首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A transformation-deficient strain of Haemophilus influenzae (efficiency of transformation 104-fold less than that of the wild type), designated TD24, was isolated by selection for sensitivity to mitomycin C. In its properties the mutant was equivalent to recA type mutants of Escherichia coli. The TD24 mutation was linked with the str-r marker (about 30%) and only weakly linked with the nov-r2.5 marker. The uptake of donor deoxyribonucleic acid (DNA) was normal in the TD24 strain, but no molecules with recombinant-type activity (molecules carrying both the donor and the resident marker) were formed. In the mutant the intracellular presynaptic fate of the donor DNA was the same as that in the transformation-proficient (wild-type) strain, and the radioactive label of the donor DNA associated covalently with the recipient chromosome in about the same quantity as in the wild type. However, many fewer donor atoms were associated with segments of the mutant's recipient chromosome as compared with segments of the wild-type chromosome. In the mutant the association was accompanied by complete loss of donor marker activity. The lack of donor marker activity of the donor-recipient complex of DNA isolated from the mutant was not due to lack of uptake of the complex by the second recipient and its inability to associate with the second recipient's chromosome. Because the number of donor-atom-carrying resident molecules was higher than could be accounted for by the lengths of presynaptic donor molecules, we favor the idea that the association of donor DNA atoms with the mutant chromosome results from local DNA synthesis rather than from dispersive integration of donor DNA by recombination.  相似文献   

2.
In studies of competence-deficient mutants of Haemophilus influenzae which absorb deoxyribonucleic acid (DNA) but fail to produce transformants, it was observed that in some mutants the residual transforming activity for different markers varied widely, i.e., produced a ratio effect. One of these mutants, com−56, was studied intensively to determine the cause of the residual efficiency of transformation and the reason for the ratio effect. The residual frequency of transformation was higher for markers considered single-site mutations (like naladixic acid resistance), whereas the least efficient markers tested were those conferring resistance to high levels of streptomycin or novobiocin which are more complex than single-site mutations. Measurement of frequencies of cotransformation indicated that overall genetic linkage was reduced. Transfection was fairly efficient with phage S2 DNA, but not prophage DNA. Donor marker activity could be detected in transformed cell lysates, but not linked to recipient markers in recombinant molecules. Sucrose gradient analysis of such lysates revealed that donor material was associated with recipient DNA in at least normal quantities, but lacked detectable genetic activity. Material from donor DNA labeled with heavy isotopes was incorporated into recipient chromosomal fragments having a density indistinguishable from normal density, unlike the hybrid density recombinant material found in normal cells. No excessive solubilization or nicking of unincorporated donor was detected. It is postulated that this strain contains a hyperactive nuclease, which reduces the effective size of the input DNA during the integration process.  相似文献   

3.
Transforming activity of plasmid and chromosomal DNA inEscherichia coli   总被引:1,自引:1,他引:0  
An auxotrophic strain ofEscherichia coli with therecB recC sbcB genotype was transformed by chromosomal DNA of the prototrophic strain and by plasmid DNA carrying genes for antibiotic resistance (R1drd 19). The donor plasmid DNA obtained by cell lysis in the presence of Triton X-100 and subsequent centrifugation in a caesium chloride-ethidium bromide gradient was shown to have a circulaf molecule and to retain its completeness after penetration into the recipient. Experiments with mixtures or plasmid and chromosomal DNA indicate a competition between these two DNA types during the transformation reaction in the given system.  相似文献   

4.
Pseudomonas aeruginosa was successfully transformed from a pyomelanin-producing strain to a non-pyomelanin-producing strain by genetic transformation, with an average frequency of 1.17 X 10-3/recipient. Although the transformation frequency was not affected by doses of DNA between 17 and 51 microgram/ml, it was influenced by the growth phase of the recipient bacteria, i.e., it was highest in the late logarithmic phase. Biochemical functions of the transformants were the same as those of the recipient strain except for pyomelanin production. Some of them, however, showed an intermediate growth behavior and cell arrangement between the donor and recipient. The serological type of the donor strain was sometimes contransduced although a few transformants became nonagglutinable with either donor or recipient type antiserum. The pyomelanin producing activity and serological type gained of some transformants were eliminated by either subculturing in nutrient broth or acridine treatment. The results obtained suggested that the pyomelanin productivity of P. aeruginosa is controlled by a plasmid.  相似文献   

