首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of a protein matrix on the processing of glycoprotein glycans by Golgi enzymes from plant seedlings has been determined with an artificial glycoprotein system, comparing the processing rates of glycan-(biotinyl)Asn (or glycan-(biotinamidohexanoyl)Asn) substrates either free or bound to avidin. An analysis of the pooled glycoproteins from the seedlings suggested that the most common glycan structure is a complex one (GlcNAc-Man3GlycNAc2-protein), and consistent with this processing end-product, mannosidases I and II and GlcNAc transferases I and II were all found to be present in the seedling Golgi membrane preparations. The effect of the avidin matrix either in a proximal (biotinyl substrates) or distal (N-(biotinamido)hexonoyl substrates) association with the appropriate glycan substrate for these four enzymes was assessed from the direct comparison of the apparent first-order rate constants for the free and avidin-bound substrate-product conversions. All four plant enzymes were inhibited by the association of the glycan substrates with avidin, but the inhibition was much less pronounced than that observed with the corresponding enzymes from rat liver and hen oviduct. The rate effect shows a progression from 3- to 10-fold rate decreases in the proximal complexes and 2- to 3-fold in the distal complexes in going from the first (mannosidase I) to the fourth (GlcNAc transferase II) enzyme; with the mammalian and avian enzymes the largest effects were for the first ones and much larger absolute rate effects were observed. The results suggest that the nature of the processing enzymes in terms of this response to the avidin glycan substrates may differ in different organisms.  相似文献   

2.
The effect of the protein matrix on glycan processing by rat liver Golgi enzymes has been evaluated by a direct comparison of substrate----products conversion of a free glycan and of the same glycan linked to a protein. The glycan substrates had the general structure R-glycan where R represented either biotinyl-Asn-GlcNAc2- or 6-(biotinamido)hexanoyl-Asn-Glc-NAc2- and the protein used was avidin; the extension arm in one of the glycan substrates permitted the additional comparison of two avidin-biotin-glycan complexes. By the use of different glycans as substrates, by the presence or absence of donor substrates (UDP-GlcNAc, UDP-Gal, and CMP-sialic acid (Sia) and/or the inhibitor, swainsonine, it was possible to dissect the individual steps involved in the conversion of R-Man6 (or R-Man5) to a biantennary complex glycan, R-Man3-GlcNAc2-Gal2-Sia2 or to the hybrid glycan R-Man5-GlcNAc-Gal-Sia. Using fast atom bombardment-mass spectrometry to identify and quantify the substrates and products of each parallel incubation of free and avidin-bound substrates, the following observations were made. With the substrate without the extension arm, avidin-binding inhibited mannosidase I, GlcNAc transferase I, and the second step of the reaction catalyzed by mannosidase II (R-Man4-GlcNAc----R-Man3-GlcNAc); the second step of the reaction catalyzed by Gal-transferase was also inhibited to a lesser extent. This inhibition was greatly reduced or absent with the substrates with the extension arm and was consequently referred to as the short range effect. A long range effect of avidin binding expressed by both substrates with and without extension arm was observed for Gal-transferase acting in the hybrid glycan pathway (R-Man5-GlcNAc----R-Man5-GlcNAc-Gal) in the presence of swainsonine and also for Sia-transferase in the catalysis of the incorporation of the second Sia residue into the complex product (R-Man3-GlcNA2-Gal2-Sia----R-Man3-GlcNAc2- Gal2-Sia2) and to a lesser extent in the hybrid pathway (R-Man5-GlcNAc-Gal----R-Man5-GlcNAc-Gal-Sia). GlcNAc transferase II did not appear to be affected by avidin. Based on the information available on the biotin-binding site in avidin, it is proposed that the short range effect reflects the masking of the core chitobiose unit in the avidin-glycan complexes in the absence of the extension arm, but not in the presence of the arm, and that the early processing enzymes thus may require a fully exposed chitobiose for full activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
In order to assess the basis for the regulatory effects of the protein matrix on the processing of glycans in glycoproteins, we have used the avidin-biotinylglycan neoglycoprotein model system to compare the kinetic parameters for three rat liver Golgi enzymes acting on their free and protein-bound glycan substrates. Two modes of glycan display in the avidin complex were produced by the use of either the biotinyl- or the 6-biotinamidohexanoyl-group as ligands for the avidin binding. N-Acetylglucosaminyltransferase I gave a 100-fold decrease in Vmax/Km for the avidin complex of Man5GlcNAc2-(biotinyl)Asn as compared to the free glycan derivative; the rate difference reflects a large (25x) decrease in the Vmax and a relatively small increase (4x) in Km. When the substrate with the extension arm (Man5GlcNAc2-(6-biotinamidohexanoyl)Asn) was used, the difference between Vmax/Km for free and avidin-bound substrate was only 6-fold. The Vmax/Km ratio for N-acetylglucosaminyltransferase II also showed a 10-fold difference for free and avidin-bound GlcNAcMan3GlcNAc2-(biotinyl)Asn; the introduction of the extension arm in the complex reduced the difference to about 3-fold. The third enzyme, galactosyltransferase, acting on the substrate GlcNAcMan5-GlcNAc2-R in the presence of the mannosidase II-inhibitor swainsonine, showed a small, 2- to 3-fold, decrease in the Vmax for the bound substrates, both with and without the extension arm. The results suggest that the protein matrix affects the catalytic efficiency rather than the substrate affinity of the processing enzymes.  相似文献   

