首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chlorophyll-free plasma membranes of the unicellular green alga Chlamydomonas reinhardtii Dangeard were purified from a microsomal fraction using an aqueous polymer two-phase system of 6.5% (w/w) dextran T500, 6·5% (w/w) polyethylene glycol 3350, 60 mM NaCI, 0 33 M sucrose and 5 mM potassium phosphate (pH 7·8). The plasma membrane fraction contained only 2·4% of the microsomal membrane protein. Specific activity of the plasma membrane marker enzyme, K*, Mg2+-ATPase (EC 3.6.1.3). was enriched 9-fold over the microsomal fraction, and 22% of total activity was recovered in the upper, polyethylene glycol-rich phase. Contamination from intracellular membranes was minimal. K*, Mg2+-ATPase showed a pH optimum at about 6·5, and addition of 0·05% (w/v) Triton X-100 stimulated the activity 3-fold. [3H]-Nimodipinc was employed to characterize 1,4-dihydropyridine-specific membrane receptors. Two apparent binding sites with different affinities to nimodipine were found in the crude microsomal fraction. The separation of plasma membranes from intracellular membranes revealed that one binding site with higher affinity (KD= 9 nM) was located on the plasma membrane and a second binding site with lower affinity (KD= 36 nM) on an intracellular membrane The apparent dissociation constants determined from the association and dissociation rate constants in kinetic experiments were comparable to those determined by equilibrium experiments. The maximum number of binding sites of the plasma membrane fraction and the intracellular membrane fraction was Bmax= 440 and 470 fmol (mg protein)-1, respectively. [3H]-Nimodipinc binding was inhibited by (±) verapamil and stimulated by D-cis-diltiazem in both fractions. Moreover, ethyle-neglycol-bis(2-aminoethylcther)-N, N'-tetraacctic acid (EGTA) inhibited [3H]-nimo-dipinc binding in the plasma membrane fraction but not in the intracellular membrane fraction This effect was cancelled by the addition of CaCl2.  相似文献   

2.
Using [3H]naloxone at a concentration of 4.5 nm , the potent opiate agonist etorphine as well as the potent antagonist diprenorphine displace only about 75% of specific naloxone binding P2 fractions from rat whole forebrain, without additive effect. Several other opiates and antagonists completely displace specific naloxone binding. This indicates that etorphine and diprenorphine specifically bind to one and the same naloxone binding site (type I) while leaving another naloxone binding site (type II) unaffected. Type I binding sites are much more thermo-labile than type II. [3H]Naloxone binding to type I sites is unaffected by incubation temperature in the range 10 to 25°C. while binding type II sites decreases rapidly with increasing incubation temperature, no specific type II binding being detectable at or above 20°C. The two naloxone receptor types also differ with respect to pH dependence, and affinity for naloxone with types I and II having affinity constants (Kd) of 2 and 16 nm , respectively, at 0°C. The two binding sites have different regional distributions with high relative levels of type II receptors in cerebellum and low relative levels in pons-medulla and striatum. In whole rat brain there are about 4 times as many type II receptors as type I. These results suggest that naloxone and several other opiate agonists and antagonists bind to two distinct receptor types which are probably not agonist/antagonist aspects of the same receptor.  相似文献   

3.
Features of insulin binding to trophoblast plasma membranes were studied in six normal pregnant women (NP), six overt diabetes (ODP) and six poorly controlled glycemic gestational patients (PCDP) i.e. women who did not strictly follow the management of diabetes mellitus during pregnancy. A decreased maximum specific insulin receptor binding per 0.1 mg membrane protein in placenta from PCDP (12%) was found comparing with that from ODP or NP (17.5% and 36.2%, respectively, P<0.01), The insulin binding in PCDP declined at a faster rate until it reached minimum when studied at a higher temperature (25–37°C). The binding equilibrium was likewise attained faster at this temperature than that at lower temperature of 4°C for all studied groups.The insulin receptor binding in all studied groups was pH dependent. The maximum binding in ODP and PCDP groups was attained at pH 7.8 while for NP maximum binding was at pH 7.4. The competitive dinding assay was carried out with 14 concentrations of unlabelled insulin and the half maximal displacement of125I-insulin was at 8×10–9 M, 6×10–9 M and 4×10–9 M for NP, ODP and PCDP, respectively (P<0.05) suggesting the differences in the effect of glycemic control on the insulin binding. Furthermore the binding yielded curvilinear Scatchard plots with the apparent affinity of the receptors being affected in the ODP and PCDP groups.The molecular characteristics of the receptors in the diabetic patients as revealed by the cross-linking technique used in this study did not reveal any changes in the subunit structures when compared with normals except that the125I-insulin bound as shown by the band intensity was much less in PCDP. These findings indicate that control of hyperglycemia could optimize the outcome of insulin receptor function during diabetic pregnancy.  相似文献   

