首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The complete lyc gene encoding the autolytic lysozyme of Clostridium acetobutylicum ATCC 824 was reconstructed from two overlapping DNA fragments and cloned into a suitable plasmid enabling Escherichia coli to produce this lytic enzyme under the control of the lac promoter. A polypeptide with an apparent M(r) of 35,000, corresponding to that predicted from the nucleotide sequence, was observed by maxicell analysis of whole-cell extracts of E. coli harboring the clostridial gene. The enzyme yield was shown to depend on the pH of the culture medium, since the protein was unstable at alkaline pH. The expression of the lyc gene was not increased by using the E. coli strong promoter, lpp-lac, probably due to the limit imposed by the extreme differences in codon usage. Although the LYC lysozyme does not contain a cleavable signal peptide, most of the protein was found in the periplasmic fraction of E. coli suggesting that this enzyme was secreted through a specific mechanism, as already observed for other autolysins.  相似文献   

2.
The pfk gene encoding phosphofructokinase (Pfk) from the anaerobic bacterium Clostridium acetobutylicum ATCC 824 was cloned and sequenced. The gene was identified in a plasmid library by complementation of an E. coli pfk mutant and by the ability to amplify a fragment by PCR using primers based on homologous regions of Pfk from other microorganisms. Nucleotide sequence analysis revealed a coding region for a 319-aa protein homologous to Pfks from other organisms. Enzyme assay and ability to complement the growth defects of E. coli pfk mutants confirmed the expression of the clostridial pfk gene. The pyruvate kinase (pyk) gene was identified adjacent to pfk. Such an arrangement for the genes encoding key regulators of glycolytic flux had not yet been described in a strict anaerobe. This gene arrangement has been found in other Gram-positive organisms, but not in Gram-negative organisms. Reveived: 15 September 1997 / Accepted: 12 January 1998  相似文献   

3.
The optimum conditions for autolysis of Clostridium acetobutylicum ATCC 824 were determined. Autolysis was optimal at pH 6.3 and 55 degrees C in 0.1 M-sodium acetate/phosphate buffer. The ability of cells to autolyse decreased sharply at the end of the exponential phase of growth. Lysis was stimulated by monovalent cations and compounds that complex divalent cations, and inhibited by divalent cations. The autolysin of C. acetobutylicum, which was mainly cytoplasmic, was purified to homogeneity and characterized as a muramidase. The enzyme was identical to the extracellular muramidase in terms of M(r), isoelectric point and NH2-terminal amino acid sequence. The autolysin was inhibited by lipoteichoic acids and cardiolipin but not by phosphatidylethanolamine and phosphatidylglycerol. A mechanism of regulation and fixation involving lipoteichoic acid, cardiolipin and divalent cations is proposed.  相似文献   

4.
A synthetic acetone operon (ace4) composed of four Clostridium acetobutylicum ATCC 824 genes (adc, ctfAB, and thl, coding for the acetoacetate decarboxylase, coenzyme A transferase, and thiolase, respectively) under the control of the thl promoter was constructed and was introduced into Escherichia coli on vector pACT. Acetone production demonstrated that ace4 is expressed in E. coli and resulted in the reduction of acetic acid levels in the fermentation broth. Since different E. coli strains vary significantly in their growth characteristics and acetate metabolism, ace4 was expressed in three E. coli strains: ER2275, ATCC 11303, and MC1060. Shake flask cultures of MC1060(pACT) produced ca. 2 mM acetone, while both strains ER2275(pACT) and ATCC 11303(pACT) produced ca. 40 mM acetone. Glucose-fed cultures of strain ATCC 11303(pACT) resulted in a 150% increase in acetone titers compared to those of batch shake flask cultures. External addition of sodium acetate to glucose-fed cultures of ATCC 11303(pACT) resulted in further increased acetone titers. In bioreactor studies, acidic conditions (pH 5.5 versus 6.5) improved acetone production. Despite the substantial acetone evaporation due to aeration and agitation in the bioreactor, 125 to 154 mM acetone accumulated in ATCC 11303(pACT) fermentations. These acetone titers are equal to or higher than those produced by wild-type C. acetobutylicum. This is the first study to demonstrate the ability to use clostridial genes in nonclostridial hosts for solvent production. In addition, acetone-producing E. coli strains may be useful hosts for recombinant protein production in that detrimental acetate accumulation can be avoided.  相似文献   