4.
M C Shao  G Krudy  P R Rosevear  F Wold 《Biochemistry》1989,28(9):4077-4083
The effect of the protein environment on the reaction sequence and the relative rates of two two-step reactions involved in the biosynthesis of complex glycans in glycoproteins has been explored by comparing the processing of biotinylated substrates either free or bound to avidin. By use of biotinyl and biotinamidohexanoyl derivatives, the display of the glycan in a proximal and distal association with the avidin surface could also be assessed. Mannosidase II removes two Man residues from the substrate GlcNAcMan5GlcNAc2-R to yield GlcNAcMAn3GlcNAc2-R. The NMR spectra of the substrate, intermediate, and product showed that the first Man is removed from the 6-arm of the substrate. The rate constants for the first and second step (estimated by direct analysis of the reactants by anion-exchange chromatography with a pulsed amperometric detector) were determined to be about 0.05 and 0.08 min-1, respectively, for the free substrates. In the proximal complex k1 was reduced 80-fold, and the k2 step could not be observed under the same conditions. In the distal complex both k1 and k2 were reduced about 8-fold. Sialyl transferases transfer Sia from CMP-Sia to the biantennary substrate Gal2GlcNAc2-Man3GlcNA2-R to yield the product Sia2Gal2-GlcNAc2Man3GlcNAc2-R with the Sia linked either 2-3 or 2-6 to the Gal residues. The NMR spectra showed that the first step involved the Gal on the 3-arm of the substrate and that both Sia residues were added 2-6.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The Sindbis virus glycoproteins, E1 and E2, comprise a useful model system for evaluating the effects of local protein structure on the processing of N-linked oligosaccharides by Golgi enzymes. The conversion of oligomannose to N-acetyllactosamine (complex) oligosaccharides is hindered to different extents at the four glycosylation sites, so that the complex/oligomannose ratio decreases in the order E1-Asn139 greater than E2-Asn196 greater than E1-Asn245 greater than E2-Asn318. The processing steps most susceptible to interference were deduced from the oligosaccharide compositions at hindered sites in virus from baby hamster kidney cells (BHK), chick embryo fibroblasts (CEF), and normal and hamster sarcoma virus (HSV)-transformed hamster fibroblasts (Nil-8). Persistence of Man6-9GlcNAc2 was taken to indicate interference with alpha 2-mannosidase(s) I (alpha-mannosidase I), Man5GlcNAc2, with UDP-GlcNAc:alpha-D-mannoside beta 1----2-N-acetylglucosaminyltransferase I (GlcNAc transferase I), and unbisected hybrid glycans, with GlcNAc transferase I-dependent alpha 3(alpha 6)-mannosidase (alpha-mannosidase II). Taken together, the results indicate that all four sites acquire a precursor oligosaccharide with equally high efficiency, but alpha-mannosidase I, GlcNAc transferase I, and alpha-mannosidase II are all impeded at E2-Asn318 and, to a lesser extent, at E1-Asn245. In contrast, sialic acid and galactose transfer to hybrid glycans (in BHK cells) is virtually quantitative even at E2-Asn318. E2-Asn318 carried no complex oligosaccharides, but the structures of those at E1-Asn245 indicate almost complete GlcNAc transfer by UDP-GlcNAc:alpha-D-mannoside beta 1----2-N-acetylglucosaminyltransferase II (GlcNAc transferase II), galactosylation, and sialylation. Because the E2-Asn318 and E1-Asn245 glycans have previously been shown to be less accessible to a steric probe than those at E2-Asn196 or E1-Asn139, a simple explanation for these results would be that alpha-mannosidase I, GlcNAc transferase I, and alpha-mannosidase II are more susceptible to steric hindrance than are the later processing steps examined. Finally, in addition to these site-specific effects, the overall extent of viral oligosaccharide processing varied with host and cellular growth status. For example, alpha-mannosidase I processing is more complete in BHK cells compared to CEF, and in confluent Nil-8 cells compared to subconfluent or HSV-transformed Nil-8 cells.  相似文献   