4.
At different stages of the annual reproductive cycle ofCatla catla, a major Indian carp, specific binding of gonadotropic hormone to the plasma membrane receptors was demonstrated. Maximum specific binding of [125I]Catla gonadotropic hormone was obtained at 30‡C and pH 7.5 during 2 h of incubation.Catla gonadotropic hormone binding was saturable with high affinity. Competitive inhibition experiment showed that binding site was specifically occupied by piscine gonadotropic hormone,Catla gonadotropic hormone and murrel gonadotropic hormone, human chorionic gonadotropin was a weak competitor while bovine thyroid stimulating hormone, bovine prolactin and ovine follicle stimulating hormone had no effect. Scatchard analysis ofCatla gonadotropic hormone binding to the plasma membrane preparation from the carp oocytes of different reproductive stages showed that the range of dissociation constant(K d ) varied from 0.78 to 0.97 x 10-10 M. However, maximum binding capacity (B-max) varied remarkably between the different stages of reproductive cycle, it was 6.11 ± 0.36 fmol/mg protein in the preparatory stage which increased to about three-fold in prespawning stage of reproductive cycle (17.0 ± 0.29 fmol/mg protein) and spawning (18.7 ± 0.17 fmol/mg protein) and lowest in postspawning stage of reproductive cycle (5.28 ± 0.28 fmol/mg protein). Fluctuation in the number of gonadotropic hormone binding site at different stages of annual reproductive cycle was found to be coincided well with the pattern of ovarian steroidogenesis in response toCatla gonadotropic hormone as determined by the formation of progesterone from pregnenolone.  相似文献   

5.
Adult rat heart muscle cells obtained by perfusion of the heart with collagenase have been used to characterize the insulin receptors by equilibrium binding and kinetic measurements. Binding of 125I-labelled insulin to heart cells exhibited a high degree of specificity; it was dependent on pH and temperature, binding at steady increased with decreasing temperatures. About 70% of the radioactivity bound at equilibrium at 25°C could be dissociated by addition of an excess of unlabelled insulin. 54 and 40% of 125I-labelled insulin was degraded by isolated heart cells after 2 h at 37°C and 4 h at 25°C, respectively. This degrading activity was effectively inhibited by high concentration of albumin.Equilibrium binding studies were conducted at 25°C using insulin concentrations ranging from 2.5 · 10?11 mol/l to 10?6 mol/l. Scatchard analysis of the binding data resulted in a curvilinear plot (concave upward), which was further analyzed using the average affinity profile. The empty site affinity constant was calculated to be 9.5 · 107 l/mol with a total receptor concentration of 3.4 · 106 sites per cell.The presence of site-site interactions of the negative cooperative type among the insulin receptors has been confirmed by kinetic experiments. The rate of dilution induced dissociation was enhanced in the presence of native insulin (5 · 10?9 mol/l), both, under conditions of low and high fractional saturation of receptors.  相似文献   

6.
The specific binding of [3H]-kainic acid to membrane fragments of rat striatum was examined. The specific binding was found to be saturable and of high affinity. The dissociation constant was about 71 nM, while the apparent maximal number of receptor sites was 254 fmoles/mg protein. [3H]-Kainic acid binding was effectively competed by both unlabeled kainic acid and glutamate, Lesions of the striatum by stereotaxic injection of 5 nmoles of kainic acid reduced the density of [3H]-kainic acid binding sites by half, without affecting their affinity. Lesions of the cortico-striatal afferents, however, did not affect the binding of [3H]-kainic acid, although sodium-dependent glutamate uptake was reduced by 30%. It is concluded that [3H]-kainic acid binds to a population of receptors localized on neurons of the caudate-putamen.  相似文献   

