首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
Flavoenzymes may reduce quinones in a single-electron, mixed single- and two-electron, and two-electron way. The mechanisms of two-electron reduction of quinones are insufficiently understood. To get an insight into the role of flavin semiquinone stability in the regulation of single- vs. two-electron reduction of quinones, we studied the reactions of wild type Anabaena ferredoxin:NADP(+)reductase (FNR) with 48% FAD semiquinone (FADH*) stabilized at the equilibrium (pH 7.0), and its Glu301Ala mutant (8% FADH* at the equilibrium). We found that Glu301Ala substitution does not change the quinone substrate specificity of FNR. However, it confers the mixed single- and two-electron mechanism of quinone reduction (50% single-electron flux), whereas the wild type FNR reduces quinones in a single-electron way. During the oxidation of fully reduced wild type FNR by tetramethyl-1,4-benzoquinone, the first electron transfer (formation of FADH*) is about 40 times faster than the second one (oxidation of FADH*). In contrast, the first and second electron transfer proceeded at similar rates in Glu301Ala FNR. Thus, the change in the quinone reduction mechanism may be explained by the relative increase in the rate of second electron transfer. This enabled us to propose the unified scheme of single-, two- and mixed single- and two-electron reduction of quinones by flavoenzymes with the central role of the stability of flavin/quinone ion-radical pair.  相似文献   

2.
Ferredoxin:NADP+ oxidoreductase (ferredoxin: NADP+ reductase, EC 1.18.1.2) was shown to form a ternary complex with its substrates ferredoxin (Fd) and NADP(H), but the ternary complex was less stable than the separate binary complexes. Kd for oxidized binary Fd-ferredoxin NADP+ reductase complex was less than 50 nM; Kd(Fd) increased with NADP+ concentration, approaching 0.5-0.6 microM when the flavoprotein was saturated with NADP+ K(NADP+) also increased from about 14 microM to about 310 microM, on addition of excess Fd. The changes in Kd were consistent with negative cooperativity between the associations of Fd and NADP+ and with our unpublished observations which suggest that product dissociation is rate-limiting in the reaction mechanism. Similar interference in binding was observed in more reduced states; NADPH released much ferredoxin:NADP+ reductase from Fd-Sepharose whether the proteins were initially oxidized or reduced. Complexation between Fd and ferredoxin: NADP+ reductase was found to shield each center from paramagnetic probes; charge specificity suggested that the active sites of Fd and ferredoxin:NADP+ reductase were, respectively, negatively and positively charged.  相似文献   

3.
Transient absorbance measurements following laser flash photolysis have been used to measure the rate constants for electron transfer (et) from reduced Anabaena ferredoxin (Fd) to wild-type and seven site-specific charge-reversal mutants of Anabaena ferredoxin:NADP+ reductase (FNR). These mutations have been designed to probe the importance of specific positively charged amino acid residues on the surface of the FNR molecule near the exposed edge of the FAD cofactor in the protein-protein interaction during et with Fd. The mutant proteins fall into two groups: overall, the K75E, R16E, and K72E mutants are most severely impaired in et, and the K138E, R264E, K290E, and K294E mutants are impaired to a lesser extent, although the degree of impairment varies with ionic strength. Binding constants for complex formation between the oxidized proteins and for the transient et complexes show that the severity of the alterations in et kinetics for the mutants correlate with decreased stabilities of the protein-protein complexes. Those mutated residues, which show the largest effects, are located in a region of the protein in which positive charge predominates, and charge reversals have large effects on the calculated local surface electrostatic potential. In contrast, K138, R264, K290, and K294 are located within or close to regions of intense negative potential, and therefore the introduction of additional negative charges have considerably smaller effects on the calculated surface potential. We attribute the relative changes in et kinetics and complex binding constants for these mutants to these characteristics of the surface charge distribution in FNR and conclude that the positively charged region of the FNR surface located in the vicinity of K75, R16, and K72 is especially important in the binding and orientation of Fd during electron transfer.  相似文献   

