首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major goal of this study was to elucidate how troponin T (TnT) dilated cardiomyopathy (DCM) mutations in fetal TnT and fetal troponin affect the functional properties of the fetal heart that lead to infantile cardiomyopathy. The DCM mutations R141W and DeltaK210 were created in the TnT1 isoform, the primary isoform of cardiac TnT in the embryonic heart. In addition to a different TnT isoform, a different troponin I (TnI) isoform, slow skeletal TnI (ssTnI), is the dominant isoform in the embryonic heart. In skinned fiber studies, TnT1-wild-type (WT)-treated fibers reconstituted with cardiac TnI.troponin C (TnC) or ssTnI.TnC significantly increased Ca(2+) sensitivity of force development when compared with TnT3-WT-treated fibers at both pH 7.0 and pH 6.5. Porcine cardiac fibers treated with TnT1 that contained the DCM mutations (R141W and DeltaK210), when reconstituted with either cardiac TnI.TnC or ssTnI.TnC, significantly decreased Ca(2+) sensitivity of force development compared with TnT1-WT at both pH values. The R141W mutation, which showed no significant change in the Ca(2+) sensitivity of force development in the TnT3 isoform, caused a significant decrease in the TnT1 isoform. The DeltaK210 mutation caused a greater decrease in Ca(2+) sensitivity and maximal isometric force development compared with the R141W mutation in both the fetal and adult TnT isoforms. When complexed with cardiac TnI.TnC or ssTnI.TnC, both TnT1 DCM mutations strongly decreased maximal actomyosin ATPase activity as compared with TnT1-WT. Our results suggest that a decrease in maximal actomyosin ATPase activity in conjunction with decreased Ca(2+) sensitivity of force development may cause a severe DCM phenotype in infants with the mutations.  相似文献   

2.
At least four isoforms of troponin T (TnT) exist in the human heart, and they are expressed in a developmentally regulated manner. To determine whether the different N-terminal isoforms are functionally distinct with respect to structure, Ca(2+) sensitivity, and inhibition of force development, the four known human cardiac troponin T isoforms, TnT1 (all exons present), TnT2 (missing exon 4), TnT3 (missing exon 5), and TnT4 (missing exons 4 and 5), were expressed, purified, and utilized in skinned fiber studies and in reconstituted actomyosin ATPase assays. TnT3, the adult isoform, had a slightly higher alpha-helical content than the other three isoforms. The variable region in the N terminus of cardiac TnT was found to contribute to the determination of the Ca(2+) sensitivity of force development in a charge-dependent manner; the greater the charge the higher the Ca(2+) sensitivity, and this was primarily because of exon 5. These studies also demonstrated that removal of either exon 4 or exon 5 from TnT increased the cooperativity of the pCa force relationship. Troponin complexes reconstituted with the four TnT isoforms all yielded the same maximal actin-tropomyosin-activated myosin ATPase activity. However, troponin complexes containing either TnT1 or TnT2 (both containing exon 5) had a reduced ability to inhibit this ATPase activity when compared with wild type troponin (which contains TnT3). Interestingly, fibers containing these isoforms also showed less relaxation suggesting that exon 5 of cardiac TnT affects the ability of Tn to inhibit force development and ATPase activity. These results suggest that the different N-terminal TnT isoforms would produce different functional properties in the heart that would directly affect myocardial contraction.  相似文献   

3.
Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca(2+) via the troponin complex. Slow- and fast-twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities, and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin, troponin T (TnT), and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton X-100-skinned single fibers from soleus, diaphragm, gastrocnemius, and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of the TnT and TnI isoforms to investigate their role in determining contractility. Types IIa, IIx, and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca(2+) sensitivity than that of the fast troponin fibers, whereas fibers containing fast troponin showed a higher cooperativity of Ca(2+) activation than that of the slow troponin fibers. These results demonstrate distinct but coordinated regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties of muscle.  相似文献   

