首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
L Paulin 《FEBS letters》1986,202(2):323-326
1-Aminooxy-3-aminopropane (APA) was shown to be a potent competitive inhibitor (Ki = 1.0 nM) of partially purified Escherichia coli ornithine decarboxylase. APA did not inhibit S-adenosyl-L-methionine decarboxylase and spermidine from E. coli. S-(5'-Deoxy-5'-adenosyl)methylthioethylhydroxylamine (AMA), which is a structural analogue of decarboxylated S-adenosyl-L-methionine, was for the first time shown to be an irreversible inhibitor of bacterial S-adenosyl-L-methionine decarboxylase and a competitive inhibitor (Ki = 47 microM) of bacterial ornithine decarboxylase. AMA had no effect on spermidine synthase.  相似文献   

2.
The uptake, catabolism, and release of H-labeled 1-aminooxy-3-aminopropane, a new putrescine analog shown to be a potent polyamine antimetabolite, into and from baby hamster kidney cells (BHK21/C13) were studied. The results show that [3H]-1-aminooxy-3-aminopropane (APA) is not concentrated in the cell, does not compete with polyamines for transport and reveals no difference in uptake between polyamine-depleted and control cells. After a 12-h culture, 60% of APA was recovered intact in the culture media. At this time point, only 30% of the intracellular radioactivity was intact APA, showing that the drug is catabolized in the cells. This intracellular ratio persisted throughout the 4-day culture period. The metabolites of APA were not characterized further. The results indicate that the drug is not recognized as a polyamine by the cells and does not replace or interfere with the polyamines in cellular functions. Thus, its potent affinity to ornithine decarboxylase and spermidine synthase is likely to be due to close structural similarity with the intermediates formed in these reactions. This has implications for the mechanisms involved.  相似文献   

3.
Regulation of the activity and synthesis of malic enzyme in 3T3-L1 cells   总被引:1,自引:0,他引:1  
Malic enzyme activity in differentiated 3T3-L1 cells was about 20-fold greater than activity in undifferentiated cells. A new steady-state level was achieved about 8 days after initiating differentiation of confluent cultures with a 2-day exposure to dexamethasone, isobutylmethylxanthine, and insulin. This increase in enzyme activity resulted from an increase in the mass of malic enzyme as detected by immunotitration of enzyme activity with goat antiserum directed against purified rat liver malic enzyme. Malic enzyme synthesis was undetectable in undifferentiated cells and increased to about 0.2% of soluble protein in differentiated cells, suggesting that the increase in enzyme mass was due primarily to an increase in enzyme synthesis. Thyroid hormone, a potent stimulator of malic enzyme activity in hepatocytes in culture and in liver and adipose tissue in intact animals, decreased or increased malic enzyme activity in differentiating 3T3-L1 cells by about 40% when it was removed or added to the medium, respectively. Insulin, another physiologically important regulator of malic enzyme activity in vivo, had no effect on the initial rate of accumulation of malic enzyme activity in the differentiating cells and caused a 30 to 40% decrease in the final level of enzyme activity in the fully differentiated cells. Cyclic AMP, a potent inhibitor of malic enzyme synthesis in hepatocytes in culture, inhibited this process in 3T3-L1 cells by 30%. Malic enzyme is like several other enzymes in that the large increase in its concentration which accompanies differentiation of 3T3-L1 cells is due to increased synthesis of enzyme protein. However, the hormonal modulation of malic enzyme characteristic of liver and adipose tissue in intact animals does not appear to occur in differentiated 3T3-L1 cells, suggesting that differentiated 3T3-L1 cells may not be an appropriate model system in which to study the hormonal modulation of malic enzyme that occurs in liver and adipose tissue of intact animals.  相似文献   

