首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Ribosomal proteins L4, L5, L20 and L25 have been localized on the surface of the 50S ribosomal subunit of Escherichia coli by immuno-electron microscopy. The two 5S RNA binding proteins L5 and L25 were both located at the central protuberance extending towards its base, at the interface side of the 50S particle. L5 was localized on the side of the central protuberance that faces the L1 protuberance, whereas L25 was localized on the side that faces the L7/L12 stalk. Proteins L4 and L20 were both located at the back of the 50S subunit; L4 was located in the vicinity of proteins L23 and L29, and protein L20 was localized between proteins L17 and L10 and is thus located below the origin of the L7/L12 stalk.  相似文献   

2.
Summary Chloroplast ribosomal protein L-18 is made in the cytoplasm as a precursor, imported into the chloroplast, and processed to the mature form in two steps. We report here that the intermediate produced following the first processing step associates specifically with a ribosomal complex migrating with the chloroplast ribosome large subunit peak in sucrose gradients, and is then processed into mature L-18. This processing event is slowed down in mutant cells deficient in synthesis of non-ribosomal proteins in the chloroplast. Thus the second processing step of L-18 occurs during ribosome assembly, depends on one or more nonribosomal proteins made in the chloroplast, and may be required for the maturation of the 50 S ribosome subunit. The mature L-18 protein shows extensive sequence homology at its amino-terminus to Escherichia coli ribosomal protein L27, which is located at the interface, between 30 S and 50 S subunits and is involved in the formation of the peptidyl-tRNA binding site.  相似文献   

3.
We have isolated a nuclear mutant (tsp-1) of Chlamydomonas reinhardtii which is resistant to thiostrepton, an antibiotic that blocks bacterial protein synthesis. The tsp-1 mutant grows slowly in the presence or absence of thiostrepton, and its chloroplast ribosomes, although resistant to the drug, are less active than chloroplast ribosomes from the wild type. Chloroplast ribosomal protein L-23 was not detected on stained gels or immunoblots of total large subunit proteins from tsp-1 probed with antibody to the wild-type L-23 protein from C. reinhardtii. Immunoprecipitation of proteins from pulse-labeled cells showed that tsp-1 synthesizes small amounts of L-23 and that the mutant protein is stable during a 90 min chase. Therefore the tsp-1 phenotype is best explained by assuming that the mutant protein synthesized is unable to assemble into the large subunit of the chloroplast ribosome and hence is degraded over time. L-23 antibodies cross-react with Escherichia coli r-protein L11, which is known to be a component of the GTPase center of the 50S ribosomal subunit. Thiostrepton-resistant mutants of Bacillus megaterium and B. subtilis lack L11, show reduced ribosome activity, and have slow growth rates. Similarities between the thiostreptonresistant mutants of bacteria and C. reinhardtii and the immunological relatedness of Chlamydomonas L-23 to E. coli L11 suggest that L-23 is functionally homologous to the bacterial r-protein L11.  相似文献   

4.
Summary A DNA fragment that codes for the 364 amino-terminal amino acid residues of a putative Bacillus subtilis SecA homologue has been cloned using the Escherichia coli SecA gene as a probe. The deduced amino acid sequence showed 58% identity to the aminoterminus of the E. coli SecA protein. A DNA fragment which codes for 275 amino-terminal amino acid residues of the B. subtilis SecA homologue was expressed in E. coli and the corresponding gene product was shown to be recognized by anti-E. coli SecA antibodies. This polypeptide, although only about 30% the size of the E. coli SecA protein, also restored growth of E. coli MM52 (secA ts) at the non-permissive temperature and the translocation defect of proOmpA in this mutant was relieved to a substantial extent.  相似文献   

5.
Ribosomal protein L27 is a component of the eubacterial large ribosomal subunit that has been shown to play a critical role in substrate stabilization during protein synthesis. This function is mediated by the L27 N‐terminus, which protrudes into the peptidyl transferase center. In this report, we demonstrate that L27 in Staphylococcus aureus and other Firmicutes is encoded with an N‐terminal extension that is not present in most Gram‐negative organisms and is absent from mature ribosomes. We have identified a cysteine protease, conserved among bacteria containing the L27 N‐terminal extension, which performs post‐translational cleavage of L27. Ribosomal biology in eubacteria has largely been studied in the Gram‐negative bacterium Escherichia coli; our findings indicate that there are aspects of the basic biology of the ribosome in S. aureus and other related bacteria that differ substantially from that of the E. coli ribosome. This research lays the foundation for the development of new therapeutic approaches that target this novel pathway.  相似文献   