6.
Effects of the protein matrix on glycan processing in glycoproteins   总被引:2,自引:0,他引:2  
In the biosynthesis of glycoproteins containing asparagine-linked glycans, a number of regulatory factors must be involved in converting the single glycan precursor into the variety of different final structures observed in different eukaryotic species. Among these factors are the kind of glycan-processing enzymes available in the Golgi apparatus of different cells, the specificity and regulatory properties of these enzymes, and the unique properties of the protein matrix in which a given glycan resides during the biosynthetic processing. In examining the role of this latter regulatory factor, we have considered a simplified model in which a few key steps are common to all cells, regardless of the nature of the processing enzymes available. The protein-bound oligomannose precursor Man8GlcNAc2-, arriving in the Golgi after the initial trimming in the endoplasmic reticulum (ER), first undergoes a series of preprocessing steps to yield Man5GlcNAc2- in animals and plants or Man13-15GlcNAc2- in yeast. At this stage the key commitment step--to process or not to process--determines whether the above intermediates will remain as unprocessed oligomannose structures or be initiated into a new series of reactions to yield processed structures characteristic of the organisms involved (complex or hybrid for vertebrates, polymannose for yeast, xylosylated glycans for plants and some invertebrates, or Man3GlcNAc2- structures for other invertebrates). It is proposed that this commitment step, along with the obligatory preprocessing steps, is regulated primarily by each glycan's unique exposure on its protein matrix. Subsequent processing steps leading to complex or hybrid structures, fucosylation, extent of branching, and specific structures at the nonreducing terminals are most likely determined primarily by the enzyme makeup of the individual processing machineries, but with the protein matrix still playing a significant role.  相似文献   

7.
A mammalian N-acetylglucosamine (GlcNAc) transferase I (GnT I)-independent fucosylation pathway is revealed by the use of matrix-assisted laser desorption/ionization (MALDI) and negative-ion nano-electrospray ionization (ESI) mass spectrometry of N-linked glycans from natively folded recombinant glycoproteins, expressed in both human embryonic kidney (HEK) 293S and Chinese hamster ovary (CHO) Lec3.2.8.1 cells deficient in GnT I activity. The biosynthesis of core fucosylated Man5GlcNAc2 glycans was enhanced in CHO Lec3.2.8.1 cells by the alpha-glucosidase inhibitor, N-butyldeoxynojirimycin (NB-DNJ), leading to the increase in core fucosylated Man5GlcNAc2 glycans and the biosynthesis of a novel core fucosylated monoglucosylated oligomannose glycan, Glc1Man7GlcNAc2Fuc. Furthermore, no fucosylated Man9GlcNAc2 glycans were detected following inhibition of alpha-mannosidase I with kifunensine. Thus, core fucosylation is prevented by the presence of terminal alpha1-2 mannoses on the 6-antennae but not the 3-antennae of the trimannosyl core. Fucosylated Man5GlcNAc2 glycans were also detected on recombinant glycoprotein from HEK 293T cells following inhibition of Golgi alpha-mannosidase II with swainsonine. The paucity of fucosylated oligomannose glycans in wild-type mammalian cells is suggested to be due to kinetic properties of the pathway rather than the absence of the appropriate catalytic activity. The presence of the GnT I-independent fucosylation pathway is an important consideration when engineering mammalian glycosylation.  相似文献   