5.
A beta-d-xylosidase from C. acetobutylicum ATCC 824 was purified by column chromatography on CM-Sepharose, hydroxylapatite, Phenyl Sepharose, and Sephadex G-200. The enzyme had an apparent molecular weight of 224,000 as estimated by gel filtration. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the enzyme consisted of two subunits of 85,000 and one subunit of 63,000 daltons. It exhibited optimal activity at pH 6.0 to 6.5 and 45 degrees C. the enzyme had an isoelectric point of 5.85. It hydrolyzed p-nitrophenylxyloside readily with a K(m) of 3.7 mM. The enzyme hydrolyzed xylo-oligosaccharides with chain lengths of 2 to 6 units by cleaving a single xylose from the chain end. It showed little or no activity against xylan, carboxymethyl cellulose, and other p-nitrophenylglycosides.  相似文献   

6.
A gene expression reporter system (pHT3) for Clostridium acetobutylicum ATCC 824 was developed by using the lacZ gene from Thermoanaerobacterium thermosulfurogenes EM1 as the reporter gene. In order to test the reporter system, promoters of three key metabolic pathway genes, ptb (coding for phosphotransbutyrylase), thl (coding for thiolase), and adc (coding for acetoacetate decarboxylase), were cloned upstream of the reporter gene in pHT3 in order to construct vectors pHT4, pHT5, and pHTA, respectively. Detection of β-galactosidase activity in time course studies performed with strains ATCC 824(pHT4), ATCC 824(pHT5), and ATCC 824(pHTA) demonstrated that the reporter gene produced a functional β-galactosidase in C. acetobutylicum. In addition, time course studies revealed differences in the β-galactosidase specific activity profiles of strains ATCC 824(pHT4), ATCC 824(pHT5), and ATCC 824(pHTA), suggesting that the reporter system developed in this study is able to effectively distinguish between different promoters. The stability of the β-galactosidase produced by the reporter gene was also examined with strains ATCC 824(pHT4) and ATCC 824(pHT5) by using chloramphenicol treatment to inhibit protein synthesis. The data indicated that the β-galactosidase produced by the lacZ gene from T. thermosulfurogenes EM1 was stable in the exponential phase of growth. In pH-controlled fermentations of ATCC 824(pHT4), the kinetics of β-galactosidase formation from the ptb promoter and phosphotransbutyrylase formation from its own autologous promoter were found to be similar.  相似文献   

7.
In Clostridium acetobutylicum ATCC 824, acetoacetate decarboxylase (EC 4.1.1.4) is essential for solvent production, catalyzing the decarboxylation of acetoacetate to acetone. We report here the purification of the enzyme from C. acetobutylicum ATCC 824 and the cloning and expression of the gene encoding the acetoacetate decarboxylase enzyme in Escherichia coli. A bacteriophage lambda EMBL3 library of C. acetobutylicum DNA was screened by plaque hybridization, using oligodeoxynucleotide probes derived from the N-terminal amino acid sequence obtained from the purified protein. Phage DNA from positive plaques was analyzed by Southern hybridization. Restriction mapping and subsequent subcloning of DNA fragments hybridizing to the probes localized the gene within an approximately 2.1 kb EcoRI/Bg/II fragment. A polypeptide with a molecular weight of approximately 28,000 corresponding to that of the purified acetoacetate decarboxylase was observed in both Western blots (immunoblots) and maxicell analysis of whole-cell extracts of E. coli harboring the clostridial gene. Although the expression of the gene is tightly regulated in C. acetobutylicum, it was well expressed in E. coli, although from a promoter sequence of clostridial origin.  相似文献   

8.
Phosphotransbutyrylase (phosphate butyryltransferase [EC 2.3.1.19]) from Clostridium acetobutylicum ATCC 824 was purified approximately 200-fold to homogeneity with a yield of 13%. Steps used in the purification procedure were fractional precipitation with (NH4)2SO4, Phenyl Sepharose CL-4B chromatography, DEAE-Sephacel chromatography, high-pressure liquid chromatography with an anion-exchange column, and high-pressure liquid chromatography with a hydrophobic-interaction column. Gel filtration and denaturing gel electrophoresis data were consistent with a native enzyme having eight 31,000-molecular-weight subunits. Within the physiological range of pH 5.5 to 7, the enzyme was very sensitive to pH change in the butyryl phosphate-forming direction and showed virtually no activity below pH 6. This finding indicates that a change in internal pH may be one important factor in the regulation of the enzyme. The enzyme was less sensitive to pH change in the reverse direction. The enzyme could use a number of substrates in addition to butyryl coenzyme A (butyryl-CoA) but had the highest relative activity with butyryl-CoA, isovaleryl-CoA, and valeryl-CoA. The Km values at 30 degrees C and pH 8.0 for butyryl-CoA, phosphate, butyryl phosphate, and CoASH (reduced form of CoA) were 0.11, 14, 0.26, and 0.077 mM, respectively. Results of product inhibition studies were consistent with a random Bi Bi binding mechanism in which phosphate binds at more than one site.  相似文献   