4.
Any one of five amino acis (alanine, asparagine, glutamine, glycine, and serine) is an essential requirement for the induction of ornithine decarboxylase (EC 4.1.1.17) in cultured chinese hamster ovary (CHO) cells maintained with a salts/glucose, medium. Each of these amino acids induced a striking activation of ornithine decarboxylase in the presence of dibutyryl cyclic AMP and luteinizing hormone. The effect of the other amino acids was considerably less or negligible. The active amino acids at optimal concentrations (10 mM) induced only a 10-20 fold enhancement of enzyme activity alone, while in the presence of dibutyryl cyclic AMP, ornithine decarboxylase activity was increased 40-50 fold within 7-8 h. Of the hormones and drugs tested, luteinizing hormone resulted in the highest (300-500 fold) induction of ornithine decarboxylase with optimal concentrations of dibutyryl cyclic AMP and asparagnine. Omission of dibutyryl cyclic AMP reduced this maximal activation to one half while optimal levels of luteinizing hormone alone caused no enhancement of ornithine decarboxylase activity. The induction of ornithine decarboxylase elicited by dibutyryl cyclic AMP, amino acid and luteinizing hormone was diminished about 50% with inhibitors of RNA and protein synthesis. The specific amino acid requirements for ornithine decarboxylase induction in chinese hamster ovary cells was similar to the requirements for induction in two other transformed cell lines. Understanding the mechanism of enzyme induction requires an identification of the essential components of the regulatory system. The essential requirement for enzyme induction is one of five amino acids. The induction of ornithine decarboxylase by dibutyryl cyclic AMP and luteinizing hormone was additive in the presence of an active amino acid.  相似文献   

5.
Angiotensin converting enzyme (ACE) of vascular endothelial cells is suggested to control vascular wall tonus through the conversion of angiotensin I (AI) to angiotensin II (AII) and the degradation of bradykinin. To obtain more insight into the pathophysiological significance of ACE of vascular endothelial cells, we studied the regulation of ACE produced by cultured human umbilical vein endothelial cells (EC). Phorbol 12-myristate 13-acetate (PMA) increased the cellular and medium ACE activity, accompanied by a marked morphological change in EC. N'-O'-dibutylyladenosine 3';5'-cyclic monophosphate (db-cAMP) increased only the cellular ACE activity and not the medium ACE activity. The effect of isoproterenol with 0.1mM theophylline mimicked that of db-cAMP. These findings suggest that PMA and cAMP-related agents participate in the control of vascular wall tonus through the positive regulation of ACE produced by vascular endothelial cells.  相似文献   

6.
The effects on cultured baby hamster kidney cells of 1-aminooxy-3-aminopropane, a potent new inhibitor of mammalian ornithine and S-adenosylmethionine decarboxylases and of spermidine synthase, were studied. At 0.5 mM concentration in the culture medium, the drug did not interfere with the transmethylation-transsulfuration pathway nor with the polyamine transport system, but it blocked the proliferation and macromolecule synthesis of the cells and reduced the cellular spermidine level to less than 10% of the control value at identical cell density. These changes were accompanied by a total cessation of the excretion of putrescine, spermidine, and acetylated polyamines into the culture medium, greatly increased activity of ornithine and S-adenosylmethionine decarboxylases, and an accumulation of both decarboxylated and intact S-adenosylmethionine. These effects were reversed by the removal of the inhibitor from the culture medium or by supplementing the medium with either 0.5 mM putrescine or 0.1 mM spermidine. In the former case, however, a lag period of 24 h was necessary for the cells to recover. The elevated concentration of decarboxylated S-adenosylmethionine normalized very slowly but apparently had no harmful effects on the cells. The clonigenic potential of the cells was only slightly reduced by prolonged treatment with 0.5 mM 1-aminooxy-3-aminopropane. Thus, the new drug is not toxic to the cells, but either directly or indirectly stops their proliferation by preventing the adequate formation of putrescine and spermidine.  相似文献   

7.
This brief communication reports the observation that calcium influx appears to be a requirement in the serum-induction of ornithine decarboxylase (ODC) activity in cultured aortic endothelial cells. Addition of 35% fetal calf serum causes an increase in endothelial ODC activity within three hours to levels that are 16 times those of baseline. Preincubation of EC with lanthanum chloride (LaCl) or the addition of ethylene glycol (β-aminoethyl ether)-N-N′ tetraacetic acid (EGTA) to the medium inhibits the serum-induction of ODC. The displacement of the lanthanum ions with EGTA reverses the inhibition which demonstrates the viability of the LaCl3-pretreated cells, and lends support to the view that calcium may be involved in the induction of ODC.  相似文献   

