首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-sensitivity differential scanning microcalorimetry (HSDSC), small-angle X-ray scattering (SAXS), light (LM) and scanning electronic (SEM) microscopy techniques were used to study the defectiveness of different supramolecular structures in starches extracted from 11 Thai cultivars of rice differing in level of amylose and amylopectin defects in starch crystalline lamellae. Despite differences in chain-length distribution of amylopectin macromolecules and amylose level in starches, the invariance in the sizes of crystalline lamellae, amylopectin clusters and granules was established. The combined analysis of DSC, SAXS, LM and SEM data for native starches, as well as the comparison of the thermodynamic data for native and annealed starches, allowed to determine the structure of defects and the localization of amylose chains in crystalline and amorphous lamellae, defectiveness of lamellae, clusters and granules. It was shown that amylose “tie chains”, amylose–lipid complexes located in crystalline lamellae, defective ends of double helical chains dangling from crystallites inside amorphous lamellae (“dangling” chains), as well as amylopectin chains with DP 6–12 and 25–36 could be considered as defects. Their accumulation can lead to a formation of remnant granules. The changes observed in the structure of amylopectin chains and amylose content in starches are reflected in the interconnected alterations of structural organization on the lamellar, cluster and granule levels.  相似文献   

2.
A combined DSC - HPAEC-PAD approach, gel permeation chromatography and mild long-term acidic hydrolysis were employed to study the effects of amylopectin chain-length distributional and amylose defects on the assembly structures of amylopectin (crystalline lamellae, amylopectin clusters) in A-type polymorphic starches extracted from 11 Thai cultivars of rice with different amylose level. Joint analysis of the data allowed determining the contributions of different populations of amylopectin chains to the thermodynamic melting parameters of crystalline lamellae. It was shown that amylopectin chains with DP 6-12 and 25or=37 could be related to chains stabilizing these structures. The total effect of amylose and amylopectin defects can be described by means of Thomson-Gibbs' equation. The increase of defects in the assembly structures is accompanied by rise of the rates of acidic hydrolysis of both amorphous and crystalline parts in starches.  相似文献   

3.
The gelatinization of waxy rice, regular rice, and potato starch suspensions (66% w/w moisture) was investigated by real-time small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) during heating and by fast ramp differential scanning calorimetry (DSC). The high-angle tail of the SAXS patterns suggested the transition from surface to mass fractal structures in the DSC gelatinization range. Amylose plays a major role in determining the dimensions of the self-similar structures that develop during this process as the characteristic power-law scattering behavior extends to lower scattering angles for regular than for waxy starches. Crystallinity of A-type starches is lost in the temperature region roughly corresponding to the DSC gelatinization range. At the end of the gelatinization endotherm, the B-type potato starch showed residual crystallinity (WAXD), while SAXS-patterns exhibited features of remaining lamellar stacks. Results indicate that the melting of amylopectin crystallites during gelatinization is accompanied by the (exothermic) formation of amorphous networks.  相似文献   

4.
Small-angle X-ray scattering (SAXS) together with several complementary techniques, such as differential scanning calorimetry and X-ray diffraction, have been employed to investigate the structural features that give diverse functional properties to wheat starches (Triticum aestivum L.) within a narrow range of enriched amylose content (36–43%). For these starches, which come from a heterogeneous genetic background, SAXS analysis of duplicate samples enabled structural information to be obtained about their lamellar architecture where differences in lamellar spacing among samples were only several tenths of nanometer. The SAXS analysis of these wheat starches with increased amylose content has shown that amylose accumulates in both crystalline and amorphous parts of the lamella. Using waxy starch as a distinctive comparison with the other samples confirmed a general trend of increasing amylose content being linked with the accumulation of defects within crystalline lamellae. We conclude that amylose content directly influences the architecture of semi-crystalline lamellae, whereas thermodynamic and functional properties are brought about by the interplay of amylose content and amylopectin architecture.  相似文献   

5.
Blazek J  Gilbert EP 《Biomacromolecules》2010,11(12):3275-3289
Enzymatic digestion of six starches of different botanical origin was studied in real time by in situ time-resolved small-angle neutron scattering (SANS) and complemented by the analysis of native and digested material by X-ray diffraction, differential scanning calorimetry, small-angle X-ray scattering, and scanning electron microscopy with the aim of following changes in starch granule nanostructure during enzymatic digestion. This range of techniques enables coverage over five orders of length-scale, as is necessary for this hierarchically structured material. Starches studied varied in their digestibility and displayed structural differences in the course of enzymatic digestion. The use of time-resolved SANS showed that solvent-drying of digested residues does not induce any structural artifacts on the length scale followed by small-angle scattering. In the course of digestion, the lamellar peak intensity gradually decreased and low-q scattering increased. These trends were more substantial for A-type than for B-type starches. These observations were explained by preferential digestion of the amorphous growth rings. Hydrolysis of the semicrystalline growth rings was explained on the basis of a liquid-crystalline model for starch considering differences between A-type and B-type starches in the length and rigidity of amylopectin spacers and branches. As evidenced by differing morphologies of enzymatic attack among varieties, the existence of granular pores and channels and physical penetrability of the amorphous growth ring affect the accessibility of the enzyme to the substrate. The combined effects of the granule microstructure and the nanostructure of the growth rings influence the opportunity of the enzyme to access its substrate; as a consequence, these structures determine the enzymatic digestibility of granular starches more than the absolute physical densities of the amorphous growth rings and amorphous and crystalline regions of the semicrystalline growth rings.  相似文献   

