首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Kuhn  H Y Zhu    R E Dalbey 《The EMBO journal》1990,9(8):2385-2389
The coat protein of bacteriophage M13 is inserted into the Escherichia coli plasma membrane as a precursor protein, termed procoat, with a typical leader peptide of 23 amino acid residues. Its membrane insertion requires the electrochemical potential but not the cellular components SecA and SecY. Since the electrochemical gradients result in the periplasmic side of the membrane being positively charged, the membrane potential could contribute to the transfer of the negatively charged central region of procoat across the membrane. Here we demonstrate that the central domain following the leader peptide can be translocated across the membrane even when the net charge of the region is changed from -3 to +3. This rules out an electrophoresis-like insertion mechanism for procoat. We also show that the sec independence of procoat insertion is linked to the presence of the second apolar domain. The deletion of most of the second apolar domain from a procoat fusion protein results in sec dependent membrane insertion of the hybrid protein. Moreover, like other proteins that require the sec genes, translocation of this sec dependent procoat protein is inhibited when positively charged residues are introduced after the leader peptide. Loop models involving one or two hydrophobic regions are presented that account for the differences in tolerance of positively charged residues.  相似文献   

2.
The ProW protein, located in the inner membrane of Escherichia coli, has a very unusual topology with a 100-residue-long N-terminal tail protruding into the periplasmic space. We have studied the mechanism of membrane translocation of the periplasmic tail by analysing ProW-PhoA and ProW-Lep fusion proteins, both in wild-type cells and in cells with an impaired sec machinery. Our results show that the translocation efficiency is not affected by treatments that compromise the SecA and SecY functions, but that translocation is completely blocked by dissipation of the proton motive force or by the introduction of extra positively charged residues into the N-terminal tail. This suggests that the sec machinery can act properly only on domains located on the C-terminal side of a translocation signal, and that the N-terminal tail is driven through the membrane by a mechanism that involves the proton motive force.  相似文献   

3.
The motor protein SecA drives the translocation of (pre-)proteins across the SecYEG channel in the bacterial cytoplasmic membrane by nucleotide-dependent cycles of conformational changes often referred to as membrane insertion/de-insertion. Despite structural data on SecA and an archaeal homolog of SecYEG, the identity of the sites of interaction between SecA and SecYEG are unknown. Here, we show that SecA can be cross-linked to several residues in cytoplasmic loop 5 (C5) of SecY, and that SecA directly interacts with a part of transmembrane segment 4 (TMS4) of SecY that is buried in the membrane region of SecYEG. Mutagenesis of either the conserved Arg357 in C5 or Glu176 in TMS4 interferes with the catalytic activity of SecA but not with binding of SecA to SecYEG. Our data explain how conformational changes in SecA could be directly coupled to the previously proposed opening mechanism of the SecYEG channel.  相似文献   

4.
Osborne AR  Rapoport TA 《Cell》2007,129(1):97-110
Many proteins are translocated across the bacterial plasma membrane by the interplay of the cytoplasmic ATPase SecA with a protein-conducting channel, formed from the evolutionarily conserved heterotrimeric SecY complex. Here, we have used purified E. coli components to address the mechanism of translocation. Disulfide bridge crosslinking demonstrates that SecA transfers both the signal sequence and the mature region of a secreted substrate into a single SecY molecule. However, protein translocation involves oligomers of the SecY complex, because a SecY molecule defective in translocation can be rescued by linking it covalently with a wild-type SecY copy. SecA interacts through one of its domains with a nontranslocating SecY copy and moves the polypeptide chain through a neighboring SecY copy. Oligomeric channels with only one active pore likely mediate protein translocation in all organisms.  相似文献   

5.
To study the environment of a preprotein as it crosses the plasma membrane of Escherichia coli, unique cysteinyl residues were introduced into proOmpA and the genes for these mutant preproteins were fused to the gene of dihydrofolate reductase (Dhfr). A photoactivable, radiolabeled and reducible cross-linker was then attached to the unique cysteinyl residue of each purified protein. Partially translocated polypeptides were generated and arrested in their membrane transit by the folded structure of the dihydrofolate reductase domain. After photolysis to label their nearest neighbors and reduction of the disulfide bond between proOmpA-Dhfr and the cross-linker, radiolabeled cross-linker was selectively recovered with the SecA and SecY subunits of preprotein translocase. Strikingly, neither the SecE nor Band 1 subunits were cross-linked to any of the constructs and the membrane phospholipids were almost entirely shielded from cross-linking. The fact that SecY and SecA are the only membrane proteins cross-linked to the translocating chains suggests that they may form an entirely proteinaceous pathway through which secreted proteins pass during membrane transit.  相似文献   