9.
Two endoxylanases produced by C. acetobutylicum ATCC 824 were purified to homogeneity by column chromatography. Xylanase A, which has a molecular weight of 65,000, hydrolyzed larchwood xylan randomly, yielding xylohexaose, xylopentaose, xylotetraose, xylotriose, and xylobiose as end products. Xylanase B, which has a molecular weight of 29,000, also hydrolyzed xylan randomly, giving xylotriose and xylobiose as end products. Xylanase A hydrolyzed carboxymethyl cellulose with a higher specific activity than xylan. It also exhibited high activity on acid-swollen cellulose. Xylanase B showed practically no activity against either cellulose or carboxymethyl cellulose but was able to hydrolyze lichenan with a specific activity similar to that for xylan. Both xylanases had no aryl-β-xylosidase activity. The smallest oligosaccharides degraded by xylanases A and B were xylohexaose and xylotetraose, respectively. The two xylanases demonstrated similar Km and Vmax values but had different pH optima and isoelectric points. Ouchterlony immunodiffusion tests showed that xylanases A and B lacked antigenic similarity.  相似文献   

10.
11.
12.
The utilization of maltose by Clostridium acetobutylicum ATCC 824 was investigated. Glucose was used preferentially to maltose, when both substrates were present in the medium. Maltose phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) activity was detected in extracts prepared from cultures grown on maltose, but not glucose or sucrose, as the sole carbon source. Extract fractionation and PTS reconstitution experiments revealed that the specificity for maltose is contained entirely within the membrane in this organism. A putative gene system for the maltose PTS was identified (from the C. acetobutylicum ATCC 824 genome sequence), encoding an enzyme IIMal and a maltose 6-phosphate hydrolase. Journal of Industrial Microbiology & Biotechnology (2001) 27, 298–306. Received 12 September 2000/ Accepted in revised form 30 November 2000  相似文献   

13.
In Clostridium acetobutylicum ATCC 824, acetoacetate decarboxylase (EC 4.1.1.4) is essential for solvent production, catalyzing the decarboxylation of acetoacetate to acetone. We report here the purification of the enzyme from C. acetobutylicum ATCC 824 and the cloning and expression of the gene encoding the acetoacetate decarboxylase enzyme in Escherichia coli. A bacteriophage lambda EMBL3 library of C. acetobutylicum DNA was screened by plaque hybridization, using oligodeoxynucleotide probes derived from the N-terminal amino acid sequence obtained from the purified protein. Phage DNA from positive plaques was analyzed by Southern hybridization. Restriction mapping and subsequent subcloning of DNA fragments hybridizing to the probes localized the gene within an approximately 2.1 kb EcoRI/Bg/II fragment. A polypeptide with a molecular weight of approximately 28,000 corresponding to that of the purified acetoacetate decarboxylase was observed in both Western blots (immunoblots) and maxicell analysis of whole-cell extracts of E. coli harboring the clostridial gene. Although the expression of the gene is tightly regulated in C. acetobutylicum, it was well expressed in E. coli, although from a promoter sequence of clostridial origin.  相似文献   

14.
Cohesin and dockerin domains are critical assembling components of cellulosome, a large extracellular multienzyme complex which is used by anaerobic cellulolytic bacteria to efficiently degrade lignocellulose. According to sequence homology, cohesins can be divided into three major groups, whereas cohesins from Clostridium acetobutylicum are beyond these groups and emanate from a branching point between the type I and type III cohesins. Cohesins and dockerins from C. acetobutylicum show low sequence homology to those from other cellulolytic bacteria, and their interactions are specific in corresponding species. Therefore the interactions between cohesins and dockerins from C. acetobutylicum are meaningful to the studies of both cellulosome assembling mechanism and the construction of designer cellulosome. Here we report the NMR resonance assignments of one cohesin from cellulosome scaffoldin cipA and one dockerin from a cellulosomal glycoside hydrolase (family 9) of C. acetobutylicum for further structural determination and functional studies.  相似文献   

15.
Three sporulation-specific genes (orfA, sigE, sigG) from Clostridium acetobutylicum ATCC 824 are arranged in a cluster, encoding the putative σE-processing enzyme, σE, and σG respectively. When they were transformed into Clostridium acetobutylicum while on a plasmid functional in this organism, transformants did not survive. Three kinds of recombinations were then attempted with nonreplicative plasmids: duplication of orfA and sigE, replacement of all of the three genes, and inactivation of orfA. While the wild-type strain ceased to grow and produce solvents in batch cultures after approximately 24 h, mutant strains were isolated that showed sustained growth for a much longer time and produced a threefold increase in acetone and butanol in test tube cultures. In addition, one of the derived strains showed a significantly higher growth rate. Features of the restriction maps of the recombinants did not correlate with expected maps, indicating possible complications occurring during the recombination events.  相似文献   

