首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The Ca-ATPase of sarcoplasmic reticulum was solubilized at pH 6.5 and 30 degrees C using different nonionic detergents, Triton X-100, C12E8, Lubrol PX, or Tween 20. After full solubilization by any of these detergents, the enzyme was unstable (t1/2 = 2-3 min) in the absence of Ca2+. The soluble enzyme was stable in the presence of calcium, half-maximal protection being attained in the presence of 0.2 mM Ca2+. In the absence of Ca2+, stability was restored by addition of co-solvents dimethyl sulfoxide or glycerol. In the presence of 4 mM Ca2+, the progressive addition of nonionic detergents to a medium containing leaky vesicles promoted an increase, up to 3-fold, in the rate of ATP hydrolysis. This was not observed when ITP was used as substrate. The small amount of ADP accumulated in the medium during ATP hydrolysis was sufficient to inhibit the ATPase activity of the membrane-bound enzyme but had no effect on the soluble enzyme. Increasing concentrations of detergent promoted a progressive inhibition of the ATP----Pi exchange reaction. The ATP hydrolysis/synthesis ratio of soluble enzyme was 10 times higher than that of membranous enzyme. Addition of co-solvent restored this ratio to values similar to those obtained with membrane-bound Ca-ATPase. Soluble enzyme prepared from native sarcoplasmic reticulum vesicles was able to catalyze the net synthesis of ATP when phosphorylated by Pi in the presence of dimethyl sulfoxide and then diluted in a medium containing 10 mM CaCl2 and 2 mM ADP. This was not observed when the soluble enzyme was prepared from purified Ca-ATPase. The results suggest that some of the partial reactions of the catalytic cycle of Ca-ATPase are dependent on the hydrophobic environment found in the native membrane. This environment can be mimicked by co-solvents.  相似文献   

2.
Properties of phosphatidylinositol kinase activities in rabbit erythrocyte membranes were studied by measuring 32P incorporation into di- and triphosphoinositide from Mg-[gamma-32P]ATP. The Km's for 32P incorporation into di- and triphosphoinositide were 110 and 48 microM ATP, respectively. The optimal temperature for 32P incorporation into diphosphoinositide was at 32 degrees C, whereas the optimum for triphosphoinositide labeling occurred at 43 degrees C. Differences in the effects of pH on the rate of 32P incorporation into di- and triphosphoinositide were also found. At 37 degrees C but not at 25 degrees C 32P-labeled diphosphoinositide was phosphorylated to triphosphoinositide in the presence of Mg-ATP. Triton X-100 partially inhibited 32P incorporation into diphosphoinositide but completely inhibited the synthesis of triphosphoinositide. At physiological concentrations, 0.4 mM MgCl2 half-maximally activated di- and triphosphoinositide synthesis. Higher concentrations of MgCl2 (5 to 50 mM) decreased 32P incorporation into diphosphoinositide and greatly enhanced 32P incorporation into triphosphoinositide. NaCl or KCl (less than or equal to 100 mM) did not have any effects on polyphosphoinositide synthesis, whereas 150 to 300 mM NaCl or KCl decreased synthesis of diphosphoinositide and increased synthesis of triphosphoinositide. Further studies showed that 50 mM MgCl2 and 200 mM NaCl or KCl stimulate kinase-mediated phosphorylation of diphosphoinositide to triphosphoinositide. Triton X-100 inhibited the ability of 50 mM MgCl2 and neomycin to stimulate phosphorylation of diphosphoinositide to triphosphoinositide. The pathways for synthesis of di- and triphosphoinositides in erythrocyte membranes are discussed.  相似文献   