6.
Many integral membrane proteins contain an amino-terminal segment, often referred to as an N-tail, that is translocated across a membrane. In many cases, translocation of the N-tail is initiated by a cleavable, amino-terminal signal peptide. For N-tail proteins lacking a signal peptide, translocation is initiated by a transmembrane segment that is carboxyl to the translocated segment. The mechanism of membrane translocation of these segments, although poorly understood, has been reported to be independent of the protein secretion machinery. In contrast, here we describe alkaline phosphatase mutants containing artificial transmembrane segments that demonstrate that translocation of a long N-tail across the membrane is dependent upon SecA, SecB, and the electrochemical potential in the absence of a signal peptide. The corresponding mutants containing signal peptides also use the secretion machinery but are less sensitive to inhibition of its components. We present evidence that inhibition of SecA by sodium azide is incomplete even at high concentrations of inhibitor, which suggests why SecA-dependent translocation may not have been detected in other systems. Furthermore, by varying the charge around the transmembrane segment, we find that in the absence of a signal peptide, the orientation of the membrane-bound alkaline phosphatase is dictated by the positive inside rule. However, the presence of a signal peptide is an overriding factor in membrane orientation and renders all mutants in an Nout-Cin orientation.  相似文献   

7.
The SecB, SecA, and SecY dependency of a small outer membrane lipoprotein in Escherichia coli, the bacteriocin release protein (BRP), was studied. The detrimental effect of BRP expression on the culture turbidity (quasi-lysis) was strongly reduced in the sec mutants. Immunoblotting and radioactive labeling experiments showed that the expression, membrane insertion, and processing of the BRP precursor are dependent on SecB, SecA, and SecY. Labeling experiments with hybrid BRP gene constructs revealed that the mature part of the BRP precursor and not its stable signal sequence is important for its SecB dependency.  相似文献   

8.
G Cao  A Kuhn    R E Dalbey 《The EMBO journal》1995,14(5):866-875
The role of the membrane electrochemical potential in the translocation of acidic and basic residues across the membrane was investigated with the M13 procoat protein, which has a short periplasmic loop, and leader peptidase, which has an extended periplasmically located N-terminal tail. For both proteins we find that the membrane potential promotes membrane transfer only when negatively charged residues are present within the translocated domain. When these residues are substituted by uncharged amino acids, the proteins insert into the membrane independently of the potential. In contrast, when a positively charged residue is present within the N-terminal tail of leader peptidase, the potential impedes translocation of the tail domain. However, an impediment was not observed in the case of the procoat protein, where positively charged residues in the central loop are translocated even in the presence of the membrane potential. Intriguingly, several of the negatively charged procoat proteins required the SecA and SecY proteins for optimal translocation. The studies reported here provide insights into the role of the potential in membrane protein assembly and suggest that electrophoresis can play an important role in controlling membrane topology.  相似文献   

9.
The assembly of bacterial membrane proteins with large periplasmic loops is an intrinsically complex process because the SecY translocon has to coordinate the signal recognition particle-dependent targeting and integration of transmembrane domains with the SecA-dependent translocation of the periplasmic loop. The current model suggests that the ATP hydrolysis by SecA is required only if periplasmic loops larger than 30 amino acids have to be translocated. In agreement with this model, our data demonstrate that the signal recognition particle- and SecA-dependent multiple spanning membrane protein YidC becomes SecA-independent if the large periplasmic loop connecting transmembrane domains 1 and 2 is reduced to less than 30 amino acids. Strikingly, however, we were unable to render single spanning membrane proteins SecA-independent by reducing the length of their periplasmic loops. For these proteins, the complete assembly was always SecA-dependent even if the periplasmic loop was reduced to 13 amino acids. If, however, the 13-amino acid-long periplasmic loop was fused to a downstream transmembrane domain, SecA was no longer required for complete translocation. Although these data support the current model on the SecA dependence of multiple spanning membrane proteins, they indicate a novel function of SecA for the assembly of single spanning membrane proteins. This could suggest that single and multiple spanning membrane proteins are processed differently by the bacterial SecY translocon.  相似文献   

10.
The MalF protein is an integral membrane protein of Escherichia coli containing eight membrane-spanning stretches and a large periplasmic domain of approximately 180 amino acids. We have asked whether this protein is dependent for its membrane insertion on the bacterial secretion machinery specified by the sec genes. Using azide to inhibit the SecA protein and sec mutants to reduce the functioning of the machinery, we have studied the membrane assembly of MalF and beta-galactosidase and alkaline phosphatase fusions to MalF. In no case did we see an effect of reducing sec gene function on the insertion of MalF or fusion proteins. Selection for mutants that would cause internalization of a MalF-beta-galactosidase hybrid protein yielded no mutations in sec genes. Our results suggest that MalF can assemble in the membrane independently of the bacterial secretion machinery.  相似文献   