5.
Repair of cross-linked DNA was studied in Escherichia coli strains carrying mutations affecting DNA metabolism. In wild-type cells, DNA strands cut during cross-link removal were rejoined during a subsequent incubation into high-molecular-weight molecules. This rejoining was dependent on gene products involved in genetic recombination. A close correlation was found relating recombination proficiency, the rate of strand rejoining, and formation of viable progeny after DNA cross-linking by treatment with psoralen and light. Wild-type cells and other mutants which were Rec+ (sbcB, recL, recL sbcB, recB recC sbcA, recB recC sbcB, xthA1, and xthA11) rejoined cut DNA strands at a rate of 0.8 +/- 0.1 min -1 at 37 degrees C and survived 53 to 71 cross-links per chromosome. recB, recC, recB recC, recF, or polA strains showed reduced rates of strand rejoining and survived 4 to 13 cross-links per chromosome. Recombination-deficient strains (recA, recB recC sbcB recF, recB recL) and lexA failed to rejoin DNA strands after crosslink removal and were unable to form colonies after treatments producing as few as one to two cross-links per chromosome. Strand rejoining occurred normally in cells with mutations affecting DNA replication (dnaA, danB, dnaG, and dnaE) under both permissive and nonpermissive conditions for chromosome replication. In a polA polB dnaE strain strand rejoining occurred at 32 degree C but not at 42 degree C, indicating that some DNA synthesis was required for formation of intact recombinant molecules.  相似文献   

6.
A recombinant plasmid was constructed by ligation of chromosomal DNA from a sulfanilamide-resistant strain of Bacillus subtilis to the plasmid vector pUB110 which specifies neomycin resistance. Recombinant molecules generated in vitro were introduced into a B. subtilis recipient strain which carried the recE4 mutation, and selection was for neomycin-sulfanilamide-resistant transformants. A single colony was isolated containing the recombinant plasmid pKO101. This 6.3-megadalton plasmid simultaneously conferred resistance to neomycin and sulfanilamide when transferred into sensitive Rec+ or Rec- cells by either transduction or transformation.  相似文献   

7.
Germ cell transplantation is a technique that transfers donor testicular cells into recipient testes. A population of germ cells can colonize the recipient testis, initiate spermatogenesis, and produce sperm capable of fertilization. In the present study, a nonmosaic Klinefelter bull was used as a germ cell recipient. The donor cell suspension was introduced into the rete testis using ultrasound-guided puncture. A pulsatile administration of GnRH was performed to stimulate spermatogenesis. The molecular approach to detect donor cells was done by a quantitative polymerase chain reaction with allele discrimination based on a genetic mutation between donor and recipient. Therefore, a known genetic mutation, associated with coat-color phenotype, was used to calculate the ratio of donor to recipient cells in the biopsy specimens and ejaculates for 10 mo. After slaughtering, meiotic preparations were performed. The injected germ cells did not undergo spermatogenesis. Six months after germ cell transplantation, the donor cells were rejected, which indicates that the donor cells could not incorporate in the testis. The hormone stimulation showed that the testosterone-producing Leydig cells were functionally intact. Despite subfertility therapy, neither the recipient nor the donor cells underwent spermatogenesis. Therefore, nonmosaic Klinefelter bulls are not suitable as germ cell recipients. Future germ cell recipients in cattle could be mosaic Klinefelters, interspecies hybrids, bulls with Sertoli cell-only syndrome, or bulls with disrupted germ cell migration caused by RNA interference.  相似文献   

8.
Summary The 8 kbp plasmid pAT4 transformed Haemophilus influenzae Rd cells at low frequencies. Transformation was increased up to 100 times, however, when the recipient cells carried a DNA segment in either their chromosome or in a resident plasmid that was homologous to at least part of plasmid pAT4. Linearized plasmid DNA molecules did not transform cells without DNA homology; they efficiently transformed homology recipients, but only when the cuts had been made in the region of shared homology. In most cases examined the circular donor plasmid had been reconstituted from the transforming DNA; in some cases the reconstituted plasmid carried a mutation initially present in the recipient chromosome, provided the transforming plasmid had been linearized in the region of shared homology. Plasmid reconstitution was not observed in recA1 cells. We conclude that homology-facilitated plasmid transformation (transfer) is similar to that reported for Bacillus subtilis and Streptococcus pneumoniae.  相似文献   