3.
The steady state kinetics of ATP hydrolysis by partially purified adenosine triphosphatase preparations of sarcoplasmic reticulum was investigated at 0 degrees C and pH 7.0 in 2.0 mM MgCl2, 20 microM [gamma-32P]ATP, 20 microM CaCl2, and various concentrations of KCl in the presence and absence of 12% dimethyl sulfoxide. The steady state phosphoenzyme formed under these conditions could be resolved kinetically into ADP-sensitive and ADP-insensitive forms. These steady state kinetic data were analyzed according to a scheme in which the ADP-sensitive and ADP-insensitive phosphoenzymes occur sequentially, and Pi is derived from the latter. The KCl-dependent turnover rate of the ADP-insensitive phosphoenzyme that was estimated according to this scheme was in good agreement with the directly measured hydrolysis rate constant of the ADP-insensitive phosphoenzyme. In addition, the time course of the decomposition of the total amount of phosphoenzyme, measured after a steady state level was reached in 20 mM KCl and further phosphorylation was prevented by addition of excess ethylene glycol bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid, was also in agreement with that calculated according to this scheme using values of the rate constants estimated from the amounts of the ADP-sensitive and ADP-insensitive phosphoenzymes and the rate of ATP hydrolysis. These results, together with our previous findings, support the view that this scheme describes the mechanism of ATP hydrolysis in the presence of KCl.  相似文献   

4.
The hydrolytic cycle of sarcoplasmic reticulum Ca2+-ATPase in the absence of Ca2+ was studied. At pH 6.0, 10 degrees C and in the absence of K+, the enzyme displays a very low velocity of ATP hydrolysis. Addition of up to 15% dimethyl sulfoxide increased this velocity severalfold (from 5-18 nmol of Pi X mg of protein-1 X h-1) and then decreased at higher solvent concentrations. Dimethyl sulfoxide increased both enzyme phosphorylation from ATP and the affinity for this substrate. Maximal levels of 1.0-1.2 nmol of EP X mg of protein-1 and apparent KM for ATP of 5 X 10(-6) M were obtained at a concentration of 30% dimethyl sulfoxide. The same preparation under optimal conditions (pH 7.5, 10 microM CaCl2, 100 mM KCl and no dimethyl sulfoxide at 37 degrees C) displays a velocity of ATP hydrolysis between 8 and 12 X 10(5) nmol of Pi X mg of protein-1 X h-1 while the phosphoenzyme levels varied between 3.5 and 4.0 nmol of EP X mg of protein-1. Enzyme phosphorylation from ATP in the absence of Ca2+ always preceded Pi liberation into the assay media. Two different phosphoenzyme species were formed which were kinetically distinguished by their decomposition rates. The observed steady-state velocity of ATP hydrolysis could be accounted for either by the decay of the fast component or by the simultaneous decomposition of both phosphoenzyme species. The hydrolysis of the phosphoenzyme formed in the absence of Ca2+ was KCl-stimulated and ADP-independent. The rate constant of breakdown was equal to that observed for the phosphoenzyme formed in the presence of Ca2+. It is suggested that the rapidly decaying phosphoenzyme (and possibly both rapidly and slowly decaying species) are intermediates in the reaction cycle of Mg2+-dependent ATP hydrolysis of sarcoplasmic reticulum Ca2+-ATPase and may represent a bypass of Ca2+ activation by dimethyl sulfoxide.  相似文献   

5.
The observed equilibrium constants for hydrolysis (Kobs) of a phosphoester and a phosphoanhydride bond were measured under a variety of conditions likely to alter the interactions of reactants and products with water. These included increasing the pH of the medium from 5.0 to 10.0, increasing the MgCl2 concentration form 0 to 200 mM, and decreasing the water activity of the medium by adding either dimethyl sulfoxide (50%, v/v) or polyethylene glycol 6,000-8,000 (50%, w/v). The Kobs for phosphoesters such as phosphoserine, glucose phosphate, glycerol phosphate, and ethylene glycol phosphate varied little over this wide range of conditions, the extreme values of Kobs being 12 and 200 M. In contrast, the Kobs for the phosphoanhydride bond of pyrophosphate varied from a value greater than 20,000 to 0.1 M. In totally aqueous media at a pH between 7.0 and 8.0 and in the presence of 0.5-1.0 mM MgCl2, the energy of hydrolysis of pyrophosphate was 1.2-4.0 kcal/mol greater than that of phosphoserine. However, when the water activity was decreased by adding polyethylene glycol to the medium within the same pH and MgCl2 concentration range, the energy of hydrolysis of phosphoserine became 2.0-2.5 kcal/mol greater than that of pyrophosphate. The results suggest that for phosphoesters, the solvation energies of reactants and products, unlike the case of phosphoanhydride bonds, are not the major factors in determining the energy of hydrolysis.  相似文献   

