首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scavenging of reactive oxygen species by chlorophyllin: An ESR study   总被引:5,自引:0,他引:5  
The antioxidant effects of chlorophyllin (CHL), a water-soluble analog of the green plant pigment chlorophyll, on different reactive oxygen species (ROS) were investigated by electron spin resonance (ESR) spectroscopy. As a standard, we have used the ability of CHL to scavenge the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. CHL inhibits the formation of 5,5-dimethyl-1-pyrroline-N-oxide adduct with hydroxyl radical (DMPO-OH adduct) generated by γ-radiation in a dose-dependent manner. At a concentration of 1 mM, CHL caused more than 90% inhibition of ESR signal intensity of this adduct. However, the results obtained with the Fenton reaction were different. We also found evidence for the inhibition of 1O2-dependent formation of the 2,2,6,6-tetramethyl-piperidine oxide (TEMPO) radical during photosensitization of methylene blue with visible light. CHL was also able to inhibit hydrogen peroxide induced oxidation of phenol red. The rate constant of the reaction of CHL with H2O2 was found to be 2.7×106 M-1s-1. In conclusion, CHL has potent antioxidant ability involving scavenging of various physiologically important ROS.  相似文献   

2.
The antioxidant effects of chlorophyllin (CHL), a water-soluble analog of the green plant pigment chlorophyll, on different reactive oxygen species (ROS) were investigated by electron spin resonance (ESR) spectroscopy. As a standard, we have used the ability of CHL to scavenge the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. CHL inhibits the formation of 5,5-dimethyl-1-pyrroline-N-oxide adduct with hydroxyl radical (DMPO-OH adduct) generated by γ-radiation in a dose-dependent manner. At a concentration of 1 mM, CHL caused more than 90% inhibition of ESR signal intensity of this adduct. However, the results obtained with the Fenton reaction were different. We also found evidence for the inhibition of 1O2-dependent formation of the 2,2,6,6-tetramethyl-piperidine oxide (TEMPO) radical during photosensitization of methylene blue with visible light. CHL was also able to inhibit hydrogen peroxide induced oxidation of phenol red. The rate constant of the reaction of CHL with H2O2 was found to be 2.7×106 M-1s-1. In conclusion, CHL has potent antioxidant ability involving scavenging of various physiologically important ROS.  相似文献   

3.
A new method using ESR spin trapping was proposed for measuring the scavenging activity of antioxidants for the hydroxyl (OH) radical. (-)-Epigallocatechin gallate (EGCg) and 5,5-dimethyl-1-pyrrolline N-oxide (DMPO) were used as the antioxidant and spin trapping agent, respectively. The conventional method using a Fenton reaction had problems associated with the estimation of activity, because the antioxidant disturbs the system for generating OH radical by coordinating on Fe2+ and by consuming H2O2, besides scavenging the spin adduct (DMPO-OH). Intense γ-irradiation was therefore used to generate OH radicals, and the intensity decrease in DMPO-OH after irradiation was followed to obtain the rate constant for the scavenging of DMPO-OH by EGCg. The intensities were extrapolated to zero time to estimate the quantity of DMPO-OH formed during γ-irradiation. By using these values, the reaction rate constant between OH radical and EGCg was calculated as a ratio to that of DMPO. It was shown that this method is useful for comparing the OH radical-scavenging activity of various antioxidants.  相似文献   

4.
The hydroxyl radical scavenging and antipsoriatic activity of a number of lipophilic and hydrophilic benzoic acid derivatives was investigated. To quantify antioxidative effects, a newly introduced test system based on the diminution of the ESR signal of DMPO-OH (generated by Fenton's reagent) by the tested compounds was applied. It was found that the in vitro antioxidative (toward hydroxyl radical) activity of benzoic acid esters decreases with increasing chain length whereas the antipsoriatic activity increases. This effect is discussed in terms of a larger lipophilicity of long-chain esters. Propyl gallate was found to be the most active OH scavenger since it is some orders of magnitude more efficient than "model" antioxidants like alpha-tocopherol or mannitol. The highest antipsoriatic activity was exhibited by hydroxy benzoic acid decyl ester.  相似文献   