4.
The present study examined Ca(2+) sensitivity of diaphragm muscle (Dia(m)) fibers expressing different myosin heavy chain (MHC) isoforms. We hypothesized that Dia(m) fibers expressing the MHC(slow) isoform have greater Ca(2+) sensitivity than fibers expressing fast MHC isoforms and that this fiber-type difference in Ca(2+) sensitivity reflects the isoform composition of the troponin (Tn) complex (TnC, TnT, and TnI). Studies were performed in single Triton-X-permeabilized Dia(m) fibers. The Ca(2+) concentration at which 50% maximal force was generated (pCa(50)) was determined for each fiber. SDS-PAGE and Western analyses were used to determine the MHC and Tn isoform composition of single fibers. The pCa(50) for Dia(m) fibers expressing MHC(slow) was significantly greater than that of fibers expressing fast MHC isoforms, and this greater Ca(2+) sensitivity was associated with expression of slow isoforms of the Tn complex. However, some Dia(m) fibers expressing MHC(slow) contained the fast TnC isoform. These results suggest that the combination of TnT, TnI, and TnC isoforms may determine Ca(2+) sensitivity in Dia(m) fibers.  相似文献   

5.
Force generating strong cross-bridges are required to fully activate cardiac thin filaments, but the molecular signaling mechanism remains unclear. Evidence demonstrating differential extents of cross-bridge-dependent activation of force, especially at acidic pH, in myofilaments in which slow skeletal troponin I (ssTnI) replaced cardiac TnI (cTnI) indicates the significance of a His in ssTnI that is an homologous Ala in cTnI. We compared cross-bridge-dependent activation in myofilaments regulated by cTnI, ssTnI, cTnI(A66H), or ssTnI(H34A). A drop from pH 7.0 to 6.5 induced enhanced cross-bridge-dependent activation in cTnI myofilaments, but depressed activation in cTnI(A66H) myofilaments. This same drop in pH depressed cross-bridge-dependent activation in both ssTnI myofilaments and ssTnI(H34A) myofilaments. Compared with controls, cTnI(A66H) myofilaments were desensitized to Ca(2+), whereas there was no difference in the Ca(2+)-force relationship between ssTnI and ssTnI(H34A) myofilaments. The mutations in cTnI and ssTnI did not affect Ca(2+) dissociation rates from cTnC at pH 7.0 or 6.5. However, at pH 6.5, cTnI(A66H) had lower affinity for cTnT than cTnI. We also probed cross-bridge-dependent activation in myofilaments regulated by cTnI(Q56A). Myofilaments containing cTnI(Q56A) demonstrated cross-bridge-dependent activation that was similar to controls containing cTnI at pH 7.0 and an enhanced cross-bridge-dependent activation at pH 6.5. We conclude that a localized N-terminal region of TnI comprised of amino acids 33-80, which interacts with C-terminal regions of cTnC and cTnT, is of particular significance in transducing signaling of thin filament activation by strong cross-bridges.  相似文献   

6.
The length and amino acid sequence of the amino-terminal region of troponin T (TnT) is regulated by alternative mRNA processing in both mammals and birds. To study the function of this region, three forms of bovine cardiac TnT were compared: isoforms TnT1 and TnT2, which differ by the presence or absence of residues 15-19 and TnT 39-284. TnT 39-284 was prepared by chemical cleavage of TnT1 at Cys-39. All three forms of TnT successfully reconstituted with troponin I and troponin C, resulting in troponins designated Tn1, Tn2, and TnCN. Three properties of the reconstituted troponins were compared. 1) Tn1 and TnCN had indistinguishable effects on tropomyosin polymerization. Addition of either 8 microM Tn1 or 8 microM TnCN increased the viscosity (eta rel) of 5 microM tropomyosin from 1.0 to 1.63 at 10 degrees C. 2) All of the three troponins conferred Ca2+ dependence to the MgATPase rate of myosin S-1-actin-tropomyosin. In the presence of saturating concentrations of Tn2, Tn1, or TnCN, 50% MgATPase activation occurred at pCa 6.0, 5.9, or 5.75, respectively. 3) The affinity of the Ca2+-specific binding site of reconstituted Tn1 was 50% stronger than the affinity of the same site on TnCN. These results suggest that the amino-terminal region of cardiac TnT is not a completely Ca2+-insensitive domain, but rather modulates the interaction of Ca2+ with troponin and with the thin filament. Furthermore, the effects of TnT on tropomyosin-tropomyosin binding are predominantly due to portions of TnT carboxyl-terminal to residue 38.  相似文献   