6.
KCl or LiCl, when added in 100 mM concentrations to cardiac sarcoplasmic reticulum incubated at 17 degrees C with 5 micron [gamma-32P]ATP, 1 mM MgCl2, and 9.1 micron M Ca2+, increased the apparent phosphorylation rate constant from 14.5 s-1 to 23.8 s-1 (100 mM LiCl) or to 44.1 s-1 (100 mM KCl). These same monovalent cations also increased the apparent rate constant for the hydrolysis of the phosphorylated sarcoplasmic reticulum from 0.51 s-1 to 1.12 s-1 (100 mM LiCl) or to 1.71 s-1 (100 mM KCl). Although there was a small burst in Pi production, rate constant of 0.97 s-1, when 100 mM KCl was added, the burst when LiCl or no monovalent cation was added was either nonexistent or so small as to make its detection unreliable. KCl thus appears to induce an intermediate which is either nonexistent when omitted or in such low concentration as not to be readily detected.  相似文献   

7.
The (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum catalyzes the hydrolysis of acetyl phosphate in the presence of Mg2+ and EGTA and is stimulated by Ca2+. The Mg2(+)-dependent hydrolysis of acetyl phosphate measured in the presence of 6 mM acetyl phosphate, 5 mM MgCl2, and 2 mM EGTA is increased 2-fold by 20% dimethyl sulfoxide. This activity is further stimulated 1.6-fold by the addition of 30 mM KCl. In this condition addition of Ca2+ causes no further increase in the rate of hydrolysis and Ca2+ uptake is reduced to a low level. In leaky vesicles, hydrolysis continues to be back-inhibited by Ca2+ in the millimolar range. Unlike ATP, acetyl phosphate does not inhibit phosphorylation by Pi unless dimethyl sulfoxide is present. The presence of dimethyl sulfoxide also makes it possible to detect Pi inhibition of the Mg2(+)-dependent acetyl phosphate hydrolysis. These results suggest that dimethyl sulfoxide stabilizes a Pi-reactive form of the enzyme in a conformation that exhibits comparable affinities for acetyl phosphate and Pi. In this conformation the enzyme is transformed from a Ca2(+)- and Mg2(+)-dependent ATPase into a (K+ + Mg2+)-ATPase.  相似文献   

8.
Calcium release from sarcoplasmic reticulum vesicles presumably derived from longitudinal tubules (LSR) and terminal cisternae (HSR) of rabbit skeletal muscle was investigated by dual wavelength spectrophotometry using the calcium-indicator antipyrylazo III. In 120 mM KCl, 5 mM MgCl2, 30 microM, CaCl2, 50 microM MgATP, 100 microM antipyrylazo III, 40 mM histidine (pH 6.8, 25 degrees C), LSR and HSR sequestered approx. 115 nmol calcium/mg, and then spontaneously released calcium. Analysis of ATP hydrolysis and phosphoenzyme level during LSR and HSR calcium sequestration indicated that this calcium release process was passive, occurring in the virtual absence of ATP and phosphoenzyme. Moreover, subsequent addition of ATP reinitiated the calcium sequestration-release sequence. Calcium release by HSR was more than 4-times faster than that by LSR. Analysis of the calcium release phase demonstrated a biexponential decay for both LSR (0.10 and 0.63 min-1) and HSR (0.26 and 1.65 min-1), suggestive of heterogeneity within each fraction. Replacement of 120 mM KCl with either 120 mM choline chloride, 240 mM sucrose, or H2O reduced maximal calcium sequestration by LSR, but had less effect on LSR calcium release rate constants. In the case of HSR, these changes in the ionic composition of the medium drastically reduced calcium release rate constants with little effect on calcium content. These marked differences between LSR and HSR are consistent with the hypothesis that the calcium permeability of the terminal cisternae is greater and more sensitive to the ionic environment than is that of the longitudinal tubules of sarcoplasmic reticulum.  相似文献   