5.
Time-resolved in situ radiolysis ESR (electron spin resonance, equivalently EPR, electron paramagnetic resonance) studies have shown that the scavenging of radiolytically produced hydroxyl radical in nitrous oxide-saturated aqueous solutions containing 2 mM DMPO is essentially quantitative (94% of the theoretical yield) at 100 micros after the electron pulse [1]. This result appeared to conflict with earlier results using continuous cobalt-60 gamma radiolysis and hydrogen peroxide photolysis, where factors of 35 and 33% were obtained, respectively [2,3]. To investigate this discrepancy, nitrogen-saturated aqueous solutions containing 15 mM DMPO were cobalt-60 gamma irradiated (dose rate = 223 Gy/min) for periods of 0.25-6 min, and ESR absorption spectra were observed approximately 30 s after irradiation. A rapid, pseudo-first-order termination reaction of the protonated DMPO-hydrated electron adduct (DMPO-H) with DMPO-OH was observed for the first time. The rate constant for the reaction of DMPO-H with DMPO-OH is 2.44 x 10(2) (+/- 2.2 x 10(1)) M(-1) s(-1). In low-dose radiolysis experiments, this reaction lowers the observed yield of DMPO-OH to 44% of the radiation-chemical OH radical yield (G = 2.8), in good agreement with the earlier results [2,3]. In the absence of the DMPO-H radical, the DMPO-OH exhibits second-order radical termination kinetics, 2k(T) = 22 (+/- 2) M(-1) s(-1) at initial DMPO-OH concentrations > or = 13 microM, with first-order termination kinetics observed at lower concentrations, in agreement with earlier literature reports [4].  相似文献   

6.
Antioxidant and radical scavenging properties of curcumin   总被引:3,自引:0,他引:3  
Curcumin (diferuoyl methane) is a phenolic compound and a major component of Curcuma longa L. In the present paper, we determined the antioxidant activity of curcumin by employing various in vitro antioxidant assays such as 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH*) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, N,N-dimethyl-p-phenylenediamine dihydrochloride (DMPD) radical scavenging activity, total antioxidant activity determination by ferric thiocyanate, total reducing ability determination by the Fe(3+)-Fe(2+) transformation method, superoxide anion radical scavenging by the riboflavin/methionine/illuminate system, hydrogen peroxide scavenging and ferrous ions (Fe(2+)) chelating activities. Curcumin inhibited 97.3% lipid peroxidation of linoleic acid emulsion at 15 microg/mL concentration (20 mM). On the other hand, butylated hydroxyanisole (BHA, 123 mM), butylated hydroxytoluene (BHT, 102 mM), alpha-tocopherol (51 mM) and trolox (90 mM) as standard antioxidants indicated inhibition of 95.4, 99.7, 84.6 and 95.6% on peroxidation of linoleic acid emulsion at 45 microg/mL concentration, respectively. In addition, curcumin had an effective DPPH* scavenging, ABTS*(+) scavenging, DMPD*(+) scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe(3+)) reducing power and ferrous ions (Fe(2+)) chelating activities. Also, BHA, BHT, alpha-tocopherol and trolox, were used as the reference antioxidant and radical scavenger compounds. According to the present study, curcumin can be used in the pharmacological and food industry because of these properties.  相似文献   

7.
In order to search for radical scavengers which could be used as raw materials for cosmetics, phenyl propanoids (eugenol, isoeugenol, dehydrodieugenol, dehydrodieugenol B and coniferyl aldehyde) were examined for their hydroxyl radical (· OH) scavenging ability. A Fenton system was used to produce -OH. In order to see scavenging by these phenyl propanoids, competition reactions between a spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), and these phenyl propanoids for -OH were studied. The relative yield of the spin adduct of -OH (DMPO-OH) was measured by electron spin resonance spectroscopy. The approximate rate constants of the reactions between these phenyl propanoids and -OH estimated by measuring the reduced height of the ESR signals of DMPO-OH were found to be at least in the order of 109 M-1 s-1 (diffusion-controlled). Also, using the TBA tests, the reactions between ·OH and several compounds reactive with ·OH were investigated in the presence of the phenyl propanoids and it was found that the phenyl propanoids compete with such reactive compounds for ·OH. These results indicate that these phenyl propanoids can be used as antioxidants for skin damage perhaps caused by -OH generated by UV-light.  相似文献   