7.
The aim of this study is to investigate the molecular events associated with the deleterious effects of acidosis on the contractile properties of cardiac muscle as in the ischemia of heart failure. We have conducted a study of the effects of increasing acidity on the Ca(2+) induced conformational changes of pyrene labelled cardiac troponin C (PIA-cTnC) in isolation and in complex with porcine cardiac or chicken pectoral skeletal muscle TnI and/or TnT. The pyrene label has been shown to serve as a useful fluorescence reporter group for conformational and interaction events of the N-terminal regulatory domain of TnC with only minimal fluorescence changes associated with C-terminal domain. Results obtained show that the significant decreases at pH 6.0 of site II Ca(2+) affinity of PIA-cTnC when complexed as a binary complex with either cTnI or cTnT are significantly reduced when cTnI is replaced with sTnI or cTnT with sTnT. However, this effect is appreciably diminished when the cTnI and cTnT in the ternary complex are replaced by sTnI and sTnT. The smaller effects in the ternary complex of replacing both cTnI and cTnT by their skeletal counterparts on depressing the Ca(2+) affinity from pH 7.0 to 6.0 arise from TnI replacement. Thus, changes in TnC conformation resulting from isoform-specific interactions with TnI and TnT could be an integral part of the effect of pH on myofilament Ca(2+)sensitivity.  相似文献   

8.
Fast skeletal troponin C (sTnC) has two low affinity Ca(2+)-binding sites (sites I and II), whereas in cardiac troponin C (cTnC) site I is inactive. By modifying the Ca2+ binding properties of sites I and II in cTnC it was demonstrated that binding of Ca2+ to an activated site I alone is not sufficient for triggering contraction in slow skeletal muscle fibers (Sweeney, H.L., Brito, R. M.M., Rosevear, P.R., and Putkey, J.A. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 9538-9542). However, a similar study using sTnC showed that Ca2+ binding to site I alone could partially activate force production in fast skeletal muscle fibers (Sheng, Z., Strauss, W.L., Francois, J.M., and Potter, J.D. (1990) J. Biol. Chem. 265, 21554-21560). The purpose of the current study was to examine the functional characteristics of modified cTnC derivatives in fast skeletal muscle fibers to assess whether or not either low affinity site can mediate force production when coupled to fast skeletal isoforms of troponin (Tn) I and TnT. Normal cTnC and sTnC were compared with engineered derivatives of cTnC having either both sites I and II active, or only site I active. In contrast to what is seen in slow muscle, binding of Ca2+ to site I alone recovered about 15-20% of the normal calcium-activated force and ATPase activity in skinned fast skeletal muscle fibers and myofibrils, respectively. This is most likely due to structural differences between TnI and/or TnT isoforms that allow for partial recognition and translation of the signal represented by binding Ca2+ to site I of TnC when associated with fast skeletal but not slow skeletal muscle.  相似文献   