7.
Highly specific insulin receptors have been identified on human promyelocytic leukemia cells HL60. Insulin binding increased progressively with time to reach a maximum at 2 h at 22° and was proportional to the number of cells in the incubation mixture. Insulin degradation as assessed by TCA precipitation and reincubation studies was negligible. Scatchard analysis of the binding data was curvilinear and the total number of insulin receptor sites per cell was around 45,000. The average affinity profile gave an “unoccupied site” affinity constant of 3.5 × 108 M?1. The promyelocytic cells HL60, thus, have specific binding sites and binding characteristics similar to more mature human myeloid cells.  相似文献   

8.
Summary. In order to characterize the possible regulation of taurine release by GABAergic terminals, the effects of several agonists and antagonists of GABA receptors on the basal and K+-stimulated release of [3H]taurine were investigated in hippocampal slices from adult (3-month-old) and developing (7-day-old) mice using a superfusion system. Taurine release was concentration-dependently potentiated by GABA, which effect was reduced by phaclofen, saclofen and (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) at both ages, suggesting regulation by both GABAB and GABAC receptors. The involvement of GABAA receptors could not be excluded since the antagonist bicuculline was able to affect both basal and K+-evoked taurine release. Furthermore, several GABAB receptor effectors were able to inhibit K+-stimulated taurine release in the adults, while the GABAC receptor agonists trans-4-aminocrotonic acid (TACA) and cis-4-aminocrotonic acid (CACA) potentiated this release. The potentiation of taurine release by agents acting on the three types of GABA receptors in both adult and developing hippocampus further indicates the involvement of transporters operating in an outward direction. This inference is corroborated by the moderate but significant inhibition of taurine uptake by the same compounds. Received June 28, 1999, Accepted August 31, 1999  相似文献   

9.
l-[3H]Glutamate binding to synaptic plasma membranes from rat cerebral cortices was carried out at 2–4°C in 50 mM Tris-acetate buffer (pH 7.4) using a microfuge centrifugation method. Binding was increased by repeated freezing-thawing and washing in either crude or partially purified synaptic membranes. Scatchard analysis showed a single binding site (dissociation constant, KD = 697 nM; maximal binding capacity, Bmax = 7.5 pmol/mg protein) in four times distilled water washed crude synaptic membrane. After six times freezing-thawing and washing, a new high affinity site (KD1 = 26 nM, Bmax1 = 1.8 pmol/mg protein) appeared and the number of low affinity site was increased with no apparent change in affinity (KD2 = 662 nM, Bmax2 = 10.5 pmol/mg protein). l-[3H]Glutamate binding was inhibited by acidic amino acid analogues that interact with N-methyl-d-aspartate- and quisqualate-sensitive sites of glutamate receptors. Binding was marginally inhibited by kainate and l-2-amino-4-phosphonobutyrate. These results indicate that repeatedly frozen-thawed and washed synaptic plasma membrane is suitable for studying the subtypes and regulation of glutamate receptors.  相似文献   