8.
Seahorse, Hippocampus kuda (SH) a marine teleost fish, is well known not only for its special medicinal composition and used as one of the most famous and expensive materials of traditional Chinese medicine. It was extracted with water (SHW), methanol (SHM), and ethanol (SHE), respectively and evaluated by various antioxidant assays. The including reducing power, total antioxidant, DPPH radical scavenging, hydroxyl radical scavenging, superoxide anion radical scavenging, alkyl radical scavenging, and protective effect on DNA damage caused by hydroxyl radicals generated. Further, the ROS level was detected using a fluorescence probe, 2′,7′-dichlorofluorescin diacetate (DCFH-DA), which could be converted to highly fluorescent dichlorofluorescein (DCF) with the presence of intracellular ROS on mouse macrophages, RAW264.7 cell and inhibited myeloperoxidase (MPO) activity in human myeloid, HL60 cells, respectively. Those various antioxidant activities were compared to standard antioxidants such as α-tocopherol. Among SHM exhibited the highest antioxidant activity in linoleic acid system, effective reducing power, DPPH radical scavenging, hydroxyl radical scavenging, superoxide radical scavenging, alkyl radical scavenging, inhibitory intracellular ROS, and inhibited MPO activity. Furthermore, MTT assay showed no cytotoxicity on mouse macrophages cell (RAW264.7) and human cell lines (MRC-5, HL60, U937). This antioxidant property depends on concentration and increasing with increased amount of extracts. The results obtained in the present study indicated that the see horse (Hippocampus kuda Bleeker) is a potential source of natural antioxidant.  相似文献   

9.
Reactive oxygen species (ROS) have been implicated in the pathogenesis of temporomandibular disorders. In the present study, we provide the first evidence of ROS generation in the synovial fluid from human temporomandibular disorder patients, as shown by electron spin resonance (ESR) and spin trapping. Three distinct ESR spectra of DMPO spin adducts were observed in the synovial fluid. They corresponded to three free radical species: hydroxyl radical (HO(*)), hydrogen radical (H(*)), and carbon-center radical (R(*)). Among them, the 5,5-dimethyl-1-pyrroline-N-oxide (DMPO)-OH spectrum was the most prominent, suggesting that HO(*) was dominantly generated in the synovial fluid from temporomandibular disorder patients. Desferrioxamine (DFO), an iron chelator, strongly depressed the DMPO-OH signal intensity in the synovial fluid from patients with temporomandibular disorders. We successfully demonstrated ROS-induced oxidative stress in the synovial fluid from temporomandibular disorder patients. ROS generation in the temporomandibular joint could lead to exacerbation of inflammation and activation of cartilage matrix degrading enzymes that proceed to degenerative change of the temporomandibular joint. Thus, iron-dependent generation of HO( *) might have a crucial role in the pathogenesis of temporomandibular disorders.  相似文献   

10.
Leontice smirnowii is a member of the Berberidaceae family. In the current study we investigated the possible antiradical and antioxidant activity of the monodesmosides (MLS) and crude extract (CELS) of Leontice smirnowii using different antioxidant tests: 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging, scavenging of superoxide anion radical-generated non-enzymatic system, ferric thiocyanate (FTC) method, reducing power, hydrogen peroxide scavenging and metal chelating activities. Experiment revealed that MLS and CELS have an antioxidant effect concentration-dependently. Total antioxidant activity was performed according to FTC method. At the 30mug/ml concentration, the inhibition effects of MLS and CELS on peroxidation of linoleic acid emulsion were found to be 95.3% and 95.6%, respectively. On the other hand, percentage inhibition of butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), alpha-tocopherol and trolox were found to be 98.2%, 98.5%, 84.0% and 87.9% inhibition of peroxidation of linoleic acid emulsion, respectively, at the same concentration. In addition, MLS and CELS had effective DPPH radical scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, reducing power and metal chelating activities. Also, these various antioxidant activities were compared with BHA, BHT, alpha-tocopherol and trolox which were accepted as references antioxidants.  相似文献   