9.
The inhibitory region of troponin I (TnI) plays a central regulatory role in the contraction and relaxation cycle of skeletal and cardiac muscle through its Ca(2+)-dependent interaction with actin. Detailed structural information on the interface between TnC and this region of TnI has been long in dispute. We have used fluorescence resonance energy transfer (FRET) to investigate the global conformation of the inhibitory region of a full-length TnI mutant from cardiac muscle (cTnI) in the unbound state and in reconstituted complexes with the other cardiac troponin subunits. The mutant contained a single tryptophan residue at the position 129 which was used as an energy transfer donor, and a single cysteine residue at the position 152 labeled with IAEDANS as energy acceptor. The sequence between Trp129 and Cys152 in cTnI brackets the inhibitory region (residues 130-149), and the distance between the two sites was found to be 19.4 A in free cTnI. This distance was insensitive to reconstitution of cTnI with cardiac troponin T (cTnT), cTnC, or cTnC and cTnT in the absence of bound regulatory Ca(2+) in cTnC. An increase of 9 A in the Trp129-Cys152 separation was observed upon saturation of the Ca(2+) regulatory site of cTnC in the complexes. This large increase suggests an extended conformation of the inhibitory region in the interface between cTnC and cTnI in holo cardiac troponin. This extended conformation is different from a recent model of the Ca(2+)-saturated skeletal TnI-TnC complex in which the inhibitory region is modeled as a beta-turn. The observed Ca(2+)-induced conformational change may be a switch mechanism by which movement of the regulatory region of cTnI to the exposed hydrophobic patch of the open regulatory N-domain of cTnC pulls the inhibitory region away from actin upon Ca(2+) activation in cardiac muscle.  相似文献   

10.
Slow skeletal muscle troponin I (ssTnI) expressed predominantly in perinatal heart confers a marked resistance to acidic pH on Ca(2+) regulation of cardiac muscle contraction. To explore the molecular mechanism underlying this phenomenon, we investigated the roles of TnI isoforms (ssTnI and cardiac TnI (cTnI)) in the thin filament activation by strongly binding cross-bridges, by exchanging troponin subunits in cardiac permeabilized muscle fibers. Fetal cardiac muscle showed a marked resistance to acidic pH in activation of the thin filament by strongly binding cross-bridges compared to adult muscle. Exchanging ssTnI into adult fibers altered the pH sensitivity from adult to fetal type, indicating that ssTnI also confers a marked resistance to acidic pH on the cross-bridge-induced thin filament activation. However, the adult fibers containing ssTnI or cTnI but lacking TnC showed no pH sensitivity. These findings provide the first evidence for the coupling between strongly binding cross-bridges and a pH-sensitive interaction of TnI with TnC in cardiac muscle contraction, as a molecular basis of the mechanism conferring the differential pH sensitivity on Ca(2+) regulation.  相似文献   

11.
A novel double deletion in cardiac troponin T (cTnT) of two highly conserved amino acids (Asn-100 and Glu-101) was found in a restrictive cardiomyopathic (RCM) pediatric patient. Clinical evaluation revealed the presence of left atrial enlargement and marked left ventricle diastolic dysfunction. The explanted heart examined by electron microscopy revealed myofibrillar disarray and mild fibrosis. Pedigree analysis established that this mutation arose de novo. The patient tested negative for six other sarcomeric genes. The single and double recombinant cTnT mutants were generated, and their functional consequences were analyzed in porcine skinned cardiac muscle. In the adult Tn environment (cTnT3 + cardiac troponin I), the single cTnT3-ΔN100 and cTnT3-ΔE101 mutations had opposing effects on the Ca(2+) sensitivity of force development compared with WT, whereas the double deletion cTnT3-ΔN100/ΔE101 increased the Ca(2+) sensitivity + 0.19 pCa units. In addition, cTnT3-ΔN100/ΔE101 decreased the cooperativity of force development, suggesting alterations in intrafilament protein-protein interactions. In the fetal Tn environment, (cTnT1 + slow skeletal troponin I), the single (cTnT1-ΔN110) and double (cTnT1-ΔN110/ΔE111) deletions did not change the Ca(2+) sensitivity compared with control. To recreate the patient's heterozygous genotype, we performed a reconstituted ATPase activity assay. Thin filaments containing 50:50 cTnT3-ΔN100/ΔE101:cTnT3-WT also increased the myofilament Ca(2+) sensitivity compared with WT. Co-sedimentation of thin filament proteins indicated that no significant changes occurred in the binding of Tn containing the RCM cTnT mutation to actin-Tm. This report reveals the protective role of Tn fetal isoforms as they rescue the increased Ca(2+) sensitivity produced by a cTnT-RCM mutation and may account for the lack of lethality during gestation.  相似文献   