9.
A number of heterologous plasmid deoxyribonucleic acids (DNAs) coding for erythromycin, tylosin, lincomycin, tetracycline, or chloramphenicol resistance have been introduced into Streptococcus pneumoniae via genetic transformation with frequencies that varied between 10(-5) to as high as 5 x 10(-1) per colony-forming unit. Transformation with plasmid DNA required pneumococcal competence, was competed by chromosomal DNA, and showed a saturation at about 0.5 micrograms/ml (with a recipient population of 3 x 10(7) colony-forming units of competent cells per ml). Plasmid transformation did not occur with a recipient strain, 410, defective in endonuclease I activity and in chromosomal genetic transformation. All erythromycin-resistant transformants examined contained covalently closed circular DNA with the same electrophoretic mobility on agarose gels as the donor DNAs, and when examined in detail the plasmid reisolated from the transformants had the same restriction patterns and the same specific transforming activity as the donor DNA. In the cases of two plasmids examined in detail--pAM77 and pSA5700 Lc9--most of the transforming activity was associated with DNA monomers; DNA multimers present in pSA5700 Lc9 also had biological activity. An unexpected finding was the demonstration of transformation (2 x 10(-5) per colony-forming unit) with plasmid DNAs linearized by treatment with S1 nuclease or with restriction endonucleases.  相似文献   

10.
Summary Competent Streptococcus sanguis treated with non-lethal doses of coumermycin Al immediately before or after uptake of radioactive transforming DNA were reduced in their capacity to yield transformants. This treatment did not alter bacterial ability to bind DNA in DNase I-resistant form, nor did it prevent the single-stranded donor DNA-recipient protein complexes formed upon uptake at the surface of the bacteria from translocating to chromosomal sites. Inhibition of transformation by heterospecific DNA was greater than that by homospecific DNA. The reduction in transformant yield was not accompanied by any loss of donor counts incorporated into the recipient chromosome, but rather by a loss of genetic activity of incorporated donor material indicating a failure of genetic integration and degradation of donor DNA as a consequence of coumermycin treatment. The inhibitory effect of coumermycin on transformation was associated with in vivo loss of chromosomal DNA superhelicity. The chromosomal DNA remained intact, however, indicative of inhibition of a gyrase-like enzyme responsible for the maintenance of negative supercoiling of the S. sanguis chromosome. Upon treatment with the drug, a coumermycin-resistant mutant strain showed neither loss of chromosomal superhelicity nor any inhibitory effect on genetic integration of donor DNA. The evidence supports the idea that chromosomal superhelicity promotes genetic recombination in vivo.  相似文献   

11.
A sulfonamide-resistant mutant of pneumococcus, sulr-c, displays a genetic instability, regularly segregating to wild type. DNA extracts of derivatives of the strain possess transforming activities for both the mutant and wild-type alleles, establishing that the strain is a partial diploid. The linkage of sulr-c to strr-61, a stable chromosomal marker, was established, thus defining a chromosomal locus for sulr-c. DNA isolated from sulr-c cells transforms two mutant recipient strains at the same low efficiency as it does a wild-type recipient, although the mutant property of these strains makes them capable of integrating classical "low-efficiency" donor markers equally as efficiently as "high efficiency" markers. Hence sulr-c must have a different basis for its low efficiency than do classical low efficiency point mutations. We suggest that the DNA in the region of the sulr-c mutation has a structural abnormality which leads both to its frequent segregation during growth and its difficulty in efficiently mediating genetic transformation.  相似文献   

12.
Heterospecific transformation between Haemophilus influenzae and H. parainfluenzae was investigated by isopycnic analysis of deoxyribonucleic acid (DNA) extracts of (3)H-labeled transforming cells that had been exposed to (32)P-labeled, heavy transforming DNA. The density distribution of genetic markers from the resident DNA and from the donor DNA was determined by transformation assay of fractions from CsCl gradients, both species being used as recipients. About 50% of the (32)P atoms in H. parainfluenzae donor DNA taken up by H. influenzae cells were transferred to resident DNA, and only a small amount of the label was lost under conditions of little cell growth. There was less transfer in the reciprocal cross, and almost half of the donor label was lost. In both crosses, the transferred donor material transformed for the donor marker considerably more efficiently when assayed on the donor species than on the recipient species, indicating that at least some of the associated (32)P atoms are contained in relatively long stretches of donor DNA. When the transformed cultures were incubated under growth conditions, the donor marker associated with recipient DNA transformed the donor species with progressively decreasing efficiency. The data indicate that the low heterospecific transformation between H. influenzae and H. parainfluenzae may be due partly to events occurring before association of donor and resident DNA but results mostly from events that occur after the association of the two DNA preparations.  相似文献   

13.
    