9.
The characteristics of ATP synthesis in cell envelope vesicles of Halobacterium halobium were further studied. The results confirmed the previous conclusion (Mukohata et al. (1986) J. Biochem. 99, 1-8) that the ATP synthase in this extremely halophilic archaebacterium can not be an ordinary type of F0F1-ATPase, which has been thought to be ubiquitous among all the aerobic organisms on our biosphere. The ATP synthesis was activated most in 1 M NaCl and/or KCl, and at 40 degrees C, and at 80 mM MgCl2 where F0F1-ATPase loses its activity completely. The synthesis was negligible at 10 degrees C, and at 5 mM MgCl2. The Km for ADP was about 0.3 mM in the presence of 20 mM Pi, 1 M NaCl, 80 mM MgCl2, and 10 mM PIPES at pH 6.8 and 20 degrees C. The ATP synthesis was not inhibited by NaN3 and quercetin (specific inhibitors for F0F1-ATPase) or vanadate (for E1E2-ATPase) or ouabain (for Na+,K+-ATPase) or P1,P5-di(adenosine-5')pentaphosphate (AP5A, for adenylate kinase). The ATP synthesis was not inhibited by modification (pretreatment) with NaN3 or 5'-p-fluorosulfonylbenzoyladenosine (FSBA). On the contrary, the ATP synthesis was rather non-specifically inhibited by N-ethylmaleimide (NEM), trinitrobenzenesulfonate (TNBS), phenylglyoxal, and pyridoxal phosphate. 7-Chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl) as well as N,N'-dicyclohexylcarbodiimide (DCCD) was found to be a specific inhibitor at least partly, because the NBD-Cl inhibition was partly prevented by ADP added to the modification mixture.  相似文献   

10.
The ratio between Ca2+ uptake and Ca(2+)-dependent ATP hydrolysis measured in sarcoplasmic reticulum vesicles of rabbit skeletal muscle was found to vary greatly depending on the concentrations of oxalate or Pi used. In the presence of 5 mM oxalate, 20 mM Pi, and 1 mM Pi, the ratios found were in the range of 1.4-2.3, 0.6-0.8, and 0.01-0.10, respectively. The rates of Ca2+ exchange and ATP synthesis were measured at the steady state by adding trace amounts of 45Ca and 32Pi, after the vesicles had been loaded with Ca2+. In the presence of 1 mM Pi, 10 mM MgCl2, and 0.2 mM CaCl2, the ratio between Ca2+ exchange and ATP synthesis varied from 9 to 14. This ratio approached two when Ca2+ in the medium was reduced to a very low level, or when in the presence of Ca2+, dimethyl sulfoxide was added to the assay medium, or when the Pi concentration was raised from 1 to 20 mM. A ratio of two was also measured when the steady state was attained using ITP instead of ATP. In all the conditions that led to a ratio close to two, there was an increase in the fraction of enzyme phosphorylated by Pi. It is proposed that the coupling between Ca2+ translocation and ATP hydrolysis or synthesis is modulated by the phosphorylation of the ATPase by Pi.  相似文献   

11.
Purified Na+,K(+)-ATPase from kidney outer medulla was phosphorylated by Pi in a reaction synergistically stimulated by Mg2+, when 40% (v/v) dimethyl sulfoxide was added to the assay medium. The phosphoenzyme formed at this solvent concentration was able to synthesize ATP even in the presence of Mg2+, because hydrolysis was impaired. ATP in equilibrium [32P]Pi exchange was also inhibited, indicating that partial reactions in the forward direction were blocked by the solvent. In 40% (v/v) dimethyl sulfoxide the enzyme's affinity for ADP decreased, in comparison with the values observed in purely aqueous medium. Addition of K+, which accelerated dephosphorylation of Na+,K(+)-ATPase in a totally water medium, partially reversed the inhibition of hydrolysis that was observed in the presence of dimethyl sulfoxide.  相似文献   