12.
The key events in regulating cardiac muscle contraction involve Ca(2+) binding to and release from cTnC (troponin C) and structural changes in cTnC and other thin filament proteins triggered by Ca(2+) movement. Single mutations L29Q and G159D in human cTnC have been reported to associate with familial hypertrophic and dilated cardiomyopathy, respectively. We have examined the effects of these individual mutations on structural transitions in the regulatory N-domain of cTnC triggered by Ca(2+) binding and dissociation. This study was carried out with a double mutant or triple mutants of cTnC, reconstituted into troponin with tryptophanless cTnI and cTnT. The double mutant, cTnC(L12W/N51C) labeled with 1,5-IAEDANS at Cys-51, served as a control to monitor Ca(2+)-induced opening and closing of the N-domain by F?rster resonance energy transfer (FRET). The triple mutants contained both L12W and N51C labeled with 1,5-IAEDANS, and either L29Q or G159D. Both mutations had minimal effects on the equilibrium distance between Trp-12 and Cys-51-AEDANS in the absence or presence of bound Ca(2+). L29Q had no effect on the closing rate of the N-domain triggered by release of Ca(2+), but reduced the Ca(2+)-induced opening rate. G159D reduced both the closing and opening rates. Previous results showed that the closing rate of cTnC N-domain triggered by Ca(2+) dissociation was substantially enhanced by PKA phosphorylation of cTnI. This rate enhancement was abolished by L29Q or G159D. These mutations alter the kinetics of structural transitions in the regulatory N-domain of cTnC that are involved in either activation (L29Q) or deactivation (G159D). Both mutations appear to be antagonistic toward phosphorylation signaling between cTnI and cTnC.  相似文献   

13.
We describe a method for the removal of endogenous troponin (Tn) complex from bundles of detergent-treated cardiac fibers. After 70 min treatment with cTnT-cTnI most of the endogenous Tn complex was removed from fiber bundles. Complete reconstitution of the Tn complex was achieved by reconstituting with cardiac troponin C (cTnC) in fully relaxing conditions. Ca(2+)-dependent maximum force of the fibers treated with cTnT-cTnI or cTnT-cTnI(33-211), which was used to aid in the visualization of the troponin exchange, decreased to 85-90% of the force developed by fibers before the treatment. SDS-PAGE analysis of the cTnT-cTnI(33-211) and the cTnT(77-289)-cTnI(33-211) treated fiber bundles demonstrated that 70-80% of the endogenous Tn subunits were removed. After reconstitution with cTnC, approximately 80-85% of the Ca(2+)-regulated force was restored in cTnT-cTnI/cTnI(33-211) treated fibers. Our results demonstrate that by minimizing the prolonged exposure of skinned cardiac fiber bundles to rigor conditions, successful exchange of all three subunits of the Tn complex can be accomplished with minimal loss of function.  相似文献   

14.
The objective of this work was to investigate the effect of hypertrophic cardiomyopathy-linked A8V and E134D mutations in cardiac troponin C (cTnC) on the response of reconstituted thin filaments to calcium upon phosphorylation of cardiac troponin I (cTnI) by protein kinase A. The phosphorylation of cTnI at protein kinase A sites was mimicked by the S22D/S23D double mutation in cTnI. Our results demonstrate that the A8V and E134D mutations had no effect on the extent of calcium desensitization of reconstituted thin filaments induced by cTnI pseudophosphorylation. However, the A8V mutation enhanced the effect of cTnI pseudophosphorylation on the rate of dissociation of calcium from reconstituted thin filaments and on the calcium dependence of actomyosin ATPase. Consequently, while the A8V mutation still led to a slower rate of dissociation of calcium from reconstituted thin filaments upon pseudophosphorylation of cTnI, the ability of the A8V mutation to decrease the rate of calcium dissociation was weakened. In addition, the ability of the A8V mutation to sensitize actomyosin ATPase to calcium was weakened after cTnI was replaced by the phosphorylation mimetic of cTnI. Consistent with the hypothesis that the E134D mutation is benign, it exerted a minor to no effect on the rate of dissociation of calcium from reconstituted thin filaments or on the calcium sensitivity of actomyosin ATPase, regardless of the cTnI phosphorylation status. In conclusion, our study enhances our understanding of how cardiomyopathy-linked cTnC mutations affect the response of reconstituted thin filaments to calcium upon cTnI phosphorylation.  相似文献   