8.
1. In vivo, adrenergic agonists promote an increase of ornithine decarboxylase activity (ODC) in chicken spleen, as opposed to a decrease in thymus and bursa of Fabricius. The increase is not due to the cell fraction separated on Lymphoprep, i.e. the spleen cells, but it could be due to the macrophages. 2. With spleen cells in culture, a marked increase of ODC activity is observed during the first 3 hr, followed by a decrease. 3. cAMP drastically decreases after 10 min in culture. 4. Adrenergic agonists promote a decrease of activity, both alpha and beta receptors being involved in these modifications. TPA promotes partial desensitization. 5. Selenite, which in vivo has the same effect as epinephrine, enhances ODC activity in culture. Propranolol partially counteracts this effect, while prazosin has a synergistic effect. TPA partially desensitizes spleen cells to selenite.  相似文献   

9.
Treatment of rat intestinal epithelial cells in culture (IEC-6) with progesterone (10 micrograms/ml) caused a strong inhibition of cholesterol biosynthesis as indicated by a decreased incorporation of radiolabel from [3H]acetate. This inhibition was accompanied by an accumulation of radioactivity in an intermediate which coeluted with authentic desmosterol upon high performance liquid chromatography (HPLC). In addition, treatment of cells with progesterone caused lesser accumulation of radiolabel in products with retention times (RT) of 7.9 and 13.5 min on reverse-phase HPLC. The RT-13.5 compound was tentatively identified as cholesta-5,7,24-trien-3 beta-ol based on its relative retention and on its conversion to cholesterol upon incubation with untreated cells. The RT-7.9 compound was identified as 24 (S),25-epoxycholesterol (S-EC) based on its coelution with authentic S-EC and by its conversion to 25-hydroxycholesterol upon reduction with LiAlH4. Incubation of IEC-6 cells with chemically prepared S-EC resulted in dose-dependent suppression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity within 6 h (I50 = 0.3 microM). Pretreatment of cells with progesterone prevented this suppressive effect. No suppression of reductase activity was observed in progesterone-treated cells in spite of obvious accumulation of S-EC in amounts sufficient to effect regulation; instead, a 2-3-fold increase in 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity occurred within a 24-h period. Following the removal of progesterone from the culture medium, reductase activity declined rapidly over the next 6 h. However, IEC-6 cells could not metabolize S-EC, derived either endogenously or exogenously, during a similar time frame; nor did progesterone affect the uptake of exogenous S-EC by IEC-6 cells. These results show that although progesterone treatment of cultured cells promotes the synthesis of a natural oxysterol suppressor of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, the continued presence of progesterone prevents the regulatory action of S-EC. The unique nature of this interference is high-lighted by the observation that progesterone could not prevent the suppression of reductase activity by either 25-hydroxycholesterol or mevalonolactone.  相似文献   

10.
The expression of mammalian AdoMet decarboxylase, a key enzyme in polyamine synthesis, was shown to be regulated by polyamines at two different levels. Polyamine depletion of Ehrlich ascites tumor cells induced a marked compensatory increase in the synthesis of the enzyme, as measured by 35S-methionine pulse-labeling and immuno-precipitation. This increase in synthesis rate was counteracted by provision of spermidine, which reduced the synthesis of AdoMet decarboxylase to an undetectable level. Northern analysis revealed a nearly 2-fold increase in the amount of AdoMet decarboxylase mRNA when the putrescine and spermidine content was depleted. This increase in AdoMet decarboxylase mRNA content cannot account for the more than 5-fold increase in synthesis rate, indicating a feedback regulation also at the level of mRNA translation.  相似文献   

11.
In addition to substrate binding sites, many enzymes must possess supersubstrate binding sites that regulate attachment and orientation of the enzyme toward the matrix (micelle, membrane) in which the substrate molecules are embedded, the supersubstrate.  相似文献   