8.
The complex asparagine-linked glycans of plant glycoproteins, characterized by the presence of beta 1-->2 xylose and alpha 1-->3 fucose residues, are derived from typical mannose9(N-acetylglucosamine)2 (Man9GlcNAc2) N-linked glycans through the activity of a series of glycosidases and glycosyl transferases in the Golgi apparatus. By screening leaf extracts with an antiserum against complex glycans, we isolated a mutant of Arabidopsis thaliana that is blocked in the conversion of high-manne to complex glycans. In callus tissues derived from the mutant plants, all glycans bind to concanavalin A. These glycans can be released by treatment with endoglycosidase H, and the majority has the same size as Man5GlcNAc1 glycans. In the presence of deoxymannojirimycin, an inhibitor of mannosidase I, the mutant cells synthesize Man9GlcNAc2 and Man8GlcNAc2 glycans, suggesting that the biochemical lesion in the mutant is not in the biosynthesis of high-mannose glycans in the endoplasmic reticulum but in their modification in the Golgi. Direct enzyme assays of cell extracts show that the mutant cells lack N-acetyl glucosaminyl transferase I, the first enzyme in the pathway of complex glycan biosynthesis. The mutant plants are able to complete their development normally under several environmental conditions, suggesting that complex glycans are not essential for normal developmental processes. By crossing the complex-glycan-deficient strain of A. thaliana with a transgenic strain that expresses the glycoprotein phytohemagglutinin, we obtained a unique strain that synthesizes phytohemagglutinin with two high-mannose glycans, instead of one high-mannose and one complex glycan.  相似文献   

9.
Analysis of the glycosylation of human serum IgD and IgE indicated that oligomannose structures are present on both Igs. The relative proportion of the oligomannose glycans is consistent with the occupation of one N-linked site on each heavy chain. We evaluated the accessibility of the oligomannose glycans on serum IgD and IgE to mannan-binding lectin (MBL). MBL is a member of the collectin family of proteins, which binds to oligomannose sugars. It has already been established that MBL binds to other members of the Ig family, such as agalactosylated glycoforms of IgG and polymeric IgA. Despite the presence of potential ligands, MBL does not bind to immobilized IgD and IgE. Molecular modeling of glycosylated human IgD Fc suggests that the oligomannose glycans located at Asn(354) are inaccessible because the complex glycans at Asn(445) block access to the site. On IgE, the additional C(H)2 hinge domain blocks access to the oligomannose glycans at Asn(394) on one H chain by adopting an asymmetrically bent conformation. IgE contains 8.3% Man(5)GlcNAc(2) glycans, which are the trimmed products of the Glc(3)Man(9)GlcNAc(2) oligomannose precursor. The presence of these structures suggests that the C(H)2 domain flips between two bent quaternary conformations so that the oligomannose glycans on each chain become accessible for limited trimming to Man(5)GlcNAc(2) during glycan biosynthesis. This is the first study of the glycosylation of human serum IgD and IgE from nonmyeloma proteins.  相似文献   