11.
The majority of proteins that are secreted across the bacterial cytoplasmic membrane leave the cell via the Sec pathway, which in its minimal form consists of the dimeric ATP-driven motor protein SecA that associates with the protein-conducting membrane pore SecYEG. Some Gram-positive bacteria contain two homologues of SecA, termed SecA1 and SecA2. SecA1 is the essential housekeeping protein, whereas SecA2 is not essential but is involved in the translocation of a subset of proteins, including various virulence factors. Some SecA2 containing bacteria also harbor a homologous SecY2 protein that may form a separate translocase. Interestingly, mycobacteria contain only one SecY protein and thus both SecA1 and SecA2 are required to interact with SecYEG, either individually or together as a heterodimer. In order to address whether SecA1 and SecA2 cooperate during secretion of SecA2 dependent proteins, we examined the oligomeric state of SecA1 and SecA2 of Mycobacterium tuberculosis and their interactions with SecA2 and the cognate SecA1, respectively. We conclude that both SecA1 and SecA2 individually form homodimers in solution but when both proteins are present simultaneously, they form dissociable heterodimers.  相似文献   

12.
Recently it has been recognized that the signal recognition particle (SRP) of Escherichia coli represents a specific targeting device for hydrophobic inner membrane proteins. It has remained unclear, however, whether the bacterial SRP functions in concert with SecA, which is required for the translocation of secretory proteins across the inner membrane. Here, we have analyzed a hybrid protein constructed by fusing the signal anchor sequence of an SRP-dependent inner membrane protein (MtlA) to the mature part of an exclusively SecA-requiring secretory protein (OmpA). We show that the signal anchor sequence of MtlA confers the novel properties onto nascent chains of OmpA of being co-translationally recognized and targeted to SecY by SRP. Once targeted to SecY, ribosome-associated nascent chains of the hybrid protein, however, remain untranslocated unless SecA is present. These results indicate that SRP and SecA cooperate in a sequential, non-overlapping manner in the topogenesis of those membrane proteins which, in addition to a signal anchor sequence, harbor a substantial hydrophilic domain to be translocated into the periplasm.  相似文献   

13.
The SecYEG complex constitutes a protein conducting channel across the bacterial cytoplasmic membrane. It binds the peripheral ATPase SecA to form the translocase. When isoleucine 278 in transmembrane segment 7 of the SecY subunit was replaced by a unique cysteine, SecYEG supported an increased preprotein translocation and SecA translocation ATPase activity, and allowed translocation of a preprotein with a defective signal sequence. SecY(I278C)EG binds SecA with a higher affinity than normal SecYEG, in particular in the presence of ATP. The increased translocation activity of SecY(I278C)EG was confirmed in a purified system consisting of SecYEG proteoliposomes, while immunoprecipitation in detergent solution reveal that translocase-preprotein complexes are more stable with SecY(I278C) than with normal SecY. These data imply an important role for SecY transmembrane segment 7 in SecA binding. As improved SecA binding to SecY was also observed with the prlA4 suppressor mutation, it may be a general mechanism underlying signal sequence suppression.  相似文献   

14.
The M13 procoat protein serves as the paradigm for the Sec-independent membrane insertion pathway. This protein is inserted into the inner membrane of Escherichia coli with two hydrophobic regions and a central periplasmic loop region of 20 amino acid residues. Extension of the periplasmic loop region renders M13 procoat membrane insertion Sec-dependent. Loop regions with 118 or more residues required SecA and SecYEG and were efficiently translocated in vivo. Two mutants having loop regions of 80 and 100 residues, respectively, interacted with SecA but failed to activate the membrane translocation ATPase of SecA in vitro. Similarly, a procoat mutant with two additional glutamyl residues in the loop region showed binding to SecA but did not stimulate the ATPase. The three mutants were also defective for precursor-stimulated binding of SecA to the membrane surface. Remarkably, the mutant proteins act as competitive inhibitors of the Sec translocase. This suggests that the region to be translocated is sensed by SecA but the activation of the SecA translocation ATPase is only successful for substrates with a minimum length of the translocated region.  相似文献   

15.
Precursor protein translocation across the Escherichia coli inner membrane is mediated by the translocase, which is composed of a heterotrimeric integral membrane protein complex with SecY, SecE, and SecG as subunits and peripherally bound SecA. Cross-linking experiments were conducted to study which proteins are associated with SecA in vivo. Formaldehyde treatment of intact cells results in the specific cross-linking of SecA to SecY. Concurrently with the increased membrane association of SecA, an elevated amount of cross-linked product was obtained in cells harboring overproduced SecYEG complex. Cross-linked SecA copurified with hexahistidine-tagged SecY and not with SecE. The data indicate that SecA and SecY coexist as a stable complex in the cytoplasmic membrane in vivo.  相似文献   