6.
Proteins occurring at, or near, the subunit interface of E. coli ribosomes   总被引:9,自引:0,他引:9  
Summary The identification of ribosomal proteins that occur at, or near, the subunit interface of the 30S and 50S subunits in the E. coli 70S ribosome was attempted by studying the effect of antibodies on the Mg++ dependent dissociation-association equilibrium of 70S ribosomes. Dissociated ribosomes were mixed with monovalent fragments of IgG antibodies (Fab's) specific for each ribosomal protein and then reassociated into intact 70S particles. Various degrees of inhibition of this reassociation were observed for proteins S9, S11, S12, S14, S20, L1, L6, L14, L15, L19, L20, L23, L26 and L27. A small amount of aggregation of 50S subunits was caused by IgG's specific for the proteins S9, S11, S12, S14 and S20 and purified 50S subunits. It was inferred that the presence of small amounts of these proteins on 50S subunits was compatible with their presence at the subunit interface. Finally, the capacity of proteins S11 and S12 to bind to 23S RNA was demonstrated.Paper No. 84 on Ribosomal Proteins. Preceding paper is by Rahmsdorf et al., Molec. gen. Genet. 127, 259–271 (1973).  相似文献   

7.
Protein BL2 from Bacillus stearothermophilus has been localized by immunoelectron microscopy on the interface side of the 50 S subunit, beneath the angle formed between the central protuberance and the L1 protuberance. The immuno-electron microscopic data suggest that the interface region of the 50 S particle is not as flat as most of the proposed three-dimensional models suggest, but instead there is a significant concavity. Since several studies demonstrated that BL2 is implicated in peptidyl transferase activity or at least located close to the peptidyl transferase center, the location of protein BL2 also provides information as to the location of this important functional domain.  相似文献   

8.
9.
Summary A major obstacle to out understanding of the mechanisms governing the inheritance, recombination and segregation of chloroplast genes in Chlamydomonas is that the majority of antibiotic resistance mutations that have been used to gain insights into such mechanisms have not been physically localized on the chloroplast genome. We report here the physical mapping of two chloroplast antibiotic resistance mutations: one conferring cross-resistance to erythromycin and spiramycin in Chlamydomonas moewusii (er-nM1) and the other conferring resistance to streptomycin in the interfertile species C. eugametos (sr-2). The er-nM1 mutation results from a C to G transversion at a well-known site of macrolide resistance within the peptidyl transferase loop region of the large subunit rRNA gene. This locus, designated rib-2 in yeast mitochondrial DNA, corresponds to residue C-2611 in the 23 S rRNA of Escherichia coli. The sr-2 locus maps within the small subunit (SSU) rRNA gene at a site that has not been described previously. The mutation results from an A to C transversion at a position equivalent to residue A-523 in the E. coli 16 S rRNA. Although this region of the E. coli SSU rRNA has no binding affinity for streptomycin, it binds to ribosomal protein S4, a protein that has long been associated with the response of bacterial cells to this antibiotic. We propose that the sr-2 mutation indirectly affects the nearest streptomycin binding site through an altered interaction between a ribosomal protein and the SSU rRNA.  相似文献   

10.
Three different two-dimensional polyacrylamide gel electrophoretic systems were employed for identification of individual ribosomal proteins of Streptomyces aureofaciens. Proteins of small subunits were resolved into 21 spots. Larger ribosomal subunits contained 35 proteins. The separated ribosomal proteins from 50 S subunits were transferred on nitrocellulose membranes for immunochemical estimations. Antibodies developed against 50 S proteins of S. aureofaciens and Escherichia coli were used for identification of structural homologies between 50 S proteins of the two species. Results of the experiments indicate that about one half of the 50 S proteins of S. aureofaciens share common immunochemical determinants with corresponding proteins of 50 S subunits of E. coli. Evidence is presented that acidic ribosomal protein SL5 of large ribosomal subunits of S. aureofaciens can be assembled to E. coli P0 cores lacking proteins L7/L12. Reconstitution of the P0 cores with proteins SL5 or L7/L12 led to restoration of 78% activity in polyphenylalanine synthesis.  相似文献   

11.
Data from polyphenylalanine [poly(Phe)] synthesis determination in the presence and in the absence of erythromycin have been used in conjunction with Molecular Dynamics Simulation analysis, in order to localize the functional sites affected by mutations of Thermus thermophilus ribosomal protein L4 incorporated in Escherichia coli ribosomes. We observed that alterations in ribosome capability to synthesize poly(Phe) in the absence of erythromycin were mainly correlated to shifts of A2062 and C2612 of 23S rRNA, while in the presence of erythromycin they were correlated to shifts of A2060 and U2584 of 23S rRNA. Our results suggest a means of understanding the role of the extended loop of L4 ribosomal protein in ribosomal peptidyltransferase center.  相似文献   