10.
A recombinant Chinese hamster ovary (CHO) cell line making human interfron-gamma (IFN-gamma) was grown in 12-L stirred tank fermentors in three batch fermentations under conditions of constant temperature, pH, and dissolved oxygen tension. In addition to cell growth, metabolite, and productivity data, a detailed analysis of the carbohydrate structures attached to each glycosylation site of IFN-gamma was achieved using matrix-assisted laser desorption mass spectrometry (MALDI-MS) in combination with exoglycosidase array sequencing. Complex biantennary oligosaccharides (particularly Gal(2)GlcNAc(4)Man(3) which was core alephl-6 fucosylated at Asn(25) but not at Asng(97)) were most prevalent at both glycosylation sites. However, considerable microheterogeneity arising from the presence of triantennary and truncated glycan structures was also observed. The proportion of the dominant core glycan structure (Gal(2)GlcNAc(4)Man(3) +/- Fuc(1)) decreased by 15-26% during batch culture, with increases in the proportion of oligomannose and truncated glycans over the same time period. Prolonged culture resulting from an extended lag phase led to further accumulation of oligomannose and truncated structures, reaching up to 52% of total glycans attached to Asng(97) by 240 h of culture. The implications of these glycosylation changes for optimizing the time for harvesting cell cultures, and for the clearance of recombinant therapeutic products in vivo are discussed. (c) 1995 John Wiley & Sons, Inc.  相似文献   

11.
Using isopycnic sucrose gradients, we have ascertained the subcellular location of several enzymes involved in the processing of the N-linked oligosaccharides of glycoproteins in developing cotyledons of the common bean, Phaseolus vulgaris. All are localized in the endoplasmic reticulum (ER) or Golgi complex as determined by co-sedimentation with the ER marker, NADH-cytochrome c reductase, or the Golgi marker, glucan synthase I. Glucosidase activity, which removes glucose residues from Glc3Man9(GlcNAc)2, was found exclusively in the ER. All other processing enzymes, which act subsequent to the glucose trimming steps, are associated with the Golgi. These include mannosidase I (removes 1-2 mannose residues from Man6-9[GlcNAc]2), mannosidase II (removes mannose residues from GlcNAcMan5[GlcNAc]2), and fucosyltransferase (transfers a fucose residue to the Asn-linked GlcNAc of appropriate glycans). We have previously reported the localization of two other glycan modifying enzymes (GlcNAc-transferase and xylosyltransferase activities) in the Golgi complex. Attempts at subfractionation of the Golgi fraction on shallow sucrose gradients yielded similar patterns of distribution for all the Golgi processing enzymes. Subfractionation on Percoll gradients resulted in two peaks of the Golgi marker enzyme inosine diphosphatase, whereas the glycan processing enzymes were all enriched in the peak of lower density. These results do not lend support to the hypothesis that N-linked oligosaccharide processing enzymes are associated with Golgi cisternae of different densities.  相似文献   

12.
Pancreatic adenocarcinomas induced in Syrian hamsters by treatment with N-nitrosobis(2-oxopropyl) amine express blood group A antigen, which is absent in normal pancreatic cells. On membrane glycoproteins purified from tumors, blood group A antigen has been found to be expressed on multiantennary Asn-linked complex glycans. In this study, we investigated the effect of inhibitors of Asn-glycan processing on blood group A antigen bearing glycan structures in a cell line (PC-1) established from a primary induced pancreatic cancer. Expression of blood group A antigen on cells and in membrane preparations was blocked by treatment with 1-deoxymannojirimycin, an inhibitor of mannosidase I, but was retained after treatment with swainsonine, an inhibitor of mannosidase II. However, swainsonine treatment altered the glycan structure associated with blood group A antigen from an endoglycosidase H resistant type to a sensitive type, indicating that the blood group A structure might shift from a complex type to a hybrid type glycan by this treatment. These results demonstrate that Asn-linked glycans carry the major blood group A antigens in PC-1 cells.  相似文献   