16.
Leader peptidase of Escherichia coli spans the plasma membrane twice with its amino terminus on the periplasmic surface of the membrane and its large carboxyl-terminal domain protruding into the periplasm. To monitor the transfer of the amino terminus of leader peptidase to the periplasm, we have constructed a fusion protein between the 18-residue amino-terminal periplasmic domain of Pf3 bacteriophage coat protein and the beginning of leader peptidase. We find that neither the SecA or SecY proteins nor a transmembrane electrochemical potential is required for insertion of the amino terminus, while the transfer of the carboxyl-terminal domain of leader peptidase has these requirements. The first 35 residues of leader peptidase, which include the first hydrophobic domain and the carboxyl-terminal positively charged cluster, are sufficient to insert the amino terminus. When positively charged residues are introduced before the first transmembrane segment, translocation of the amino terminus is abolished. These studies in protein membrane topogenesis, showing that there are different requirements for amino and carboxyl termini insertion, indicate that multiple mechanisms exist even within the same protein.  相似文献   

17.
The prlC gene product of Escherichia coli can be altered by mutation so that it restores export of proteins with defective signal sequences. The strongest suppressor, prlC8, restores processing of a mutant signal sequence to a rate indistinguishable from the wild-type. Data obtained by changing gene dosage of the dominant suppressor and its specificity for different signal sequence mutations suggest that PrlC8 interacts directly with the hydrophobic core of the signal sequence. Despite the fact that signal sequence processing appears to be mediated by leader peptidase, the processed mature protein is not translocated efficiently from the cytoplasm. Results obtained with various double mutants indicate that PrlC8-mediated processing of mutant signal sequences does not require components of the cellular export machinery such as SecA, SecB or PrlA (SecY) and that the block in translocation from the cytoplasm occurs because PrlA (SecY) fails to recognize the defective signal sequence. We suggest that PrlC8 directs insertion of the mutant signal sequence into the membrane bilayer to an extent that processing by leader peptidase can occur. This reaction is novel in that it has not been observed previously in vivo.  相似文献   

18.
The Escherichia coli SecYEG complex forms a transmembrane channel for both protein export and membrane protein insertion. Secretory proteins and large periplasmic domains of membrane proteins require for translocation in addition the SecA ATPase. The conserved arginine 357 of SecY is essential for a yet unidentified step in the SecA catalytic cycle. To further dissect its role, we have analysed the requirement for R357 in membrane protein insertion. Although R357 substitutions abolish post-translational translocation, they allow the translocation of periplasmic domains targeted co-translationally by an N-terminal transmembrane segment. We propose that R357 is essential for the initiation of SecA-dependent translocation only.  相似文献   

19.
In Escherichia coli, precursor proteins are translocated across the cytoplasmic membrane by translocase. This multisubunit enzyme consists of a preprotein-binding and ATPase domain, SecA, and the SecYEG complex as the integral membrane domain. PrlA4 is a mutant of SecY that enables the translocation of preproteins with a defective, or missing, signal sequence. Inner membranes of the prlA4 strain efficiently translocate Delta8proOmpA, a proOmpA derivative with a non-functional signal sequence. Owing to the signal sequence mutation, Delta8proOmpA binds to the translocase with a lowered affinity and the recognition is not restored by the prlA4 SecY. At the ATP-dependent initiation of translocation, the binding affinity of SecA for SecYEG is lowered causing the premature loss of bound preproteins from the translocase. The prlA4 membranes, however, bind SecA with a much higher affinity than the wild-type, and during initiation, the SecA and preprotein remain bound at the translocation site allowing an improved efficiency of translocation. It is concluded that the prlA4 strain prevents the rejection of defective preproteins from the export pathway by stabilizing SecA at the SecYEG complex.  相似文献   

20.
We have analysed the translocation of a large periplasmic loop in the Escherichia coli MalF Inner membrane protein when placed in different sequence contexts and under conditions when the function of the SecA protein is Inhibited. The results show that the degree of SecA-dependence varies with sequence context: while translocation of the large loop In its normal context Is only minimally affected by SecA Inhibition, translocation is much more sensitive to SecA inhibition when the loop is placed in the context of other inner membrane proteins. Conversely, when the large MalF loop is replaced by segments from other proteins, translocation of those segments is again very sensitive to SecA inhibition. Thus, SecA-dependence is not an all-or-none phenomenon and Is not only a simple function of, e.g. the length of a translocated segment or the hydrophobicity of the flanking transmembrane segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号