11.
Redox properties of metallothioneins (MTs) and Cu in the cytosol from Long-Evans Cinnamon (LEC) rat livers 13 weeks after birth were investigated. MTs from LEC rat livers contain 8 g atoms of Cu and 1 g atom of Zn per mole of protein (Cu(I)8-MTs). Titration of Cu(I)8-MTs with CuCl2 indicates that Cu(I)8-MTs were able to reduce further 2-g atoms of cupric ions per mole MTs as bound form. Hg2+-induced hydroxyl radical generation from Cu(I)8-MTs was demonstrated by ESR using the spin trap, 5,5-dimethyl-1-pyrroline N-oxide (DMPO). The intensity of DMPO-OH signal from Cu-loaded MTs was increased with the increasing number of Cu in MTs. The used cytosol fraction contained 1.37 mM total Cu and 5 mM DTNB titrable-SH groups has a potential to reduce 2 mM CuCl2. No ESR signal due to Cu2+ was also detected with LEC rat liver cytosol, whereas strong Cu2+ signal appeared by the addition of HgCl2. The rate constants for the reaction of Cu(I)8-MTs with superoxide and hydroxyl radicals were estimated to be 2 x 10(6) and > or = 10(12) M(-1)s(-1), respectively, from competition kinetics. Cu2+-catalyzed oxidation of DNA was strongly inhibited both in the presence of Cu-unsaturated MTs and GSH. The results suggest that Cu(I)8-MTs from LEC rat livers just before hepatitis still act as antioxidants.  相似文献   

12.
Probiotic bacteria synthesize extracellular polysaccharides (EPSs) with commercially significant physiological and therapeutic activities. This important class of biomolecules is also characterized by their ability to remove reactive oxygen species (ROS) that are formed in the intestine by various metabolic reactions; hence, they exhibit antioxidant activities. Our probiotic bacterium, Bacillus coagulans RK-02, produces an EPS during the exponential and stationary growth phases when grown in a glucose mineral salts medium. The time course of EPS synthesis was studied with respect to biomass growth. The antioxidant and free radical scavenging potential of isolated EPS were studied by various methods, including the beta-carotene-linoleic acid model system, a superoxide radical scavenging assay using the PMS-NADH-nitroblue tetrazolium system, the 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, a hydroxyl radical scavenging assay using the ascorbic acid-Cu(2+)-cytochrome c system and an in vitro microsome peroxidation inhibition study using a thiobarbituric acid assay. The antioxidant activities were compared to known antioxidants vitamin C and E, which were used as reference standards. The results showed that the EPS, which is a heteropolymer composed of four monosaccharides, produced by B. coagulans RK-02 had significant antioxidant and free radical scavenging activities.  相似文献   

13.
The reaction of hypochlorous acid with the spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was found to yield 5,5-dimethyl-2-pyrrolidone-N-oxyl (DMPOX). In addition to DMPOX, 5,5-dimethyl-2-hydroxypyrrolidine-N-oxyl (DMPO-OH) and an unidentified chlorine-containing radical species were also observed under neutral and near-neutral conditions. Through the use of [17O]HOCl and the hydroxyl radical scavengers ethanol and formate, it was established that DMPO-OH was derived from hydration of DMPO rather than the spin-trapping of hydroxyl radical. Furthermore, kinetic studies and the incorporation of 17O showed that DMPO-OH was readily oxidized to DMPOX and that this reaction was acid and base catalyzed. Under strongly alkaline conditions, DMPOX reversibly formed another species, presumably the enolate, that had a four-line ESR signal identical to that of DMPO-OH. Eventually, carbon-centered adducts appeared whose ESR signals were consistent with the formation of DMPO condensation products.  相似文献   