13.
Competitive inhibition of sperm to explants of the oviductal epithelium was used to study the complementary receptor system that may be involved in the establishment of the oviductal sperm reservoir in the pig. Sperm binding to the oviductal explants is expressed as Binding Index (BI = sperm cells/0.01 mm(2)). From a set of glycoproteins with known oligosaccharide structures, only asialofetuin and ovalbumin showed inhibitory activity, indicating that ovalbumin may block high affinity binding sites (IC(50) congruent with 1.3 microM) and asialofetuin low affinity sites (IC(50) congruent with 18 microM) of the complementary receptor systems, whereas fetuin carrying terminal sialic acid has no effect. Ovalbumin glycopeptides were isolated by Con A affinity chromatography and reverse-phase HPLC following tryptic digestion. Glycopeptides and enzymatically released glycans were analyzed by MS, and were shown to represent preferentially the two high mannose type glycans (Man)(5)(GlcNAc)(2) and (Man)(6)(GlcNAc)(2), and as a minor component the hybrid type glycan (Hex)(4)(GlcNAc)(5). Glycopeptides (84% inhibition) and glycans (81% inhibition) significantly reduced sperm-oviduct binding at a concentration of 3 microM, whereas the deglycosylated peptides showed no inhibitory activity. Mannopentaose (IC(50) congruent with 0.8 microM) representing the oligomannose residue of the high mannose glycans of ovalbumin was as effective as ovalbumin. These data indicate that the carbohydrate-based mechanisms underlying the formation of the oviductal sperm reservoir in the pig is the result of the concerted action of at least the high-affinity binding sites for oligomannose or nonreducing terminal mannose residues and low-affinity binding of galactose.  相似文献   

14.
Twenty-eight enzymes, encoded by different genes and secreted by different mutant strains of Chrysosporium lucknowense, were subjected to MALDI-TOF MS peptide fingerprinting followed by analysis of the MS data using the GlycoMod tool from the ExPASy proteomic site. Various N-linked glycan structures were discriminated in the C. lucknowense proteins as a result of the analysis. N-Glycosylated peptides with modifications matching the oligosaccharide compositions contained in the GlycoSuiteDB were found in 12 proteins. The most frequently encountered N-linked glycan, found in 9 peptides from 7 proteins, was (Man)(3)(GlcNAc)(2), that is, the core pentasaccharide structure forming mammalian-type high-mannose and hybrid/complex glycans in glycoproteins from different organisms. Nine out of 12 enzymes represented variably N-glycosylated proteins carrying common (Hex)(0-4)(HexNAc)(0-6)+(Man)(3)(GlcNAc)(2) structures, most of them being hybrid/complex glycans. Various glycan structures were likely formed as a result of the enzymatic trimming of a 'parent' oligosaccharide with different glycosidases. The N-glycosylation patterns found in C. lucknowense proteins differ from those reported for the extensively studied enzymes from Aspergilli and Trichoderma species, where high-mannose glycans of variable structure have been detected.  相似文献   

15.
Two new oligosaccharides were isolated from the urine of a patient with GM1 gangliosidosis. Final purification of the oligosaccharides was accomplished by capillary supercritical fluid chromatography. Structural analysis was by chemical analysis, chemical-ionization mass spectrometry and 400-MHz 1H-NMR spectroscopy, leading to two primary structures. The first is derived from a classical triantennary N-acetyllactosamine-type glycan: Gal beta 1-4GlcNAc beta 1-4(Gal beta 1-4GlcNAc beta 1-2)Man alpha 1-3Man beta 1-4GlcNAc. The second is unusual with a terminal disaccharide Gal beta 1-6Gal, which had not yet been described for glycans of the N-acetyllactosamine type: Gal beta 1-6Gal beta 1-4GlcNAc beta 1-2Man alpha 1-6Man beta 1-4GlcNAc.  相似文献   