12.
13.
The purpose of this study was to determine whether angiotensin I-converting enzyme (ACE) is present in cultured bovine bronchial epithelial cells (BBECs) and whether its activity can be modulated. We found that extracts of confluent monolayers of cultured BBECs degraded [glycine-1-14C]hippuryl-L -histidyl-L -leucine at a rate of 843 ± 66 pmol/hr/mg protein (mean ± SEM, n = 5). In addition, we found that the enzyme was shed into the culture medium. ACE activity in BBECs was inhibited by three selective, but structurally different, ACE inhibitors (captopril, quinapril, and cisalaprilat) with an IC50 of approximately 2 nM. Increasing chloride concentration in the assay buffer resulted in an increase in BBECs ACE activity of 63%. Enzyme activity was also modulated by the presence of zinc cation in the assay buffer. Addition of dexamethasone to the culture medium was associated with a significant increase in BBECs ACE activity (P < 0.05), which was inhibited by the steroid receptor antagonist RU 38486. Western blot analysis of BBECs, tracheal and bronchial mucosal strips utilizing a cross-reacting rabbit anti-mouse ACE antibody, showed a faint 175 kDa band and additional strong 52 kDa and 47 kDa band. The mechanism of generation of the low M.W. bands is unknown. Our data indicate the presence of ACE in cultured BBECs and that enzyme activity can be modulated.  相似文献   

14.
Incubation of rat ovarian cell suspension with human choriogonadotropin (hCG) caused a marked enhancement of ornithine decarboxylase (EC 4.1.1.17) activity after a lag period of several hours. Even though ovarian ornithine decarboxylase could be induced in minimum essential medium by the hormone alone, supplementation of the medium with various sera greatly enhanced the stimulation of the enzyme activity. All the sera tested (human, fetal calf and horse) were able to stimulate ornithine decarboxylase activity even in the absence of hCG. Maximum stimulation of the enzyme activity by hCG and/or serum occurred in ovarian cell suspensions prepared from 30 to 33-day-old rats. There was a close correlation between the stimulation of ornithine decarboxylase activity and the accumulation fo cyclic AMP in response to the administration of the hormone (in the presence or absence of serum). However, while various sera alone markedly enhanced ovarian ornithine decarboxylase activity in vitro they, if anything, only marginally stimulated the accumulation of cyclic AMP and the secretion of progesterone in ovarian cells in the absence of gonadotropin. A similar dissociation of the stimulation of ornithine decarboxylase activity from the production of cyclic AMP and progesterone was likewise found when the ovarian cells were incubated in an enriched medium (M199) supplemented with albumin and lactalbumin hydrolysate in the absence of the hormone. Under these culture conditions ornithine decarboxylase activity was strikingly enhanced, greatly exceeding the stimulation obtained with various sera, while the accumulation of cyclic AMP and the secretion of progesterone remained virtually unchanged. Specific inhibition (up to 90%) of gonadotropin-induced ornithine decarboxylase activity by difluoromethyl ornithine or 1,3-diamino-2-propanol had little effect on the ability of the ovarian cells to respond to the hormone with increasing production of cyclic AMP and progesterone. While showing that rat ovarian ornithine decarboxylase can be induced in vitro by choriogonadotropin or various sera, our results indicate that the activation of the enzyme involves at least two different mechanisms: (i) One (in response to gonadotropin) involving a prior stimulation of cyclic AMP production, and (ii) another (in response to serum) that is not associated with increases in the accumulation of the cyclic nucleotide.  相似文献   

15.
The synthesis of albumin in the liver has been shown to correlate with the availability of essential amino acids in the diet. We have investigated this phenomenon in the highly differentiated mouse hepatoma cell line, Hepa. Cells were grown for three days in complete medium with daily changes. The cells were then incubated for 22 h in media containing varying concentrations of individual essential amino acids. The deficient media were then changed; 1.5 h later the cells were labeled for 0.5 h with [3H]leucine. Albumin was immunoprecipitated and total protein was acid-precipitated from postribosomal supernatants of detergents-solubilized cells. With the exception of isoleucine, the relative rates of albumin synthesis decreased as a function of amino acid concentration from 4.3% in complete medium to 2.5% in totally deficient media. This specific reduction in albumin synthesis was confirmed by analysis of labeled Hepa proteins displayed on sodium dodecyl sulfate/polyacrylamide gels. Essential amino acid limitation reduced total protein synthesis by 50%. This is the result of a decrease in the translation efficiency of total mRNA from 5 to 3 polypeptides/message min-1 and is consistent with a reduction in the initiation rate. In contrast, the 70% decrease in albumin synthesis was a result of a reduced number of functional albumin messages/cell. The translation efficiency of these albumin messages remained unchanged at 1.  相似文献   