15.
The distance between Ca2+-binding site III in the C-terminal domain and Cys35 in the N-terminal domain in cardiac muscle troponin C (cTnC) was determined with a single-tryptophan mutant using bound Tb3+ as the energy donor and iodoacetamidotetramethylrhodamine linked to the cysteine residue as energy acceptor. The luminescence of bound Tb3+ was generated through sensitization by the tryptophan located in the 12-residue binding loop of site III upon irradiation at 295 nm, and this sensitized luminescence was the donor signal transferred to the acceptor. In the absence of bound cation at site II, the mean interdomain distance was found to be 48-49 A regardless of whether the cTnC was unbound or bound to cardiac troponin I, or reconstituted into cardiac troponin. These results suggest that cTnC retains its overall length in the presence of bound target proteins. The distribution of the distances was wide (half-width >9 A) and suggests considerable interdomain flexibility in isolated cTnC, but the distributions became narrower for cTnC in the complexes with the other subunits. In the presence of bound cation at the regulatory site II, the interdomain distance was shortened by 6 A for cTnC, but without an effect on the half-width. The decrease in the mean distance was much smaller or negligible when cTnC was complexed with cTnI or cTnI and cTnT under the same conditions. Although free cTnC has considerable interdomain flexibility, this dynamics is slightly reduced in troponin. These results indicate that the transition from the relaxed state to an activated state in cardiac muscle is not accompanied by a gross alteration of the cTnC conformation in cardiac troponin.  相似文献   

16.
Troponin T (TnT) is the tropomyosin (Tm) binding subunit of the troponin complex that mediates the Ca(2+) regulation of actomyosin interaction in striated muscles. Troponin T isoform diversity is marked by a developmentally regulated acidic to basic switch that may modulate muscle contractility. We previously reported that transgenic expression of fast skeletal muscle TnT altered the cooperativity of cardiac muscle. In the present study, we have demonstrated that the binding of acidic TnT to troponin I is weaker than that of basic TnT. However, affinity chromatography experiments showed that Tm bound to acidic TnT with a greater affinity than to basic TnT, consistent with the significantly higher maximal binding of acidic TnT to Tm in solid phase binding assays. Competition and co-immunoprecipitation experiments demonstrated that the binding of TnT to Tm was cooperative in the absence of F-actin. The cooperativity between TnT molecules for Tm binding can be initiated by the conserved COOH-terminal T2 fragment of TnT. This indicates that the interaction of TnT with Tm induces a conformational change in Tm, promoting interaction of TnT with adjacent Tm dimers. This finding suggests a role for TnT and its acidic and basic isoforms in the cooperative release of the inhibition of striated muscle actomyosin interaction.  相似文献   

17.
Alternative splicing of troponin T (TnT) in striated muscle during development results in expression of different isoforms, with the splicing of a 5(') exon of TnT resulting in the expression of low-molecular-weight basic adult TnT isoforms and high-molecular-weight acidic embryonic TnT isoforms. Although other differences exist, the main differences between cardiac TnT (cTnT) and fast skeletal muscle TnT (fTnT) are in the NH(2) terminus, with fTnT being less acidic than cTnT. A transgenic mouse line expressing chicken fTnT in the heart was used to investigate the functional significance of TnT NH(2)-terminal charge differences on cardiac muscle contractility. The rates of force redevelopment (k(tr)) at four levels of Ca(2+) activation were recorded for skinned left ventricular trabeculae from control and transgenic mice. The k(tr) vs Ca(2+) relationship was different in control mice and transgenic mice, suggesting that the structure of TnT, and possibly the NH(2)-terminal region, is involved in determining the kinetics of cross-bridge cycle. These results suggest that isoform shifts in TnT may be an important molecular mechanism for determining the Ca(2+) dependence of cardiac muscle contractility.  相似文献   