16.
In an attempt to evaluate the effects of the protein matrix on the specificity of glycoprotein processing in Golgi membranes, we have developed a model neoglycoprotein consisting of biotinylated glycans bound noncovalently to avidin (Chen, V. J., and Wold, F. (1986) Biochemistry 25, 939-444) with which the protein effect on processing can be evaluated as the difference in substrate efficiency between a free biotinylated glycan and the same biotinylated glycan bound to avidin. The avidin (streptavidin)-glycan complex stability was found to be proper for the experimental design; the complex remains intact for extended periods of incubation at the concentrations used, but the glycan can be completely liberated and recovered by heating the complex at 95 degrees C for 10 min in the presence of a 10-fold molar excess of biotin. By measuring the relative rates of [14C]sugar incorporation into the free and bound substrates it was demonstrated that the protein indeed influences the processing reactions; under conditions where free glycans such as biotinyl-Asn-Glc-NAc2-Man5 and 6-(biotinamido)hexanoyl-Asn-Glc-NAc2-Man5 could be converted to the biantennary products R-Asn-GlcNAc2-Man3-GlcNAc2-Gal2-sialyl2 in the presence of UDP-GlcNAc, UDP-Gal and CMP-sialic acid and Golgi enzymes, the avidin-bound derivative without the extension arm gave only low levels of product and the streptavidin-bound one remained unaltered. The presence of the extension arm in the substrates significantly improved the yield of some products in the complex, apparently by reducing or eliminating the avidin inhibition of the early steps, but not of the late ones. There are consequently two types of effect of the protein matrix on processing efficiency. One is expressed only when the glycan is close to the protein surface and affecting primarily early steps (mannosidases and GlcNAc transferases). The other is apparently independent of the proximity of the glycan core and the protein, and affects primarily late steps, in particular the incorporation of the second sialic acid residue into a biantennary complex glycan.  相似文献   

17.
Lysosomal alpha-mannosidase is a broad specificity exoglycosidase involved in the ordered degradation of glycoproteins. The bovine enzyme is used as an important model for understanding the inborn lysosomal storage disorder alpha-mannosidosis. This enzyme of about 1,000 amino acids consists of five peptide chains, namely a- to e-peptides and contains eight N-glycosylation sites. The N(497) glycosylation site of the c-peptide chain is evolutionary conserved among LAMANs and is very important for the maintenance of the lysosomal stability of the enzyme. In this work, relying on an approach based on mass spectrometric techniques in combination with exoglycosidase digestions and chemical derivatizations, we will report the detailed structures of the N-glycans and their distribution within six of the eight N-glycosylation sites of the bovine glycoprotein. The analysis of the PNGase F-released glycans from the bovine LAMAN revealed that the major structures fall into three classes, namely high-mannose-type (Fuc(0-1)Glc(0-1)Man(4-9)GlcNAc(2)), hybrid-type (Gal(0-1)Man(4-5)GlcNAc(4)), and complex-type (Fuc(0-1)Gal(0-2)Man(3)GlcNAc(3-5)) N-glycans, with core fucosylation and bisecting GlcNAc. To investigate the exact structure of the N-glycans at each glycosylation site, the peptide chains of the bovine LAMAN were separated using SDS-PAGE and in-gel deglycosylation. These experiments revealed that the N(497) and N(930) sites, from the c- and e-peptides, contain only high-mannose-type glycans Glc(0-1)Man(5-9)GlcNAc(2), including the evolutionary conserved Glc(1)Man(9)GlcNAc(2) glycan, and Fuc(0-1)Man(3-5)GlcNAc(2), respectively. Therefore, to determine the microheterogeneity within the remaining glycosylation sites, the glycoprotein was reduced, carboxymethylated, and digested with trypsin. The tryptic fragments were then subjected to concanavalin A (Con A) affinity chromatography, and the material bound by Con A-Sepharose was purified using reverse-phase high-performance liquid chromatography (HPLC). The tandem mass spectrometry (ESI-MS/MS) and the MALDI analysis of the PNGase F-digested glycopeptides indicated that (1) N(692) and N(766) sites from the d-peptide chain both bear glycans consisting of high-mannose (Fuc(0-1)Man(3-7)GlcNAc(2)), hybrid (Fuc(0-1) Gal(0-1)Man(4-5)GlcNAc(4)), and complex (Fuc(0-1)Gal(0-2)Man(3)GlcNAc(4-5)) structures; and (2) the N(367) site, from the b-peptide chain, is glycosylated only with high-mannose structures (Fuc(0-1)Man(3-5)GlcNAc(2)). Taking into consideration the data obtained from the analysis of either the in-gel-released glycans from the abc- and c-peptides or the tryptic glycopeptide containing the N(367) site, the N(133) site, from the a-peptide, was shown to be glycosylated with truncated and high-mannose-type (Fuc(0-1)Man(4-5)GlcNAc(2)), complex-type (Fuc(0-1)Gal(0-1)Man(3)GlcNAc(5)), and hybrid-type (Fuc(0-1)Gal(0-1)Man(5)GlcNAc(4)) glycans.  相似文献   