16.
Clostridium acetobutylicum naturally produces acetone as well as butanol and ethanol. Since acetone cannot be used as a biofuel, its production needs to be minimized or suppressed by cell or bioreactor engineering. Thus, there have been attempts to disrupt or inactivate the acetone formation pathway. Here we present another approach, namely, converting acetone to isopropanol by metabolic engineering. Since isopropanol can be used as a fuel additive, the mixture of isopropanol, butanol, and ethanol (IBE) produced by engineered C. acetobutylicum can be directly used as a biofuel. IBE production is achieved by the expression of a primary/secondary alcohol dehydrogenase gene from Clostridium beijerinckii NRRL B-593 (i.e., adh(B-593)) in C. acetobutylicum ATCC 824. To increase the total alcohol titer, a synthetic acetone operon (act operon; adc-ctfA-ctfB) was constructed and expressed to increase the flux toward isopropanol formation. When this engineering strategy was applied to the PJC4BK strain lacking in the buk gene (encoding butyrate kinase), a significantly higher titer and yield of IBE could be achieved. The resulting PJC4BK(pIPA3-Cm2) strain produced 20.4 g/liter of total alcohol. Fermentation could be prolonged by in situ removal of solvents by gas stripping, and 35.6 g/liter of the IBE mixture could be produced in 45 h.  相似文献   

17.
Abstract Plasmid-containing strains of Clostridium acetobutylicum produced higher levels of solvents and lower levels of acids than wild-type cells in controlled pH 4.5 batch fermentations. This effect was observed regardless of whether or not the plasmids contained C. acetobutylicum genes. The effect was less prevalent in higher pH fermentations and apparently independent of the actual DNA sequences contained on these plasmids. The plasmid-containing strains were found to have lower growth-rates and higher solventogenic enzyme activities than wild-type cells. However, similar activity levels were found for both butyrate-pathway enzymes.  相似文献   

18.
Phosphotransbutyrylase (phosphate butyryltransferase [EC 2.3.1.19]) from Clostridium acetobutylicum ATCC 824 was purified approximately 200-fold to homogeneity with a yield of 13%. Steps used in the purification procedure were fractional precipitation with (NH4)2SO4, Phenyl Sepharose CL-4B chromatography, DEAE-Sephacel chromatography, high-pressure liquid chromatography with an anion-exchange column, and high-pressure liquid chromatography with a hydrophobic-interaction column. Gel filtration and denaturing gel electrophoresis data were consistent with a native enzyme having eight 31,000-molecular-weight subunits. Within the physiological range of pH 5.5 to 7, the enzyme was very sensitive to pH change in the butyryl phosphate-forming direction and showed virtually no activity below pH 6. This finding indicates that a change in internal pH may be one important factor in the regulation of the enzyme. The enzyme was less sensitive to pH change in the reverse direction. The enzyme could use a number of substrates in addition to butyryl coenzyme A (butyryl-CoA) but had the highest relative activity with butyryl-CoA, isovaleryl-CoA, and valeryl-CoA. The Km values at 30 degrees C and pH 8.0 for butyryl-CoA, phosphate, butyryl phosphate, and CoASH (reduced form of CoA) were 0.11, 14, 0.26, and 0.077 mM, respectively. Results of product inhibition studies were consistent with a random Bi Bi binding mechanism in which phosphate binds at more than one site.  相似文献   

19.
20.
非离子表面活性剂对生物丁醇发酵的影响   总被引:1,自引:0,他引:1  
传统的丙酮-丁醇发酵的产物浓度过低(丁醇终浓度约为1.3 wt%),导致后期分离成本过高,从而影响了该过程的经济性,限制了其工业化进程。本文研究了高添加量的小分子非离子表面活性剂对生物丁醇发酵的影响。以吐温80为例,实验表明,当表面活性剂添加量超过其临界胶束浓度后,丁醇发酵的终浓度会随着表面活性剂添加量的增加而增加。当添加量达到5 wt%时,丁醇终浓度可以达到1.6 wt%,远高于该菌种的抑制浓度(0.8 wt%)。为阐明表面活性剂的作用机理,实验考察了吐温80对丁醇的增溶效应以及对发酵菌体表面亲疏水性的影响。结果表明,吐温80对丁醇的增溶效果很小,而对菌体表面的亲疏水性有较明显的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号