12.
The ATP-dependent phosphoenzyme formation and its reversal were studied at 0 degrees C and pH 7.0 in the ATPase of sarcoplasmic reticulum. Addition of KCl or several other salts (approximately 100 mM) decreased the maximum rate of ADP-induced dephosphorylation of phosphoenzyme as well as the apparent affinity of the phosphoenzyme toward ADP. High ATP had a similar effect on the latter, whereas it had little effect on the former. In contrast, high KCl or a considerable change in the ionic strength had little effect on the initial rate of phosphoenzyme formation at saturating ATP concentrations. During steady state phosphorylation at 1.0 mM MgCl2 and 5.0 mM CaCl2 in the absence of added KCl, a significant amount of [gamma-32P]ATP remained bound to the enzyme even when the enzyme concentration was much in excess over that of [gamma-32P]ATP. Evidence is presented that this enzyme-ATP complex represents a precursor to the phosphoenzyme. ATP dissociated slowly (0.20 s-1) from this enzyme-ATP complex and addition of high KCl or other salts accelerated its dissociation. In contrast, when the enzyme was complexed with adenyl-5'-yl (beta, gamma-methylene)diphosphonate in the absence of added KCl under these conditions, dissociation of the nucleotide from the complex as estimated in the displacement experiment with [gamma-32P]ATP, was found to be much faster than that of ATP.  相似文献   

13.
The rates of hydrolysis of acetyl phosphate in the presence of 0.1 M NaOH and of ATP in the presence of either 1 M HCl or 1 M NaOH were measured at different temperatures and in the presence of different concentrations of the organic solvents dimethyl sulfoxide or ethylene glycol. Under all conditions tested, there was a progressive increase in the rate constant of hydrolysis of both phosphate compounds as the water activity of the medium was decreased by the addition of organic solvents. At 25 degrees C, substitution of 70% of the water of the medium by dimethyl sulfoxide promoted an increase of two orders of magnitude in the rate constant of acetyl phosphate hydrolysis. In the presence of 80% and 90% dimethyl sulfoxide the rate of acetyl phosphate hydrolysis increased by more than two orders of magnitude and was so fast that it could not be measured with the method used. The effect of organic solvents on the rate of ATP hydrolysis was less pronounced than that observed for acetyl phosphate hydrolysis. At 30 degrees C, substitution of 90% of water by an organic solvent promoted a 4-6-fold increase of the rate of ATP hydrolysis. Acceleration of either acetyl phosphate or ATP hydrolysis rates was promoted by a decrease in both activation energies (Ea) and in entropies of activation delta S. The data obtained are discussed with reference to the mechanism of catalysis of enzymes involved in energy transduction such as the Ca2+-ATPase of sarcoplasmic reticulum and the F1-ATPase of mitochondria.  相似文献   

14.
The Ca2+-ATPase of sarcoplasmic reticulum can be phosphorylated by Pi, forming an acylphosphate residue at the catalytic site of the enzyme. In a previous report (de Meis, L., Alves, E., and Martins, O.B. (1980) Biochemistry 19, 4252-4261), it was shown that organic solvent such as dimethyl sulfoxide and glycerol cause a decrease in the apparent Km for Pi. In this report it is shown that a similar effect is obtained with the methylamines glycine betaine and trimethylamine N-oxide. The apparent Km value for Pi in totally aqueous medium and in the presence of either 6.4 M glycerol, 1.4 M dimethyl sulfoxide, 0.4 M trimethylamine N-oxide, or 1 M glycine betaine were found to be respectively 2.85, 0.52, 0.52, 0.81, and 0.93 mM at pH 6.2 and greater than 10.0, 1.08, 2.53, 3.05, and 2.05 mM at pH 7.5. In contrast to the effect of methylamines, urea caused an increase in the apparent Km for Pi. When mixed in the appropriate concentration ratio, the effect of either organic solvent or methylamines is cancelled by urea.  相似文献   