10.
Abstract: Various ocular tissues have a higher concentration of taurine than plasma. This taurine concentration gradient across the cell membrane is maintained by a high-affinity taurine transporter. To understand the physiological role of the taurine transporter in the retina, we cloned a taurine transporter encoding cDNA from a mouse retinal library, determined its biochemical and pharmacological properties, and identified the specific cellular sites expressing the taurine transporter mRNA. The deduced protein sequence of the mouse retinal taurine transporter (mTAUT) revealed >93% sequence identity to the canine kidney, rat brain, mouse brain, and human placental taurine transporters. Our data suggest that the mTAUT and the mouse brain taurine transporter may be variants of one another. The mTAUT synthetic RNA induced Na+- and Cl?-dependent [3H]taurine transport activity in Xenopus laevis oocytes that saturated with an average Km of 13.2 µM for taurine. Unlike the previous studies, we determined the rate of taurine uptake as the external concentration of Cl? was varied, a single saturation process with an average apparent equilibrium constant (KCl?) of 17.7 mM. In contrast, the rate of taurine uptake showed a sigmoidal dependence when the external concentration of Na+ was varied (apparent equilibrium constant, KNa+~54.8 mM). Analyses of the Na+- and Cl?-concentration dependence data suggest that at least two Na+ and one Cl? are required to transport one taurine molecule via the taurine transporter. Varying the pH of the transport buffer also affected the rate of taurine uptake; the rate showed a minimum between pH 6.0 and 6.5 and a maximum between pH 7.5 and 8.0. The taurine transport was inhibited by various inhibitors tested with the following order of potency: hypotaurine > β-alanine > l -diaminopropionic acid > guanidinoethane sulfonate > β-guanidinopropionic acid > chloroquine > γ-aminobutyric acid > 3-amino-1-propanesulfonic acid (homotaurine). Furthermore, the mTAUT activity was not inhibited by the inactive phorbol ester 4α-phorbol 12,13-didecanoate but was inhibited significantly by the active phorbol ester phorbol 12-myristate 13-acetate, which was both concentration and time dependent. The cellular sites expressing the taurine transporter mRNA in the mouse eye, as determined by in situ hybridization technique, showed low levels of expression in many of the ocular tissues, specifically the retina and the retinal pigment epithelium. Unexpectedly, the highest expression levels of taurine transporter mRNA were found instead in the ciliary body of the mouse eye.  相似文献   

11.
The binding properties of membrane-bound or solubilized AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid)-type glutamate receptors from rat brain were tested following exposure to ultraviolet (UV)_radiation or incubation with the thiol reagent p-chloromercuriphenyl-sulfonic acid (PCMBS). Brief exposure to UV radiation (254 nm) increased [3H]AMPA binding to brain membranes, while binding to soluble fractions decreased. The increase in brain membrane binding was caused by an apparent interconversion of low-affinity [3H]AMPA binding sites into a higher-affinity state. Incubation with PCMBS caused a significant increase in [3H]AMPA binding to brain membranes but had no significant effect on [3HAMPA binding to solubilized receptors. There was an interaction between the PCMBS and UV effects in the brain membranes such that prior exposure to one of the treatments reduced the relative magnitude of the other's effects. The present results suggest that ultraviolet radiation, PCMBS and solubilization all increase AMPA receptor binding affinity via a common mechanism.  相似文献   

12.
Taurine at 10 mM had no effect on basal binding of [3H]diazepam to the membranes, while it significantly inhibited a GABA-stimulated binding of [3H]diazepam in cerebral cortex, hippocampus, but not in cerebellum. The inhibition by taurine in the presence of GABA (1M to 1 mM) was not competitive. At low concentrations (0.04 to 0.2 nM) the binding of [3H]propyl--carboline-3-carboxylate, a ligand exhibiting higher affinity for type I than type II benzodiazepine receptors, was not enhanced by GABA, while the binding of higher concentrations (0.5 nM) was. This GABA enhancement of [3H]propyl--carboline-3-carboxylate binding was also selectively blocked by taurine. Pentobarbital increased the binding of [3H]diazepam in a medium containing chloride and this effect was potentiated by taurine at 1–10 mM. These findings may be relevant to the modulatory role of taurine in the central nervous system.  相似文献   

13.
We have previously described the binding of biologically active 125I gonadotropin-releasing hormone to the 10,800 × g membrane fraction prepared from 7-day castrate adult female rat anterior pituitary glands. Specific binding with two equilibrium association constants (109 liters per mole and 105 liters per mole) was found and an equilibrium competitive binding radio-receptor assay established. In order to further characterize the gonadotropin-releasing hormone receptor, 20 synthetic analogs with known bioactivity were tested in the radioreceptor assay. In vivo biological activity correlated with high affinity receptor binding but not with low affinity binding. Inhibitory analogs with no in vivo biological activity and weak antagonistic properties did not bind, while in vivo active or superactive analogs bound to high affinity receptors. These findings suggest that the high affinity gonadotropin-releasing hormone receptor binds only biologically active gonadotropin-releasing hormone like peptides and that this binding may be the initial step in gonadotropin-releasing hormone actions at the pituitary level.  相似文献   

