-amino-acid-long synthetic peptides covering the whole Rv2536 protein sequence. Peptide 11207 (161DVFSAVRADDSPTGEMQVAQY180) presented high specific binding to both types of cells; the binding was saturable and presented nanomolar affinity constants. Cross-linking assays revealed that this peptide specifically binds to 50 kDa U937 cell membrane and 45 kDa A549 cell membrane proteins.  相似文献   

14.
In this study, Rv2613c, a protein that is encoded by the open reading frame Rv2613c in Mycobacterium tuberculosis H37Rv, was expressed, purified, and characterized for the first time. The amino acid sequence of Rv2613c contained a histidine triad (HIT) motif consisting of H-phi-H-phi-H-phi-phi, where phi is a hydrophobic amino acid. This motif has been reported to be the characteristic feature of several diadenosine 5′,5′′′-P1,P4-tetraphosphate (Ap4A) hydrolases that catalyze Ap4A to adenosine 5′-triphosphate (ATP) and adenosine monophosphate (AMP) or 2 adenosine 5′-diphosphate (ADP). However, enzymatic activity analyses for Rv2613c revealed that Ap4A was converted to ATP and ADP, but not AMP, indicating that Rv2613c has Ap4A phosphorylase activity rather than Ap4A hydrolase activity. The Ap4A phosphorylase activity has been reported for proteins containing a characteristic H-X-H-X-Q-phi-phi motif. However, no such motif was found in Rv2613c. In addition, the amino acid sequence of Rv2613c was significantly shorter compared to other proteins with Ap4A phosphorylase activity, indicating that the primary structure of Rv2613c differs from those of previously reported Ap4A phosphorylases. Kinetic analysis revealed that the Km values for Ap4A and phosphate were 0.10 and 0.94 mM, respectively. Some enzymatic properties of Rv2613c, such as optimum pH and temperature, and bivalent metal ion requirement, were similar to those of previously reported yeast Ap4A phosphorylases. Unlike yeast Ap4A phosphorylases, Rv2613c did not catalyze the reverse phosphorolysis reaction. Taken together, it is suggested that Rv2613c is a unique protein, which has Ap4A phosphorylase activity with an HIT motif.  相似文献   

15.
Sphingomonas yanoikuyae B1 possesses several different multicomponent oxygenases involved in metabolizing aromatic compounds. Six different pairs of genes encoding large and small subunits of oxygenase iron-sulfur protein components have previously been identified in a gene cluster involved in the degradation of both monocyclic and polycyclic aromatic hydrocarbons. Insertional inactivation of one of the oxygenase large subunit genes, bphA1c, results in a mutant strain unable to grow on naphthalene, phenanthrene, or salicylate. The knockout mutant accumulates salicylate from naphthalene and 1-hydroxy-2-naphthoic acid from phenanthrene indicating the loss of salicylate oxygenase activity. Complementation experiments verify that the salicylate oxygenase in S. yanoikuyae B1 is a three-component enzyme consisting of an oxygenase encoded by bphA2cA1c, a ferredoxin encoded by the adjacent bphA3, and a ferredoxin reductase encoded by bphA4 located over 25kb away. Expression of bphA3-bphA2c-bphA1c genes in Escherichia coli demonstrated the ability of salicylate oxygenase to convert salicylate to catechol and 3-, 4-, and 5-methylsalicylate to methylcatechols.  相似文献   