4.
5.
The role of the negative charge of the E139 side-chain of Anabaena Ferredoxin-NADP+ reductase (FNR) in steering appropriate docking with its substrates ferredoxin, flavodoxin and NADP+/H, that leads to efficient electron transfer (ET) is analysed by characterization of several E139 FNR mutants. Replacement of E139 affects the interaction with the different FNR substrates in very different ways. Thus, while E139 does not appear to be involved in the processes of binding and ET between FNR and NADP+/H, the nature and the conformation of the residue at position 139 of Anabaena FNR modulates the precise enzyme interaction with the protein carriers ferredoxin (Fd) and flavodoxin (Fld). Introduction of the shorter aspartic acid side-chain at position 139 produces an enzyme that interacts more weakly with both ET proteins. Moreover, the removal of the charge, as in the E139Q mutant, or the charge-reversal mutation, as in E139K FNR, apparently enhances additional interaction modes of the enzyme with Fd, and reduces the possible orientations with Fld to more productive and stronger ones. Hence, removal of the negative charge at position 139 of Anabaena FNR produces a deleterious effect in its ET reactions with Fd whereas it appears to enhance the ET processes with Fld. Significantly, a large structural variation is observed for the E139 side-chain conformer in different FNR structures, including the E139K mutant. In this case, a positive potential region replaces a negative one in the wild-type enzyme. Our observations further confirm the contribution of both attractive and repulsive interactions in achieving the optimal orientation for efficient ET between FNR and its protein carriers.  相似文献   

6.
A cDNA clone for the preprotein of spinach ferredoxin:NADP+ reductase has been modified to allow the expression in Escherichia coli of the mature flavoprotein form the lacks the transit peptide. An expression vector, pFNR1, was constructed by subcloning the fragment into the plasmid pDS12/RBSII, SphI. In the crude extracts of transformed cells after induction, two active holoproteins of 35 kDa and 32 kDa, respectively, were found. The 32-kDa protein, purified by immunoaffinity chromatography, was found to lack the first 28 residues of the spinach protein sequence and to have a methionine as the N-terminal residue instead of Val29. A new expression plasmid, pFNR2, was obtained by in vitro mutagenesis of the codon GTG for Val29 to the synonymous GTT; in this case, only the 35-kDa protein was expressed by transformed cells. Both the 35-kDa and 32-kDa enzymes were purified and characterized. All the properties analyzed of the cloned 35-kDa enzyme were very similar to those of the spinach flavoprotein. The 32-kDa form showed the same catalytic efficiency of the spinach enzyme as a diaphorase but its interaction with oxidized ferredoxin was partially impaired.  相似文献   

7.
Hyaluronan (HA) hydrolysis catalysed by hyaluronidase (HAase) is strongly inhibited when performed at low HAase over HA concentration ratio and under low ionic strength conditions. The reason is the ability of long HA chains to form electrostatic and non-catalytic complexes with HAase. For a given HA concentration, low HAase concentrations lead to very low hydrolysis rates because all the HAase molecules are sequestered by HA, whilst high HAase concentrations lead to high hydrolysis rates because the excess of HAase molecules remains free and active. At pH 4, non-catalytic proteins like bovine serum albumin (BSA) are able to compete with HAase to form electrostatic complexes with HA, liberating HAase which recovers its catalytic activity. The general scheme for the BSA-dependency is thus characterised by four domains delimited by three noticeable points corresponding to constant BSA over HA concentration ratios. The existence of HA–protein complexes explains the atypical kinetic behaviour of the HA / HAase system. We also show that HAase recovers the Michaelis–Menten type behaviour when the HA molecule complexed with BSA in a constant complexion state, i.e. with the same BSA over HA ratio, is considered for substrate. When the ternary HA / HAase / BSA system is concerned, the stoichiometries of the HA–HAase and HA–BSA complexes are close to 10 protein molecules per HA molecule for a native HA of 1 MDa molar mass. Finally, we show that the behaviour of the system is similar at pH 5.25, although the efficiency of BSA is less.  相似文献   

8.
Bojko M  Kruk J  Wieckowski S 《Phytochemistry》2003,64(6):1055-1060
The effect of sodium cholate and other detergents (Triton X-100, sodium dodecyl sulphate, octyl glucoside, myristyltrimethylammonium bromide) on the reduction of plastoquinones (PQ) with a different length of the side-chain by spinach ferredoxin:NADP(+) oxidoreductase (FNR) in the presence of NADPH has been studied. Both NADPH oxidation and oxygen uptake due to plastosemiquinone autoxidation were highly stimulated only in the presence of sodium cholate among the used detergents. Sodium cholate at the concentration of 20 mM was found to be the most effective on both PQ-4 and PQ-9-mediated oxygen uptake. The FNR-dependent reduction of plastoquinones incorporated into sodium cholate micelles was stimulated by spinach ferredoxin but inhibited by Mg(2+) ions. It was concluded that the structure of sodium cholate micelles facilitates contact of plastoquinone molecules with the enzyme and creates favourable conditions for the reaction similar to those found in thylakoid membranes for PQ-9 reduction. The obtained results were discussed in terms of the function of FNR as a ferredoxin:plastoquinone reductase both in cyclic electron transport and chlororespiration.  相似文献   