Summary The transmission of the yeast 2 m DNA plasmid has been examined in heterokaryons formed between a haploid donor cell containing the plasmid and a haploid recipient cell lacking the plasmid. Strains lacking the plasmid were mated to donor strains and cytoductants, haploid exconjugants arising from heterokaryons, were selected. The cytoductants bearing the genotype of the recipient cells were then tested for the presence of 2 m DNA. The frequency with which the recipient received plasmid copies varied between 0 and 46%. This frequency depended on the recipient strain but was not highly dependent on whether or not the donor strain carried a kar1 mutation. Exceptional cytoductants, which had acquired a chromosome from the mating partner, were examined and found to have a much greater probability of acquiring plasmid DNA than cytoductants in general. This correlation supports the contention that plasmid copies are associated with the nucleus. In one mating the donor strain contained nearly equal amounts of two physically distinct plasmid types. Of the cytoductants bearing the recipient genotype which had acquired the plasmid during mating, most contained only one of the two plasmid types present in the donor. Analysis of this result using a Poisson distribution indicates that the average number of plasmid copies transmitted between nuclei of a heterokaryon is 0.2.  相似文献   

14.
A transformation-deficient strain of Haemophilus influenzae, lacking adenosine 5'-triphosphate-dependent deoxyribonuclease activity, was isolated by selection for sensitivity to mitomycin. The mutant, designated JK57, possibily showed a moderate sensitivity to ultraviolet (UV) irradiation and treatment with methyl methane sulfonate. Contrary to the wild type, the mutant degraded chromosomal deoxyribonucleic acid (DNA) to some extent. However, after UV irradiation to the mutant degraded considerably less DNA than the wild type and the TD24 mutant of H. influenzae, the latter being equivalent to a recA mutant of Escherichia coli. A TD2457 double mutant, constructed by transferring the TD24 mutation into the JK57 strain, was as sensitive to deleterious agents and as deficient in transformation as the TD24 single mutant; in the double mutant, however, after UV irradiation chromosomal DNA was degraded to the same extent as in the JK57 mutant. The number of transformants per unit of radioactive donor DNA taken up by JK57 recipient cells was approximately 10-fold smaller than in the wild type. Presynaptically, the fate of donor DNA in the adenosine 5'-triphosphate-dependent deoxyribonuclease-deficient mutants was not different from that in the wild type. In contrast to TD24 and the TD2457 double mutant, in the JK57 mutant, recombinant-type activities (molecules carrying both the donor and recipient markers) were formed almost as well as in the wild type. After integration into the JK57 recipient genome, the rate of replication of the donor marker was equal to that of the recipient marker during a number of generations, which suggests that the donor DNA is normally integrated into the JK57 chromosome. It is suggested that transformed JK57 cells pass with a high frequency into a type of cells that can replicate their chromosomes many times but have lost the ability to form visible colonies after plating.  相似文献   

15.
To determine the molecular basis of transformation defects in Haemophilus influenzae, the fate of genetically marked, (32)P-labeled, heavy deoxyribonucleic acid (DNA) was examined in three mutant strains (rec(1) (-), rec(2) (-), and KB6) and in wild type having (3)H-labeled DNA and a second genetic marker. Transforming cells upon lysis with digitonin followed by low-speed centrifugation are separable into the supernatant fraction, containing mainly the unintegrated donor DNA, and the pellet, containing most of the resident DNA along with integrated donor DNA. Electron micrographs of digitonin-treated cells also indicate that the resident DNA is trapped inside a cellular structure but that cytoplasmic elements such as ribosomes are extensively released. DNA synthesis in digitonin-treated cells is immediately blocked, as is any further integration of donor DNA into the resident genome. Isopycnic and sedimentation analysis of supernatant fluids and pellets revealed that in strains rec(2) (-) and KB6 there is little or no association between donor and resident DNA, and thus there is negligible transfer of donor DNA genetic information. In these strains, the donor DNA is not broken into pieces of lower molecular weight as it is in strain rec(1) (-) and in the wild type, both of which show association between donor and recipient DNA. In strain rec(1) (-), although some donor DNA atoms become covalently linked to resident DNA, the incorporated material does not have the donor DNA transforming activity.  相似文献   

16.
Summary Investigation of the mechanism that discriminates against mismatched base pairs in transformation of Streptococcus pneumoniae of genotype hex + was based on the use of a radioactively labeled cloned fragment of pneumococcal DNA as donor in transformation. The fate of the donor label was followed by lysis of the transformed cells and separation by agarose gel electrophoresis of DNA fragments generated by restriction endonucleases. As a result of Hex action, most of the donor DNA fragment, which was a few kilobases in length, was lost when a mismatched base pair occurred between donor and recipient DNA. This was not observed in hex - recipient cells. Kinetic studies of mismatch-induced donor DNA loss showed that the process is faster in strain 800, an R6 derivative, than in DP 1601, a strain of different origin. In the latter strain, the amount of donor label that becomes double stranded rises substantially, indicating extensive formation of donorrecipient heteroduplex structures, before falling to the expected level. At 30°C the process is essentially completed 15 min after entry.  相似文献   