18.
19.
Phaseolin, the major storage protein of the common bean (Phaseolus vulgaris), is a glycoprotein which is synthesized during seed development and accumulates in protein storage vacuoles or protein bodies. The protein has three different N-linked oligosaccharide side chains: Man9(GlcNAc)2, Man7(GlcNAc)2, and Xyl-Man3(GlcNAc)2 (where Xyl represents xylose). The structures of these glycans were determined by 1H NMR spectroscopy. The Man9(GlcNAc)2 glycan has the typical structure found in plant and animal glycoproteins. The structures of the two other glycans are shown below. (Formula; see text) Phaseolin was separated by electrophoresis on denaturing gels into four size classes of polypeptides. The two abundant ones have two oligosaccharides each, whereas the less abundant ones have only one oligosaccharide each. Polypeptides with two glycans have Man7(GlcNAc)2 attached to Asn252 and Man9(GlcNAc)2 attached to Asn341. Polypeptides with only one glycan have Xyl-Man3(GlcNAc)2 attached to Asn252. Both these asparagine residues are in canonical glycosylation sites; the numbering starts with the N-terminal methionine of the signal peptide of phaseolin. The presence of the Man7(GlcNAc)2 and of Xyl-Man3(GlcNAc)2 at the same asparagine residue (position 252) of different polypeptides seems to be controlled by the glycosylation status of Asn341. When Asp341 is unoccupied, the glycan at Asn252 is complex. When Asn341 is occupied, the glycan at Asn252 is only modified to the extent that 2 mannosyl residues are removed. The processing of the glycans, after the removal of the glucose residues, involves enzymes in the Golgi apparatus as well as in the protein bodies. Formation of the Xyl-Man3(GlcNAc)2 glycan is a multistep process that involves the Golgi apparatus-mediated removal of 6 mannose residues and the addition of 2 N-acetylglucosamine residues and 1 xylose. The terminal N-acetylglucosamine residues are later removed in the protein bodies. The conversion of Man9(GlcNAc)2 to Man7(GlcNAc)2 is a late processing event which occurs in the protein bodies. Experiments in which [3H]glucosamine-labeled phaseolin obtained from the endoplasmic reticulum (i.e. precursor phaseolin) is incubated with jack bean alpha-mannosidase show that the high mannose glycan on Asn252, but not the one on Asn341, is susceptible to enzyme degradation. Incubation of [3H] glucosamine-labeled phaseolin obtained from the Golgi apparatus with jack bean beta-N-acetylglucosaminidase results in the removal of the terminal N-acetylglucosamine residues from the complex chain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Glucosylated oligomannose N-linked oligosaccharides (Glc(x)Man9GlcNAc2 where x = 1-3) are not normally found on mature glycoproteins but are involved in the early stages of glycoprotein biosynthesis and folding as (i) recognition elements during protein N-glycosylation and chaperone recognition and (ii) substrates in the initial steps of N-glycan processing. By inhibiting the first steps of glycan processing in CHO cells using the alpha-glucosidase inhibitor N-butyl-deoxynojirimycin, we have produced sufficient Glc3Man7GlcNAc2 for structural analysis by nuclear magnetic resonance (NMR) spectroscopy. Our results show the glucosyl cap to have a single, well-defined conformation independent of the rest of the saccharide. Comparison with the conformation of Man9GlcNAc2, previously determined by NMR and molecular dynamics, shows the mannose residues to be largely unaffected by the presence of the glucosyl cap. Sequential enzymatic cleavage of the glucose residues does not affect the conformation of the remaining saccharide. Modelling of the Glc3Man9GlcNAc2, Glc2Man9GlcNAc2 and Glc1Man9GlcNAc2 conformations shows the glucose residues to be fully accessible for recognition. A more detailed analysis of the conformations allows potential recognition epitopes on the glycans to be identified and can form the basis for understanding the specificity of the glucosidases and chaperones (such as calnexin) that recognize these glycans, with implications for their mechanisms of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号