9.
Radioactive iodine has been used to probe the relative reactivities of nucleosomal H4 tyrosine residues under various conditions of subphysiological ionic strength. We observe that tyrosine 72 of H4, which is not reactive over the range 20-150 mM NaCl, becomes the predominant site of iodination within H4 when nucleosomes are subjected to conditions of very low ionic strength. Conversely, the other H4 tyrosine residues, which are reactive within nucleosomes in solutions of moderate ionic strength (20-150 mM NaCl), become nonreactive when the ionic strength is reduced. This "flip-flop" in the H4 iodination pattern is the manifestation of a reversible nucleosomal conformational change. A method is presented which enables the conformational status of H4 in nucleosomes to be determined by simply electrophoresing the histones on a Triton gel after probing nucleosomes with labeled iodine. Using this technique, we demonstrate that the presence of H1 on one side of the nucleosome stabilizes a histone core domain on the other side so that all four tyrosines of H4 are maintained in their physiological ionic strength conformation even under conditions of no added salt.  相似文献   

10.
Unlike wild type recoverin with only two (the second and the third) functioning Ca+2-binding sites out of four potential ones, the +EF4 mutant contains a third active Ca+2-binding site. This site was reconstructed from the fourth potential Ca+2-binding domain by the introduction of several amino acid substitutions in it by site-directed mutagenesis. The effect of these mutations in the fourth potential Ca+2-binding site of myristoylated recoverin on the structural features and conformational stability of the protein was studied by fluorimetry and circular dichroism. The apoform of the resulting mutant (free of Ca2+ ions) was shown to have a higher calcium capacity, significantly lower thermal stability, and noticeably different secondary and tertiary structures as compared with the apoform of wild-type recoverin. For communication II, see [1].  相似文献   

11.
A chimeric 3-isopropylmalate dehydrogenase, named 2T2M6T, made of parts from an extreme thermophile, Thermus thermophilus, and a mesophile, Bacillus subtilis, was found to be considerably more labile than the T. thermophilus wild-type isopropylmalate dehydrogenase. In order to identify the molecular basis of the thermal stability of the T. thermophilus isopropylmalate dehydrogenase, 11 amino acid residues in the mesophilic portion of the chimera were substituted by the corresponding residues of the T. thermophilus enzyme, and the effects of the side chain substitutions were analyzed by comparing the reaction rate of irreversible heat denaturation and catalytic parameters of the mutant chimeras with those of the original chimera, 2T2M6T. Four single-site mutants were successfully stabilized without any loss of the catalytic function. All these four sites are located in loop regions of the enzyme. Our results strongly suggest the importance of these loop structures to the extreme stability of the T. thermophilus isopropylmalate dehydrogenase.  相似文献   

12.
Soluble complexes were formed between C1q, a subunit of the first component of human complement, and four different Waldenstr?m IgM proteins at reduced ionic strengths. The equilibria between these complexes and the free proteins were studied in the ultracentrifuge. Complex formation was found to be a very sensitive function of the salt concentration, and at physiological ionic strength complex formation was negligible. The complexes were cross-linked with a water-soluble carbodiimide and separated by sucrose gradient centrifugation. Both 22 S 1:1 and 26 S 2:1 C1q X IgM complexes were formed; stoichiometry was established by cross-linking 125I-C1q with 131I-IgM and determining the ratios of the specific activities of the gradient-purified materials. The association process was studied as a function of protein concentration and was analyzed by Scatchard and Hill plots to yield stoichiometry, association constant, and degree of cooperativity. The results indicated that IgM has two identical and independent binding sites for C1q. The intrinsic association constant was found to vary between 10(6) M-1 at 0.084 M ionic strength to 10(4) M-1 at physiological ionic strength; the slope of the log-log plot gave a value of -6.0. The cross-linked complexes were examined by electron microscopy, and the C1q appeared to be attached to the IgM through the C1q heads, implying that the biologically significant binding sites were involved in this interaction. For the 2:1 complexes, the two C1q appeared to attach to opposite surfaces of the IgM, suggesting the presence of a pseudo-2-fold axis lying in the plane of the IgM disk.  相似文献   