17.
P. Zawadzki  F. M. Cohan 《Genetics》1995,141(4):1231-1243
We investigated the size and continuity of DNA segments integrated in Bacillus subtilis transformation. We transformed B. subtilis strain 1A2 toward rifampicin resistance (coded by rpoB) with genomic DNA and with a PCR-amplified 3.4-kb segment of the rpoB gene from several donors. Restriction analysis showed that smaller lengths of donor DNA integrated into the chromosome with transformation by PCR-amplified DNA than by genomic DNA. Nevertheless, integration of very short segments (<2 kb) from large, genomic donor molecules was not a rare event. With PCR-amplified segments as donor DNA, smaller fragments were integrated when there was greater sequence divergence between donor and recipient. There was a large stochastic component to the pattern of recombination. We detected discontinuity in the integration of donor segments within the rpoB gene, probably due to multiple integration events involving a single donor molecule. The transfer of adaptations across Bacillus species may be facilitated by the small sizes of DNA segments integrated in transformation.  相似文献   

18.
Two mutations known to affect recombination in a recB recC sbsBC strain, recJ284::Tn10 and recN262, were examined for their effects on the postreplication repair of UV-damaged DNA. The recJ mutation did not affect the UV radiation sensitivity of uvrB and uvrB recF cells, but it increased the sensitivity of uvrB recN (approximately 3-fold) and uvrB recB (approximately 8-fold) cells. On the other hand, the recN mutation did not affect the UV sensitivity of uvrB recB cells, but it increased the sensitivity of uvrB (approximately 1.5-fold) and uvrB recF (approximately 4-fold) cells. DNA repair studies indicated that the recN mutation produced a partial deficiency in the postreplication repair of DNA double-strand breaks that arise from unrepaired daughter strand gaps, while the recJ mutation produced a deficiency in the repair of daughter strand gaps in uvrB recB cells (but not in uvrB cells) and a deficiency in the repair of both daughter strand gaps and double-strand breaks in uvrA recB recC shcBC cells. Together, these results indicate that the recJ and recN genes are involved in different aspects of postreplication repair.  相似文献   

19.
Relative efficiencies of spontaneous Bacillus subtilis transformation for markers placed in different areas of the cell chromosome were studied. As donor of genetic material, an untransformable strain BD224 trpC2 thr5 rec4 was used during its early log-phase. It was found that for markers placed near points of origin and termination of the chromosome replication the relative transformation efficiencies are significantly lower than those in the case of transformation with DNA extracted from the same donor cells. If a contact of spontaneously released DNA with the recipient cells was delayed for about 60 minutes ("separate" experiment) this difference proved to be less pronounced for ade16 placed near the origin, but remained practically unchanged for metB placed near the termination point. The results obtained can be explained by permanent attachment of chromosome regions, carrying "origin" and "termination" points, to a cytoplasmic membrane. During spontaneously release of cellular genetic material, "origin" and "terminal" DNA fragments carrying ade16 and metB respectively, can retain the contact with components of cell membrane. Hence, their penetration in the recipient cell and (or) participation in recombination can be violated. The first of two fragments becomes free from structurating substances more easy.  相似文献   

20.
Summary In re-extracted DNA obtained shortly after uptake of transforming DNA by Bacillus subtilis, increased amounts of donor DNA radioactivity banding at the position of donor-recipient DNA complex (DRC) are observed in CsCl gradients, if the cells are irradiated with high doses of UV prior to reextraction of the DNA. Qualitatively, the same phenomenon is observed if lysates of transforming cells are irradiated. UV-irradiation of lysates of competent cells to which single-stranded DNA is added after lysis, does not result in linkage of this DNA to the chromosomal DNA. Two observations argue in favour of the formation of a specific labile complex between donor and resident DNA during transformation. Firstly, heterologous donor DNA from Escherichia coli, although being processed to single-stranded DNA in competent B. subtilis, does not seem to be linked to the recipient chromosome upon UV-irradiation, and secondly, the labile complex of donor and recipient DNA can be stabilized by means of treatment of the lysates of transforming cells with 4, 51, 8-trimethylpsoralen in conjuction with long-wave ultra violet light irradiation. This indicates that base-pairing is involved in the formation of the complex. On the basis of these results we assume that the unstable complex of donor and recipient DNA is an early intermediate in genetic recombination during transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号