14.
Membrane receptors for Vicia graminea (Vg) lectin on human red cells were analyzed using deoxycholate lysates obtained from 125I-erythrocyte membranes incubated with a purified lectin immobilized on Sepharose 4B. The glycoproteins (GP) specifically bound to the gel were eluted and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Using native erythrocytes the results obtained demonstrate that N red cells have exposed Vg receptors located on GPα (synonym glycophorin A) and GPδ (synonym glycophorin B) whereas on M erythrocytes the Vg receptors are restricted to GPδ. The presence of Vg receptors was also found on the hybrid glycoprotein (made of the N-ter of GPδ and C-ter of GPα) carried by St(a+) erythrocytes. A similar amount of radioactivity was bound to Vg-Sepharose incubated with neuraminidase-treated N or M membranes. The material eluted was tentatively identified as asialo GPα and asialo GPδ, suggesting that numerous receptors have been uncovered mainly on asialo GPα species from M erythrocytes. No glycoprotein component could be identified from the material eluted from Vg Sepharose incubated with native or neuraminidase-treated membrane from a Tn(+) individual. Scatchard plot analysis obtained from binding experiments at equilibrium with M, N, and St(a+) cells revealed the existence of at least two classes of receptors both on native and neuraminidase-treated erythrocytes. Desialylation of the M, N, and St(a+) erythrocytes resulted in an increase in the number of low- and high-affinity binding sites but had no significant effect on the association constants. However, high-affinity binding constants were about six times higher with N (7.07 × 107 and 6.61 × 107m?1 for native and neuraminidase-treated N cells, respectively) as compared to M erythrocytes (1.13 × 107 and 1.17 × 107m?1 for native and neuraminidase-treated M cells, respectively) whereas the low-affinity binding constants were similar for all types of cells (in the range of 0.1 to 0.3 × 107m?1). The number of Vg binding sites increases from 0.085 × 105 to 0.8 × 105 (high affinity) and from 2.10 × 105 to 6.25 × 105 (low affinity) per native and neuraminidase-treated N cell, respectively. On native and neuraminidase-treated M cells the number of Vg receptors increases from 0.011 × 105 to 0.51 × 105 (high affinity) and 0.13 × 105 (low affinity), respectively. The large increase in the number of Vg receptors on neuraminidase-treated M cells is correlated with a large increase in agglutinability. Under similar treatment St(a+) cells behave like N erythrocytes whereas only 0.16 × 105 Vg receptors of low affinity could be detected on neuraminidase-treated Tn erythrocytes. The results demonstrate that sialic acid is not required for binding and favor the view that the binding site of V. graminea lectin accommodates with two types of erythrocyte membrane receptors, one including both a contribution of polypeptide and oligosaccharide chains and a second which involves a simple interaction with sugar sequence Galβ1–3GalNAc available only when sialic acids are removed. The latter disaccharide is recognized by the Arachis hypogea lectin which therefore inhibits further binding of the V. graminea to neuraminidase-treated erythrocytes.  相似文献   