18.
Nuclear actin - which is immunologically distinct from cytoplasmic actin - has been documented in a number of differentiated cell types, and cardiac isoforms of troponin I (cTnI) and troponin T (cTnT) have been detected in association with nuclei of adult human cardiac myocytes. It is not known whether these and related proteins are present in undifferentiated stem cells, or when they appear in cardiomyogenic cells following differentiation. We first tested the hypothesis that nuclear actin and cardiac isoforms of troponin C (cTnC) and tropomyosin (cTm) are present along with cTnI and cTnT in nuclei of isolated, neonatal rat cardiomyocytes in culture. We also tested the hypothesis that of these five proteins, only actin is present in nuclei of multipotent, bone marrow-derived mesenchymal stem cells (BM-MSCs) from adult rats in culture, but that cTnC, cTnI, cTnT and cTm appear early and uniquely following cardiomyogenic differentiation. Here we show that nuclear actin is present within nuclei of both ventricular cardiomyocytes and undifferentiated, multipotent BM-MSCs. We furthermore show that cTnC, cTnI, cTnT and cTm are not only present in myofilaments of ventricular cardiomyocytes in culture but are also within their nuclei; significantly, these four proteins appear between days 3 and 5 in both myofilaments and nuclei of BM-MSCs treated to differentiate into cardiomyogenic cells. These observations indicate that cardiac troponin and tropomyosin could have important cellular function(s) beyond Ca(2+)-regulation of contraction. While the roles of nuclear-associated actin, troponin subunits and tropomyosin in cardiomyocytes are not known, we anticipate that the BM-MSC culture system described here will be useful for elucidating their function(s), which likely involve cardiac-specific, Ca(2+)-dependent signaling in the nucleus.  相似文献   

19.
20.
The paramagnetic relaxation reagent, 4-hydroxy-2,2,6,6-tetramethylpiperidinyl-1-oxy (HyTEMPO), was used to probe the surface exposure of methionine residues of recombinant cardiac troponin C (cTnC) in the absence and presence of Ca2+ at the regulatory site (site II), as well as in the presence of the troponin I inhibitory peptide (cTnIp). Methyl resonances of the 10 Met residues of cTnC were chosen as spectral probes because they are thought to play a role in both formation of the N-terminal hydrophobic pocket and in the binding of cTnIp. Proton longitudinal relaxation rates (R1's) of the [13C-methyl] groups in [13C-methyl]Met-labeled cTnC(C35S) were determined using a T1 two-dimensional heteronuclear single- and multiple-quantum coherence pulse sequence. Solvent-exposed Met residues exhibit increased relaxation rates from the paramagnetic effect of HyTEMPO. Relaxation rates in 2Ca(2+)-loaded and Ca(2+)-saturated cTnC, both in the presence and absence of HyTEMPO, permitted the topological mapping of the conformational changes induced by the binding of Ca2+ to site II, the site responsible for triggering muscle contraction. Calcium binding at site II resulted in an increased exposure of Met residues 45 and 81 to the soluble spin label HyTEMPO. This result is consistent with an opening of the hydrophobic pocket in the N-terminal domain of cTnC upon binding Ca2+ at site II. The binding of the inhibitory peptide cTnIp, corresponding to Asn 129 through Ile 149 of cTnI, to both 2Ca(2+)-loaded and Ca(2+)-saturated cTnC was shown to protect Met residues 120 and 157 from HyTEMPO as determined by a decrease in their measured R1 values. These results suggest that in both the 2Ca(2+)-loaded and Ca(2+)-saturated forms of cTnC, cTnIp binds primarily to the C-terminal domain of cTnC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号