15.
We have developed a rapid filtration technique for the measurement of Ca2+ release from isolated sarcoplasmic reticulum vesicles. Using this technique, we have studied the Ca2+-induced Ca2+ release of sarcoplasmic reticulum vesicles from rabbit skeletal muscle passively loaded with 5 mM Ca2+. The effect of known effectors (adenine nucleotides and caffeine) and inhibitors (Mg2+ and ruthenium red) of this release were investigated. In a medium composed of 100 mM KCl buffered at pH 6.8 with 20 mM K/3-(N-morpholino)propanesulfonic acid the Ca2+ release rate was maximal (500 nmol of Ca2+ released.(mg of protein)-1.s-1) at 1 micron external Ca2+ and 5 mM ATP. We also observed a rapid Ca2+ release induced by micromolar Ag+ in the presence of ATP (at 1 nM Ca2+). The Ag+-induced Ca2+ release was totally inhibited by 5 micron ruthenium red. We have also investigated the effect of monovalent ions on the Ca2+ release elicited by Ca2+ or Ag+. We show that the Ca2+ release rate: 1) was dependent upon the presence of K+ or Na+ in the release medium and 2) was influenced by a K+ gradient created across the sarcoplasmic reticulum membrane. These results directly support the idea of the involvement of an influx of K+ (through K+ channels) during the Ca2+ release and allow to reconsider a possible influence of the membrane potential of the sarcoplasmic reticulum on the Ca2+ release.  相似文献   

16.
The F1 and F1-inhibitor-protein complex synthesized tightly bound ATP from ADP and Pi when the organic solvents dimethylsulfoxide (20-50% v/v), ethylene glycol (20-60% v/v) or poly(ethylene glycol) 4000 and 8000 (30-50% w/v) were included in the assay media. There was no synthesis of tightly bound ATP in the absence of organic solvents. In the presence of 50% dimethylsulfoxide, maximal synthesis of ATP was obtained at pH values between 6.5 and 7.7. In both F1 and F1-inhibitor-protein there was no synthesis of ATP in the absence of MgCl2. The rate of ATP synthesis became faster as the MgCl2 concentration in the medium was raised from 0.1-10 mM. The Km for Pi of F1 was in the range of 0.8-1.5 mM. The Km for Pi of the F1-inhibitor-protein was much higher than that of F1 and could not be measured. In the presence of 10 mM MgCl2 and 2 mM Pi, the rate constants of ATP synthesis by F1 and F1-inhibitor-protein were 5.2-10.4 h-1 and 3.5-5.9 h-1 respectively. For both enzymes the rate constant of ATP hydrolysis was 0.69 h-1. The tightly bound ATP of F1 and F1-inhibitor-protein were hydrolyzed at a much slower rate when either the Pi concentration or the MgCl2 concentration was suddenly decreased. Both in presence and absence of Mg2+, 40-60% of the radioactive tightly bound ATP synthesized by F1 was hydrolyzed when non-radioactive ATP was added to the assay medium. This was not observed when F1-inhibitor-protein was used.  相似文献   

17.
Two-dimensional crystalline arrays of Ca2+-ATPase molecules develop after treatment of sarcoplasmic reticulum vesicles with Na3VO4 in calcium-free medium (Dux, L., and Martonosi, A. (1983) J. Biol. Chem. 258, 2599-2603). The formation of Ca2+-ATPase crystals is inhibited by Ca2+ (2 microM), or ATP (5 mM), but not by ADP, 5'-adenylylimidodiphosphate, or adenylylmethylenediphosphonate. ATPase crystals did not form at 37 degrees C and exposure of preformed crystals to 37 degrees C for 1 h caused the disappearance of crystal lattice. Inorganic orthophosphate (1 mM at pH 6.0) promoted the formation of a distinct crystal form of Ca2+-ATPase, which was different from that produced by Na3VO4. These observations indicate that Ca2+, ATP, inorganic phosphate, pH, and temperature influence the interactions between ATPase molecules in the sarcoplasmic reticulum membrane.  相似文献   