13.
The human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein flanked by Gag sequences (r-preNC) was expressed in Escherichia coli and purified. HIV-1 proteinase cleaved r-preNC to the "mature" NCp7 form, which is comprised of 55 residues. Further incubation resulted in cleavages of NCp7 itself between Phe16 and Asn17 of the proximal zinc finger domain and between Cys49 and Thr50 in the C-terminal part. Kinetic parameters determined for the cleavage of oligopeptides corresponding to the cleavage sites in r-preNC correlated well with the sequential processing of r-preNC. Mutations of Asn17 were introduced to alter the susceptibility of NC protein to HIV-1 proteinase. While mutating Asn17 to Ala resulted in a protein which was processed in a manner similar to that of the wild type, mutating it to Phe or Leu resulted in proteins which were processed at a substantially higher rate at this site than the wild type. Mutation of Asn17 to Lys or Gly resulted in proteins which were very poorly cleaved at this site. Oligopeptides containing the same amino acid substitutions at the cleavage site of the proximal zinc finger domain were also tested as substrates of the proteinase, and the kinetic parameters agreed well with the semiquantitative results obtained with the protein substrates.  相似文献   

14.
We report the identification of an A-to-G base change, in exon 29 of the apolipoprotein B (apo B) gene, that results in the substitution of serine for asparagine at residue 4311 of mature apo B100. In a recent publication, Huang et al. have reported a C-to-T base change in exon 26 that causes the substitution of leucine for proline at residue 2712 of apo B. We have found complete linkage disequilibrium between the alleles at both these sites and an immunochemical polymorphism of LDL designated antigen group (x/y) (Ag(x/y)) in a sample of 118 Finnish individuals. This implies that either one of these substitutions--or both of them combined--could be the molecular basis of the Ag(x/y) antigenic determinants, with the allele encoding serine4311 plus leucine2712 representing the Ag(x) epitope, and that encoding asparagine4311 plus proline2712 the Ag(y) epitope. In a sample of 90 healthy Swedish individuals the Leu2712/Ser4311 allele is associated both with reduced serum levels of LDL-cholesterol and apo B and with raised levels of HDL. However, these differences are of smaller effect than those associated with the XbaI RFLP of the apo B gene in this sample. We have also genotyped 523 individuals from European, Asian, Chinese, and Afro-Caribbean populations and have found complete association between the sites encoding residues 2712 and 4311 in all of these samples, although there are large allele frequency differences between these populations. In addition, there is strong linkage disequilibrium with allelic association between the alleles of these sites and those of the XbaI RFLP in all the populations examined. Taken together, these data suggest that, since the divergence of the major ethnic groups, there has been little or no recombination in the 3' end of the human apo B gene.  相似文献   

15.
16.

Background  

Comparisons of functionally important changes at the molecular level in model systems have identified key adaptations driving isolation and speciation. In cichlids, for example, long wavelength-sensitive (LWS) opsins appear to play a role in mate choice and male color variation within and among species. To test the hypothesis that the evolution of elaborate coloration in male guppies (Poecilia reticulata) is also associated with opsin gene diversity, we sequenced long wavelength-sensitive (LWS) opsin genes in six species of the family Poeciliidae.  相似文献   

17.
IntroductionTocilizumab (TCZ), an anti-interleukin-6 receptor antibody, is clinically effective against rheumatoid arthritis (RA), and several reports have indicated how TCZ influences a number of mechanisms underlying RA pathogenesis. However, it is still unclear whether TCZ affects inflammatory cells in peripheral blood and whether any such changes are associated with clinical response. We evaluated associations between proportions of subsets of peripheral immune cells and clinical response in patients with RA treated with TCZ.MethodsThirty-nine consecutive patients with RA who started to receive TCZ as their first biologic between March 2010 and April 2012 were enrolled. The proportions of several subsets of peripheral cells with their levels of expression of differentiation markers, activation markers and costimulatory molecules were measured sequentially from baseline to week 52 by flow cytometry analysis.ResultsClinical Disease Activity Index (CDAI) remission was achieved in 53.8% of patients at week 52 of TCZ therapy. The proportions of CD4+CD25+CD127low regulatory T cells (Treg) and HLA-DR+ activated Treg cells significantly increased with TCZ therapy (P < 0.001 and P < 0.001, respectively), whereas proportions of CD3+CD4+CXCR3CCR6+CD161+ T helper 17 cells did not change over the 52 weeks. The proportions of CD20+CD27+ memory B cells, HLA-DR+CD14+ and CD69+CD14+ activated monocytes, and CD16+CD14+ monocytes significantly decreased (P < 0.001, P < 0.001, P < 0.001 and P < 0.001, respectively). Among them, only the change in Treg cells was inversely correlated with the change in CDAI score (ρ = −0.40, P = 0.011). The most dynamic increase in Treg cells was observed in the CDAI remission group (P < 0.001).ConclusionThis study demonstrates that TCZ affected proportions of circulating immune cells in patients with RA. The proportion of Treg cells among CD4+ cells correlated well with clinical response.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0526-4) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号