14.
When aqueous solutions of the spin trap 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) are treated with hydrogen peroxide in the presence of either Fe or light, the hydroxyl radical adduct DMPO-OH is formed, with a characteristic 4 line ESR spectrum. When oxy- or metmyoglobin is added to such a system the initial yield and the halife of DMPO-OH are reduced, and at high myoglobin concentrations (about 0.1 mmol dm -l3) DMPO-OH becomes undetectable. Using the stable nitroxide 2,2,6,6-tetramethyl-1-piperidinyloxy-N-oxyl (TMPO) for comparison it was found that neither hydrogen peroxide nor myoglobin alone caused a loss of signal, but together a marked loss of signal was induced. From the evidence of these and other experiments it was concluded that the DMPO-OH adduct reacts with hydrogen peroxide and myoglobin to give non-paramagnetic products, and hence that the use of the DMPO spin trap to detect hydroxyl or other active radicals in systems containing physiological concentrations of myoglobin may give misleading results.  相似文献   

15.
Generation and recycling of radicals from phenolic antioxidants   总被引:3,自引:0,他引:3  
Hindered phenols are widely used food preservatives. Their pharmacological properties are usually attributed to high antioxidant activity due to efficient scavenging of free radicals. Butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) also cause tissue damage. Their toxic effects could be due to the production of phenoxyl radicals. If phenoxyl radicals can be recycled by reductants or electron transport, their potentially harmful side reactions would be minimized. A simple and convenient method to follow phenoxyl radical reactions in liposomes and rat liver microsomes based on an enzymatic (lipoxygenase + linolenic acid) oxidation system was used to generate phenoxyl radicals from BHT and its homologues with substitutents in m- and p-positions. Different BHT-homologues display characteristic ESR signals of their radical species. In a few instances the absence of phenoxyl radical ESR signals was found to be due to inhibition of lipoxygenase by BHT-homologues. In liposome or microsome suspensions addition of ascorbyl palmitate resulted in disappearance of the ESR signal of phenoxyl radicals with concomittant appearance of the ascorbyl radical signal. After exhaustion of ascorbate, the phenoxyl radical signal reappears. Comparison of the rates of ascorbyl radical decay in the presence or absence of BHT-homologues showed that temporary elimination of the phenoxyl radical ESR signal was due to their reduction by ascorbate. Similarly, NADPH or NADH caused temporary elimination of ESR signals as a result of reduction of phenoxyl radicals in microsomes. Since ascorbate and NADPH might generate superoxide in the incubation system used, SOD was tested. SOD shortened the period, during which the phenoxyl radicals ESR signal could not be observed. Both ascorbyl palmitate and NADPH exerted sparing effects on the loss of BHT-homologues during oxidation. These effects were partly diminished by SOD. These data indicate that reduction of phenoxyl radicals was partly superoxide-dependent. It is concluded that redox recycling of phenoxyl radicals can occur by intracellular reductants like ascorbate and microsomal electron transport.  相似文献   

16.
Antioxidants have been utilized in both the food and cosmetics industries to neutralize the activities of reactive oxygen species (ROS) and free radicals. Histidine-containing peptides are powerful antioxidants that exist in nature. Additionally, hydroxycinnamic acid (HCA)-peptide conjugates exhibit a synergistically enhanced antioxidative activity. Thus, caffeic acid (CA), a natural antioxidant, was conjugated to histidine-containing dipeptides (His dipeptides) in order to develop better antioxidants. The antioxidative activities were measured using 2,2′-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging test and lipid peroxidation test with ferric thiocyanate method. Some of the CA-His dipeptides exhibited better radical scavenging activities than CA, and all of the CA-His dipeptides showed enhanced lipid peroxidation inhibitory activities. His dipeptide enhanced the antioxidative activity of CA, and the position of histidine also affected the antioxidative activity of the compounds. CA-proline-histidine amide (CA-Pro-His-NH2) exhibited the highest activity in both the free radical scavenging test and the lipid peroxidation inhibition test.  相似文献   