18.
Solubilized Ca2+-ATPase (SSR) was prepared by solubilizing fragmented sarcoplasmic reticulum (FSR) with a nonionic detergent (C12E8) then displacing the detergent with Tween 80, using a DEAE-cellulose column. The kinetic properties of the phosphorylated intermediate (EP) formed by the reaction of SSR with ATP were compared with those of EP formed by the reaction with Pi. The time course of decay of E32P formed with 4 microM AT32P in the presence of 19 mM CaCl2 and 10 mM MgCl2 (forward reaction) was measured by adding 0.4 mM unlabeled ATP and 10 mM Pi at pH 6.0 and 30 degrees C. The rate of E32P decay was accelerated by 0.4 mM ADP. On the other hand, when the time course of decay of E32P formed with 10 mM 32Pi in the presence of 5 mM EGTA and 10 mM MgCl2 (backward reaction) was measured by adding 0.4 mM unlabeled ATP and 15 mM CaCl2, the rate of E32P decay was unaffected by 0.4 mM ADP. AT32P was produced on adding ADP to E32P formed with AT32P in the presence of 10 mM CaCl2 and 10 mM MgCl2, while no AT32P was produced on adding ADP to E32P formed with 32Pi in the presence of 5 mM EGTA and 10 mM MgCl2, even when 15 mM CaCl2 was added simultaneously with ADP.  相似文献   

19.
Absorbance and fluorescence changes of oxacarbocyanine dyes during ATP-induced Ca2+ transport in rabbit sarcoplasmic reticulum were analyzed. The response of the probes is complex and contains contributions from the binding of Ca2+ and ATP to the membrane. In a medium of 0.12 M KCl and 5 mM MgCl2, the fluorescence of Di-O-C5(3) is decreased by Ca2+ or ATP with apparent dissociation constants of 0.2 and 5 micron, respectively. This suggests that oxacarbocyanines respond to binding of Ca2+ and ATP at the active site of Ca2+ transport ATPase. The effect of ATP is observed in the absence of divalent cations. Further changes in the fluorescence or absorbance of cyanine dyes occur at millimolar concentrations of Ca2+ or during ATP-induced Ca2+ uptake, which can be related to Ca2+ binding to low affinity, relatively nonspecific binding sites on the membrane, that can also bind K+ and Mg2+. The optical changes due to Ca2+ accumulation are most pronounced in media of 0.25 M sucrose and much reduced in 0.12 M KCl and 5 mM MgCl2, in accord with competition by K+ and Mg2+ for the low affinity Ca2+ binding sites. These effects must be taken into account in the evaluation of the magnitude and direction of membrane potential in sarcoplasmic reticulum vesicles during Ca2+ uptake and release.  相似文献   

20.
The kinetics of binding and hydrolysis of ATP by bovine cardiac myosin subfragment 1 has been reinvestigated. More than 90% of the total fluorescence amplitude associated with ATP hydrolysis occurs with an apparent second-order rate constant of 8.1 X 10(5) M-1 S-1 and a limiting rate constant of approximately 140 S-1 (100 mM KCl, 50 mM 1,3-bis-[tris(hydroxymethyl)methylamino]-propane, 10 mM MgCl2, pH 7.0, 20 degrees C); the remaining 10% occurs more slowly (approximately 1 S-1). The observed rate constants are independent of subfragment 1 concentration under pseudo first-order conditions for ATP with respect to protein. The fraction of protein which hydrolyzes ATP rapidly is not a function of the nucleotide or protein concentration and appears to be constant irrespective of ionic strength or temperature within the range studied (50-100 mM KCl, pH 7.0, 15-20 degrees C). These data are compared to that obtained previously using subfragment 1 prepared by a different method which showed ATP-dependent aggregation of two protein species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号