12.
The antigenic structure ofEscherichia coli ribosomal protein S3 has been investigated by use of monoclonal antibodies. Six S3-specific monoclonal antibodies secreted by mouse hybridomas have been identified by immunoblotting of two-dimensional ribosomal protein separation gels. By using a competitive enzyme-linked immunosorbent assay, we have divided these monoclonal antibodies into three mutual inhibition groups, members of which are directed to three distinct regions of the S3 molecule. The independence of these monoclonal antibody-defined regions was confirmed by the failure of pairs of monoclonal antibodies from two inhibition groups to block the binding of biotinylated monoclonal antibodies of the third group. To determine the regions recognized by these monoclonal antibodies, chemically cleaved S3 peptides were fractionated by gel filtration and reverse-phase high-performance liquid chromatography. The fractionated peptides were coated on plates and examined for specific interaction with monoclonal antibody by enzyme immunoassay. In this manner, two epitopes have been mapped at the ends of the S3 molecule: one, in the last 22 residues, is recognized by three monoclonal antibodies; and the second, in the first 21 residues, is defined by two monoclonal antibodies. The third S3 epitope, recognized by a single monoclonal antibody, has been localized in a central segment of about 90 residues by gel electrophoresis and immunoblotting. These epitope-mapped monoclonal antibodies are valuable probes for studying S3 structurein situ.  相似文献   

13.
Summary The secondary structure of the autoregulatory mRNA binding site of Escherichia coli ribosomal protein L1 has been studies using enzymatic methods. The control region of the E. coli L11 operon was cloned into a vector under control of the Salmonella phage SP6 promoter, and RNA transcribed using SP6 RNA polymerase. The secondary structure of this RNA was probed using structure-specific nucleases, and by comparison of the data with computer predictions of RNA folding, secondary structural features were deduced. The proposed model is consistent with elements of some previously proposed models, but differs in other features. Finally, secondary structure information was obtained from two mutant mRNAs and the structural features correlated with observed phenotypes of the mutants.Abbreviations MB mung bean nuclease - V1 cobra venom nuclease - sss single-strand-specific - dss double-strand-specific  相似文献   

14.
1. 70 S ribosomes isolated from strains of Escherichia coli 113-3, K12 and B take part in vitamin B-12 biosynthesis from AdoCbi-GDP, NAD and dimethylbenzimidazole in the presence of enzymes of the cytosol fraction. 2. 70 S ribosomes from E. coli 113-3 bind Ado[58Co]Cbi-GDP. This reaction is independent of fusidic acid. 3. Proteins from 5 S RNA complex as well as L2 protein isolated from E. coli 113-3 ribosomes catalyze vitamin B-12 biosynthesis. The main catalytic function in this reaction is performed by protein L18.4. Vitamin B-12 biosynthesis proceeding in the presence of isolated ribosomal proteins is inhibited by fusidic acid, chloramphenicol and vernamycin but not by erythromycin. 5. Vitamin B-12 synthesized in the presence of isolated ribosomal proteins is biologically active.  相似文献   

15.
An ethionine-containing submethylated particle related to the 50 S ribosomal subunit has been isolated from Escherichia coli grown in the presence of ethionine. This particle (E-50S) lacks L16, contains reduced amounts of L6, L27, L28 and L30 and possesses a more labile and flexible structure than the normal 50 S subunit. The E-50S particle has defective association properties and is incapable of peptide bond formation. It can be converted to an active 50 S ribosomal subunit when ethionine-treated bacteria are incubated under conditions which permit methylation of submethylated cellular components (presence of methionine) in the absence of de novo protein and RNA synthesis (presence of rifampicin).Total reconstitution of 50 S ribosomal subunits in vitro using normal 23 S and 5 S ribosomal RNA and proteins prepared from E-50S particles yields active subunits only if L16 is also added. The hypothesis that E-50S particles accumulate in ethionine-treated bacteria because the absence of methylation of one or more of their components blocks a late stage (L16 integration) in the normal 50 S assembly process is discussed.  相似文献   

16.
YsxC is a small GTPase of Bacillus subtilis with essential but still unknown function, although recent works have suggested that it might be involved in ribosome biogenesis. Here, purified YsxC overexpressed in Escherichia coli was found to be partly associated with high-molecular-weight material, most likely rRNA, and thus eluted from gel filtration as a large complex. In addition, purification of ribosomes from an E. coli strain overexpressing YsxC allowed the copurification of the YsxC protein. Purified YsxC was shown to bind preferentially to the 50S subunit of B. subtilis ribosomes; this interaction was modulated by nucleotides and was stronger in the presence of a nonhydrolyzable GTP analogue than with GTP. Far-Western blotting analysis performed with His6-YsxC and ribosomal proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that YsxC interacted with at least four ribosomal proteins from the 50S subunit. Two of these putative protein partners were identified by mass spectrometry as L1 and L3, while the third reactive band in the one-dimensional gel contained L6 and L10. The fourth band that reacted with YsxC contained a mixture of three proteins, L7/L12, L23, and L27, suggesting that at least one of them binds to YsxC. Coimmobilization assays confirmed that L1, L6, and L7/L12 interact with YsxC. Together, these results suggest that YsxC plays a role in ribosome assembly.  相似文献   