15.
The effect of glycine (Gly) and taurine (Tau) on the biochemical and pharmacological properties of [3H]l-glutamate ([3H] Glu) binding to membranes from primary cultures of chick retinal pigment epithelium (RPE), as well as from intact tissue during development was studied. Gly and Tau increase Bmax of [3H]Glu binding to a high affinity site (KB=300 nM) in membranes from 16 days in vitro (immature) cultures; additionally, Gly discloses a low affinity Glu-binding site (KB=970 nM) at this stage. In membranes from 25 days in vitro (mature) cultures, the high affinity site is no longer present and Tau has no effect on Glu-binding; Gly still stimulates binding to the low affinity site by four fold, with an EC50=200 M. Pharmacological profile using specific excitatory amino acid (EAA) receptor agonists and antagonists suggests that at 16 days in vitro Glu binds preferentially to metabotropic Glu receptors (mGluRs), and at 25 days in vitro to ionotropic receptors different from neuronal ones. The stimulatory effect of Gly and Tau was also observed in intact RPE, and decreased with increasing embryonic age. Glu binding was also stimulated in membranes from chick retina, but not in those from rat brain. Results support the possibility of EAA participation in several aspects of RPE physiology, including phagocytosis and cell division.Abbreviations L-Glu l-glutamate - QA quisqualate - KA kainate - NMDA N-methyl-d-aspartate - trans-ACPD (±) 1-aminocyclopentane-trans-1,3-dicarboxylic acid - D-AP5 d-2-amino-5-phosphonopentanoic acid - L-AP4 l-2-amino-4-phosphonobutyric acid - L-AP3 l-2-amino-3-phosphonopropionic acid - CNQX 6-cyano-7-nitroquinoxaline-2,3-dione - (+)MCPG (+)-methyl-4-carboxyphenyl-glycine - DHPG (RS) 3,5-dihydroxyphenyl-glycine - CPP 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid - MK-801 (+)-5-methyl-10, 11-dihydro-5H-dibenzo [a.d.] cyclohepten-5, 10-imine - PIP2 phosphatidyl inositol bisphosphate - ED embryonic day - DIV days in vitro - RPE retinal pigment epithelium - EAA excitatory amino acids  相似文献   

16.
Soybean membrane preparations specifically bound [14C]mycolaminaran, a branched β-1,3-glucan produced by Phytophthora sp. which elicits production of the phytoalexin glyceollin in soybean tissues. A Scatchard plot of the binding data disclosed the presence of a single affinity class of binding sites with a Kd value of 11.5 micromolar for the glucan. To assess the physiologic importance of mycolaminaran binding in phytoalexin elicitation, several derivatives of mycolaminaran were prepared. Reduced mycolaminaran had slightly greater elicitor activity and binding affinity than the native substance, while periodinated mycolaminaran was virtually devoid of either elicitor activity orbinding capability. Phosphorylated mycolaminaran, on the other hand, gave values for both elicitor activity and membrane binding which were intermediate between the native and periodinated preparations. No other tested carbohydrates competed with the binding of [14C]mycolaminaran. Soybean membrane preparations contained β-1,3-endoglucanase activity that degraded mycolaminaran and reduced both its efficiency as a phytoalexin elicitor and its membrane binding at temperatures above 0°C. Once [14C]mycolaminaran bound to membranes, however, it was not appreciably susceptible to glucanase attack and could not be displaced with excess unlabeled ligand. Taken collectively, the observations suggest that the membrane binding sites are mycolaminaran-specific receptors which are physiologically involved in the initiation of phytoalexin production in soybean cotyledons. Because the binding of mycolaminaran to membranes was abolished by heat and proteolytic enzymes, the receptor is probably a protein(s) or glycoprotein(s).  相似文献   

17.
Abstract

The binding characteristics of thyroxine (T4), triiodothyronine (T3), and reverse T3 (rT3) to rat liver plasma membranes (RLPM) were examined to explore the interactions of thyroid hormones with cell surface receptors. Scatchard analysis suggested that all three ligands bound to two classes of binding sites. The high affinity rT3 binding sites appeared to be distinct from the high affinity T4 sites, on the basis of differing optimum physicochemical conditions for binding, and analog displacement studies. The higher affinity constant for T4 was 1.7 ± 0.2 × 109 M-1 (mean ± SEM) and binding capacity was 3.1 ± 0.3 pmol mg -1 protein whereas for rT3 binding the Ka was 2.5 ± 0.4 × 108 M-1 and capacity was 6.2 ± 0.9 pmol mg -1. (125 I) T3 bound with lower affinity and T3 tracer was readily displaced by T4. Moreover, comparatively higher concentrations of T3 were needed to displace either radiolabeled T4 or rT3, suggesting that T3 was binding to both the T4 and rT3 sites with lower affinity. Marker enzyme studies on RLPM, of varying purity prepared by different methods, showed a positive correlation between the activity of the plasma membrane enzyme magnesium-stimulated ATPase and high affinity rT3 and T4 binding. Column chromatography of the radioligands, after dissociation from membrane binding sites, confirmed that the integrity of the hormones was not altered during association or dissociation. Our results raise the possibility that the high affinity T4 and rT3 binding sites on RLPM may be hormone receptors mediating biological actions at the membrane level.  相似文献   