16.
Recently we reported that a P-450c27/25 cDNA probe hybridizes to two RNA species of about 1.9 and 2.3-2.4 kilobase pairs (kb) in some rat tissues. To understand the molecular relationship between the two mRNAs, we have isolated and characterized a cDNA for the larger, previously uncharacterized 2.3-kb mRNA species. The 2.3-kb cDNA is identical to the previously reported 1.9-kb P-450c27/25 cDNA excepting a 400-nucleotide-long 5' extension. The terminal 291 nucleotides of this extension exhibit 100% complementarity with the 5'-translated region of the mRNA belonging to a family of growth hormone-inducible serine protease inhibitors (SPI). Northern blot analysis, using strand-specific probes, and S1 nuclease protection revealed the presence of the 2.3-kb mRNA exhibiting the sequence characteristics of the larger cDNA. These results were further confirmed by polymerase chain reaction amplification of reverse transcribed RNA. Expression of the 2.3-kb cDNA in COS cells resulted in the correct mitochondrial targeting of a 52-kDa protein exhibiting the properties of P-450c27/25. Furthermore, both the 1.9- and 2.3-kb mRNAs appear to direct the synthesis of a similarly sized 55-kDa precursor protein in a reticulocyte lysate system. Restriction mapping, polymerase chain reaction amplification and partial sequencing of a 25-kb genomic DNA clone suggest the proximal location of the SPI and the P-450c27/25 protein coding regions in the rat genome on either side of a common overlap region. The results also show that the P-450c27/25 mRNAs are regulated by growth hormone in parallel to the SPI mRNAs. These results collectively suggest that a growth hormone-inducible SPI family mRNA and the P-450c27/25 mRNA are encoded by two closely linked, possibly overlapping genes.  相似文献   

17.
Mycobacterium tuberculosis profoundly exploits protein phosphorylation events carried out by serine/threonine protein kinases (STPKs) for its survival and pathogenicity. Forkhead-associated domains (FHA), the phosphorylation-responsive modules, have emerged as prominent players in STPK mediated signaling. In this study, we demonstrate the association of the previously uncharacterized FHA domain-containing protein Rv0019c with cognate STPK PknB. The consequent phosphorylation of Rv0019c is shown to be dependent on the conserved residues in the Rv0019c FHA domain and activation loop of PknB. Furthermore, by creating deletion mutants we identify Thr36 as the primary phosphorylation site in Rv0019c. During purification of Rv0019c from Escherichia coli, the E. coli protein chloramphenicol acetyltransferase (CAT) specifically and reproducibly copurifies with Rv0019c in a FHA domain-dependent manner. On the basis of structural similarity of E. coli CAT with M. tuberculosis PapA5, a protein involved in phthiocerol dimycocerosate biosynthesis, PapA5 is identified as an interaction partner of Rv0019c. The interaction studies on PapA5, purified as an unphosphorylated protein from E. coli, with Rv0019c deletion mutants reveal that the residues N-terminal to the functional FHA domain of Rv0019c are critical for formation of the Rv0019c-PapA5 complex and thus constitute a previously unidentified phosphoindependent binding motif. Finally, PapA5 is shown to be phosphorylated on threonine residue(s) by PknB, whereas serine/threonine phosphatase Mstp completely reverses the phosphorylation. Thus, our data provides initial clues for a possible regulation of PapA5 and hence the phthiocerol dimycocerosate biosynthesis by PknB, either by direct phosphorylation of PapA5 or indirectly through Rv0019c.  相似文献   

18.
19.
The malarial parasite dramatically affects the structure and function of the erythrocyte membrane by exporting proteins that specifically interact with the host membrane. This report describes the complete sequence and some biochemical properties of a 93-kDa Plasmodium chabaudi chabaudi protein that interacts with the host erythrocyte membrane. Approximately 40% of the deduced protein sequence consists of tandem repeats of 14 amino acids that are rich in glutamic acid residues. Comparison of the repeat sequences from two different P. c. chabaudi strains derived from the same initial isolate revealed an exact duplication of 294 nucleotides suggesting a recent gel electrophoresis and gel filtration chromatography suggest that the protein is a long rod-shaped or fibrillar. protein. Attributes shared between the 93-kDa protein, some P. falciparum proteins with glutamate-rich tandem repeats, and cytoskeletal proteins suggest that these parasite proteins function as cytoskeletal proteins that possibly stabilize the erythrocyte membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号