17.
Summary A gene for allosteric lactate dehydrogenase (LDH) of Lactobacillus casei ATCC393 was transferred into Bacillus subtilis. The LDH was produced in a growth-associated type, and comprised up to 40 % of the total cellular protein. The maximum specific activity in the transformant was 208 U/mg protein which was approximately 16 times higher than in L. casei or in the previously constructed Escherichia coli transformant.  相似文献   

18.
The outer membrane protein, PagC, of Salmonella typhimurium was converted into a secreted protein by linking the 61-amino-acid long, C-terminal signal sequence of the E. coli hemolysin protein (HlyAS) to the mature PagC peptide. This PagC-HlyAS fusion protein was expressed and efficiently secreted into the culture supernatant by E. coli upon complementation with the hemolysin secretion proteins HlyB and HlyD. Polyclonal antibodies raised against this fusion protein not only recognized PagC in the membrane fraction of all salmonellae by Western blotting, but also reacted with proteins of smaller size in other gram-negative bacteria tested. A monoclonal antibody against the PagC-HlyAS fusion protein recognized only PagC in membrane fractions. The antibody-binding domain was determined using synthetic peptides derived from specific PagC domains. Sera from Salmonella-infected human patients and from a rabbit infected with S. typhimurium did not react with PagC in immunoblots, suggesting that PagC may not be recognized as a major antigen by the humoral immune system. Received: 16 August 1995/Received revision: 6 November 1995/Accepted: 10 November 1995  相似文献   

19.
Summary Four complete and three partial sequences ofE. coli L7/L12-type ribosomal A proteins obtained from four eukaryotes (Saccharomyces cerevisiae, Artemia salina, rat liver, and wheat germ), two metabacteria (Halobacterium cutirubrum andMethanobacterium thermoautotrophicum), and the prokaryoteEscherichia coli have been compared using a computer program that searches for homologous tertiary structures. Comparison matrices show that eukaryotic sequences sequentially match each other if deletions and/or insertions of certain residues (gaps) are assumed at specific sites corresponding to residues 36, 51, 72, and 94 ofS. cerevisiae protein YL44c. This is similar to what was previously found in prokaryotes. Metabacteria, which exhibit eukaryote-type sequences, must have separated from the eukaryotes in ancient times, because an additional deletion site is found in their sequences and their sequences have low correlation coefficients with those of all the other eukaryotes. When the eukaryote-type A proteins (110–111 residues) are compared withE. coli L7/L12 (120 residues) four groups of well-matching segments are found. It was deduced that the eukaryote-type A proteins had regenerated from the prokaryote types by a transposition and several deletions, resulting in the eukaryote-type lengths. The correspondence between the eukaryotic and prokaryotic proteins, as well as that among eukaryotic proteins themselves, is discussed in terms of protein evolution.In addition, ribosomal protein YL35 fromS. cerevisiae has been compared with RL37 from rat liver, with results indicating five well-matching parts separated by four gaps, one of which consists of 20 residues. These results contrasts with those previously reported by Lin et al. No prokaryotic counterparts to these ribosomal proteins have yet been identified.  相似文献   

20.
To investigate the structure ofEscherichia coli ribosomal protein S13 in 30S ribosomal subunits, we have previously generated 22 S13 specific monoclonal antibodies and mapped their specific epitopes to the S13 sequence. The availability of these S13 epitopesin situ has been further examined by incubating these monoclonal antibodies with 30S ribosomal subunits and analyzing formation of monoclonal antibody-linked ribosome dimers by sucrose gradients centrifugation. We have found that none of the 22 monoclonal antibodies makes ribosome dimers individually as do typical antisera. However, one monoclonal antibody, designated AS13-MAb 2, reacts with 30S ribosomal subunits to form immunocomplexes sedimenting faster than subunit monomers. When AS13-MAb 2 is paired with any one of three monoclonal antibodies directed to the S13 C-terminal epitopes, dimer formation is observed. Other pairs of monoclonal antibodies directed to distinct S13 epitopes have been tested similarly for dimer formation. Monoclonal antibody AS13-MAb 22, directed to the N-terminal region of 22 residues, also causes subunits to form typical dimers, but only if paired with one of the three monoclonal antibodies directed to the S13 C-terminal region. The close proximity of the epitopes recognized by AS13-MAbs 2 and 22 has been established by the mutual competition between the antibodies binding to intact 30S subunits. These results corroborate our previous observation, using polyclonal antibodies, that S13 has more than one epitope exposed on 30S subunits. Our finding that sequences on both ends of the S13 molecule are immunochemically accessible provides information about the molecular organization of S13in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号