18.
The binding of biologically active [125I]thyrotropin to purified plasma membranes prepared from bovine thyroid glands was studied. At 4°C, specific binding reached a maximum after 2 h of incubation and a plateau was maintained for up to 20 h. Degradation of [125I]thyrotropin was undetectable after 2 h of incubation and was only 10% of the total after 20 h.At pH 6.0, at which binding was maximal, a single class of binding sites, having a dissociation constant of approx. 25 nM, was evident. Dissociation studies revealed first order kinetics with a half-time of 2–3 min. At pH 7.5, binding curves were complex, suggesting two orders of binding sites with dissociation constants of approx. 200 nM and 80 pM. Further, at this pH, dissociation of the thyrotropin from its receptor was also complex, suggesting the presence of two first order reactions, one with a half-time similar to that seen at pH 6.0 and another with a half-time of 4 h. At both pH 6.0 and 7.5, insulin, glucagon, growth hormone, and prolactin were without effect on [125I]thyrotropin binding.Similar high affinity and low affinity binding sites were seen with porcine thyroid membranes, but only low affinity sites were seen with either rat liver membranes or human cultured lymphocytes.  相似文献   

19.
The non-denaturing zwitterionic detergent, (3 (3-cholamidopropyl)-dimethyl-ammonio)-1-propane sulfonate (CHAPS), has been used to solubilize membrane gonadotropin-releasing hormone (GnRH) receptors from rat ovaries. The solubilized receptors retain a high affinity (Ka = 1.85 ± 0.3 nM?1), comparable to the affinity measured in membrane particles (Ka = 3.25 ± 0.7 nM?1), and a preserved specificity for several analogs and fragments of GnRH. At millimolar concentrations, cyclic AMP derivatives inhibit [125I] - GnRH analog binding to both membrane particles and soluble receptors from pituitary and ovary. These results support the hypothesis that cyclic AMP may play the role of an extracellular messenger by interacting with the GnRH receptor itself.  相似文献   

20.
ABSTRACT. We studied galactose (Gal)-specific binding of the soluble purified 260-kDa Entamoeba histolytica adherence protein to glycosylation deficient Chinese hamster ovary (CHO) cell mutants. Our goal was to further define the lectin's functional activity and carbohydrate receptor specificity. The adherence protein was purified by acid elution from an immunoaffnity column; however, exposure of the surface membrane lectin on viable trophozoites to identical acid pH conditions had no effect on carbohydrate binding activity. Saturable Gal-specific binding of soluble lectin to parental CHO cells was demonstrated at 4°C by radioimmunoassay; the dissociation coefficient (Kd was 2.39 × 10?8 M?1 with 5.97 × 104 lectin receptors present per CHO cell. Gal-specific binding of lectin to Lec2 CHO cell mutants, which have increased N- and O-linked terminal Gal residues on cell surface carbohydrates, was increased due to an enhanced number of receptors (2.41 × 105/cell) rather than a significantly reduced dissociation constant (4.93 × 10?8 M?1). At 4°C, there was no measurable Gal-specific binding of the adherence protein to the Lec and IdlD.Lecl CHO mutants, which contain surface carbohydrates deficient in terminal Gal residues. Binding of lectin (20 μg/ml) to CHO cells was equivalent at 4°C and 37°C and unaltered by adding the microfilament inhibitor, Cytochalasin D (10 μg/ml). Gal-specific binding of the lectin at 4°C was calcium independent and reduced by 81% following adsorption of only 0.2% of the lectin to CHO cells. In summary, these findings indicate that the purified E. histolytica adherence lectin demonstrates saturable Gal-specific binding to 1–6 branched-N-linked and not O-linked galactose terminal cell surface carbohydrates; however, apparently only a small percentage of purified amebic lectin molecules actually possess galactose binding activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号