17.
To mimic exercise-induced events such as energetic impairment, free radical generation, and lipid peroxidation in vitro, mouse-derived C2C12 myotubes were submitted to the inhibition of glycolytic and/or oxidative metabolism with 1 mM iodoacetate (IAA) and/or 2 mM sodium cyanide (CN), respectively, under 5% CO2/95% air up to 180 min. Electron spin resonance (ESR) analysis with a spin-trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) revealed time-course increases in spin adducts from hydroxyl radical (DMPO-OH) and carbon-centered radical (DMPO-R) in the supernatant of C2C12 myotubes treated with the combination of IAA + CN. In this condition, malondialdehyde (MDA) and lactate dehydrogenase (LDH) were released into the supernatant. By the addition of iron-chelating 1 mM deferoxamine to the C2C12 preparation with IAA + CN, both ESR signals of DMPO-OH and DMPO-R were completely abolished, and the release of MDA and LDH were significantly reduced, while cyanide-resistant manganese superoxide dismutase had neglegible effects on these parameters. Hence, a part of the injury of C2C12 myotube under IAA + CN was considered to result from the lipid peroxidation, which was induced by hydroxyl radical generated from iron-catalyzed systems such as the Fenton-type reaction. This in vitro model would be a helpful tool for investigating the free radical-related muscle injury.  相似文献   

18.
Nitrone/nitroso spin traps are often used for detection of unstable hydroxyl radical giving stable nitroxide radicals with characteristic electron spin resonance (ESR) signals. This technique may be useful only when the nitroxide radicals are kept stable in the reaction system. The aim of the present study is to clarify whether the nitroxide radicals are kept stable in the presence of the hydroxyl radical scavengers. Effect of hydroxyl radical scavengers on the ESR signals of nitroxide radicals, 2,2,6,6-tetramethyI-piperi-dine-N-oxyl (TEMPO) and the spin adduct (DMPO-OH) of 5,5-dimethyl-l-pyrroline N-oxide (DMPO) and hydroxyl radical, was examined. Although the ESR signals of TEMPO and the DMPO-OH spin adduct were unchanged on treatment with ethanol and dimethyl sulfoxide, their intensities were effectively decreased on treatment with 6-hydroxy-2,5,7,8-tetra-methylchroman-2-carboxylic acid (Trolox), cysteine, glutathione, 2-mercaptoethanol and metallothionein. Hence, the results of the detection of hydroxyl radical in the presence of phenolic and thiol antioxidants by the ESR technique using nitrone/nitroso spin traps may be unreliable.  相似文献   

19.
A method for the electrochemical detection of antioxidants has been developed, which is based on a radical measurement with a cytochrome c modified electrode. A controlled enzymatic production system for superoxide radicals based on xanthine oxidase was used. The addition of antioxidants facilitated the decomposition of the radical in addition to the spontaneous dismutation. The steady-state of superoxide generation and decomposition was thus shifted to a new situation due to the higher decomposition rate after antioxidant addition. This resulted in a decreased current level at the electrode. Antioxidant activity could be quantified from the response of the sensor electrode by the percentage of the signal decrease. The 50% inhibition value (IC(50)) for different antioxidants was calculated and the antioxidant activity of numerous substances was compared. Thus, a hierarchy of superoxide radical scavenging abilities of flavonoids was established: flavanols>flavonols>flavones>flavonones>isoflavonones.  相似文献   

20.
Thioredoxin is a ubiquitous small protein known to protect cells and tissues against oxidative stress. However, its exact antioxidant nature has not been elucidated. In this report, we present evidence that human thioredoxin is a powerful singlet oxygen quencher and hydroxyl radical scavenger. Human thioredoxin at 3 microM caused 50% inhibition of TEMP-(1)O(2) (TEMPO) adduct formation in a photolysis EPR study. In contrast, Escherichia coli thioredoxin caused 50% inhibition of TEMPO formation at 80 microM. Both E. coli thioredoxin and human thioredoxin inhibited (*)OH dependent DMPO-OH formation as demonstrated by EPR spectrometry. The quenching of (1)O(2) or scavenging of (*)OH was not dependent upon the redox state of thioredoxin. Using a human thioredoxin in which the structural cysteines were mutated to alanine, Trx-C3A, we show that structural cysteines that do not take part in the catalytic functions of the protein are also important for its reactive oxygen scavenging properties. In addition, using a quadruple mutant Trx-C4A, where one of the catalytic cysteines, C35 was mutated to alanine in addition to the mutated structural cysteines, we demonstrated that catalytic cysteines are also required for the scavenging action of thioredoxin. Identification of thioredoxin as a (1)O(2) quencher and (*)OH scavenger may be of significant importance in explaining various redox-related antioxidant functions of thioredoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号