16.
Determination of L1 retrotransposition kinetics in cultured cells   总被引:9,自引:3,他引:9       下载免费PDF全文
L1 retrotransposons are autonomous retroelements that are active in the human and mouse genomes. Previously, we developed a cultured cell assay that uses a neomycin phosphotransferase (neo) retrotransposition cassette to determine relative retrotransposition frequencies among various L1 elements. Here, we describe a new retrotransposition assay that uses an enhanced green fluorescent protein (EGFP) retrotransposition cassette to determine retrotransposition kinetics in cultured cells. We show that retrotransposition is not detected in cultured cells during the first 48 h post-transfection, but then proceeds at a continuous high rate for at least 16 days. We also determine the relative retrotransposition rates of two similar human L1 retrotransposons, L1RP and L1.3. L1RP retrotransposed in the EGFP assay at a rate of ~0.5% of transfected cells/day, ~3-fold higher than the rate measured for L1.3. We conclude that the new assay detects near real time retrotransposition in a single cell and is sufficiently sensitive to differentiate retrotransposition rates among similar L1 elements. The EGFP assay exhibits improved speed and accuracy compared to the previous assay when used to determine relative retrotransposition frequencies. Furthermore, the EGFP cassette has an expanded range of experimental applications.  相似文献   

17.
18.
1-Aminooxy-3-aminopropane was shown to be a potent competitive inhibitor (Ki = 3.2 nM) of homogenous mouse kidney ornithine decarboxylase, a potent irreversible inhibitor (Ki = 50 microM) of homogeneous liver adenosylmethionine decarboxylase and a potent competitive (Ki = 2.3 microM) of homogeneous bovine brain spermidine synthase. It did not inhibit homogeneous bovine brain spermine synthase and it did not serve as a substrate for spermidine synthase. The compound did not inhibit tyrosine aminotransferase, alanine aminotransferase or aspartate aminotransferase, which are pyridoxal phosphate-containing enzymes like ornithine decarboxylase. The inactivation of adenosylmethionine decarboxylase was partially prevented by pyruvate, which is the coenzyme of adenosylmethionine decarboxylase, and by the substrate, adenosylmethionine. 1-Aminooxy-3-aminopropane at 0.5 mM concentration inhibited the growth of HL-60 promyelocytic leukemia cells and this inhibition was prevented by spermidine but not by putrescine.  相似文献   

19.
During transit through the epididymis, spermatozoa acquire fertilizing the cell surface exhibits an altered glycoprotein pattern. Epididymal cells and their secretions contribute to these sperm-surface changes. To examine this process, epithelial cells from rat caput and cauda epididymidis were cultured and examined for the synthesis, processing and secretion of two glycoprotein-modifying enzymes, beta-galactosidase and beta-glucuronidase. Cells were cultured four days, incubated with D-2-[3H] mannose and L-[35S] methionine, and placed in isotope-free media. Levels of both cellular and secreted beta-galactosidase and beta-glucuronidase were determined by immunoprecipitation of cell homogenates or medium, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and scintillation counting of bands. During a 1-h pulse, both caput and cauda cells synthesize two precursor forms of beta-galactosidase (Mr = 84,000 and 87,000), which are processed to the mature (Mr = 63,000) enzyme during a 24-h chase. Caput cells release a high molecular weight (HMW) form (Mr = 90-100,000) and mature beta-galactosidase into the media, but not the Mr = 84-87,000 precursor. On the other hand, cauda cells release mostly mature beta-galactosidase. Ratios of radiolabeled mannose/methionine demonstrate a 7-fold greater mannose content in the cellular precursor of beta-galactosidase than in total protein. Another glycosidase, beta-glucuronidase, is synthesized as a Mr = 78,000-precursor which is processed to the mature Mr = 72,000 form. Medium in which caput and cauda cells were cultured contains both mature enzyme and a Mr = 94,000 form, but no 78,000-precursor form. Ratios of radiolabeled mannose/methionine in the cellular precursor of beta-glucuronidase are 2-fold greater than ratios in the total glycoprotein. Secretion is the major pathway of turnover for several epididymal glycosidases, since more than 50% of the total is secreted/day. These results indicate that cultured epithelial cells from the epididymis synthesize glycosidases and that processing and release differ, depending on the enzyme and the epididymal segment from which the epithelial cells were isolated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号