6.
The general oxidation mechanism by hypochlorite on starch has been well studied, but the information on the distribution of the oxidation sites within starch granules is limited. This study investigated the locations where the oxidation occurred within corn starch granules varying in amylose content, including waxy corn starch (WC), common corn starch (CC), and 50% and 70% high-amylose corn starch (AMC). Oxidized corn starches were surface gelatinized by 13 M LiCl at room temperature to different extents (approximately 10%, 20%, 30%, and 40%). The surface-gelatinized remaining granules were separated and studied for structural characteristics including carboxyl content, amylose content, amylopectin chain-length distribution, thermal properties, and swelling properties. Oxidation occurred mostly at the amorphous lamellae. More carboxyl groups were found at the periphery than at the core of starch granules, which was more pronounced in oxidized 70% AMC. More amylose depolymerization from oxidation occurred at the periphery of CC. For WC and CC, amylopectin long chains (>DP 36) were more prone to depolymerization by oxidation. The gelatinization properties as measured by differential scanning calorimetry also supported the changes in amylopectin fine structure from oxidation. Oxidized starches swelled to a greater extent than their unmodified counterparts at all levels of surface removal. This study demonstrates that the locations of oxidation and physicochemical properties of oxidized starches are affected by the molecular arrangement within starch granules.  相似文献   

7.
A combined DSC–SAXS approach was employed to study the effects of amylose and phosphate esters on the assembly structures of amylopectin in B-type polymorphic potato tuber starches. Amylose and phosphate levels in the starches were specifically engineered by antisense suppression of the granule bound starch synthase (GBSS) and the glucan water dikinase (GWD), respectively. Joint analysis of the SAXS and DSC data for the engineered starches revealed that the sizes of amylopectin clusters, thickness of crystalline lamellae and the polymorphous structure type remained unchanged. However, differences were found in the structural organization of amylopectin clusters reflected in localization of amylose within these supramolecular structures. Additionally, data for annealed starches shows that investigated potato starches possess different types of amylopectin defects. The relationship between structure of investigated potato starches and their thermodynamic properties was recognized.  相似文献   

8.
The detailed ultrastructure of a new type of resistant starch and the way that it is modified during hydrolysis by alpha-amylases were studied by transmission electron microscopy (TEM) on model starch crystals. The selected substrates were waxy maize starch lintners and A-type crystals prepared from low degree of polymerization (DP) amylose. A model describing the stacking of double helices is proposed for A-type low DP amylose crystals. The enzymatic hydrolysis of both lintners and low DP crystals has been shown to occur by the side of double helices and not their ends. The results were transposed to a new type of resistant starch (RS) produced by debranching maltodextrins in concentrated solutions. This product presents A-type crystallinity contrary to all other known classified RS. Moreover it consists of low DP chains similar to the model crystals studied and yields similar electron diffraction patterns to those of A-type low DP crystals. The similarities in the morphology of these substrates with that of the studied RS led us to attribute its resistance to its particularly dense and compact morphology, resulting from the epitaxial growth of elementary crystalline A-type platelets. In the resulting structure, the accessibility of double helices to alpha-amylase is strongly reduced by aggregation.  相似文献   

9.
Structural basis for the slow digestion property of native cereal starches   总被引:3,自引:0,他引:3  
Native cereal starches are ideal slowly digestible starches (SDS), and the structural basis for their slow digestion property was investigated. The shape, size, surface pores and channels, and degree of crystallinity of starch granules were not related to the proportion of SDS, while semicrystalline structure was critical to the slow digestion property as evidenced by loss of SDS after cooking. The high proportion of SDS in cereal starches, as compared to potato starch, was related to their A-type crystalline structure with a lower degree of perfection as indicated by a higher amount of shortest A chains with a degree of polymerization (DP) of 5-10. The A-type amorphous lamellae, an important component of crystalline regions of native cereal starches, also affect the amount of SDS as shown by a reduction of SDS in lintnerized maize starches. These observations demonstrate that the supramolecular A-type crystalline structure, including the distribution and perfection of crystalline regions (both crystalline and amorphous lamellae), determines the slow digestion property of native cereal starches.  相似文献   

10.
The amount of B-type crystallinity in compression-moulded, glycerol-plasticised potato starches was strongly dependent on both the properties of the potato starch used and the applied processing conditions. The presence of amylose and the morphology of the potato starch used, but also processing parameters such as moulding temperature and water content during moulding affected the amount of B-type crystallinity in the materials and thus the ultimate mechanical properties of the plasticised starches. This indicated that the direct relation between composition and physical properties of processed starches is not always valid; processing parameters are important tools for controlling the physical properties of processed starches as they influence the amount of B-type crystallinity in the material. It was shown that the total amount of B-type crystallinity in the glycerol-plasticised potato starches should be considered as a summation of residual amylopectin crystallinity and recrystallisation of both amylose and amylopectin, being strongly dependent on the applied processing conditions. In order to explain the observed amount of B-type crystallinity in these starches, partial (co-)crystallisation of both amylose and amylopectin should occur at high moulding temperatures. The measured mechanical properties of the plasticised potato starches correlated well with the amount of B-type crystallinity observed in the materials.  相似文献   

11.
The degradation of pea starch granules by acid hydrolysis has been investigated using a range of chemical and structural methods, namely through measuring changes in amylose content by both the iodine binding and concanavalin A precipitation methods, along with small angle X-ray scattering (SAXS), wide angle X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The relative crystallinity, intensity of the lamellar peak and the low-q scattering increased during the initial stages of acid hydrolysis, indicating early degradation of the amorphous regions (growth rings and lamellae). In the first 2 days of hydrolysis, there was a rapid decline in amylose content, a concomitant loss of precipitability of amylopectin by concanavalin A, and damage to the surface and internal granular structures was evident. These observations are consistent with both amylose and amylopectin being located on the surface of the granules and attacked simultaneously in the early stages of acid hydrolysis. The results are also consistent with amylose being more concentrated at the core of the granules. More extensive hydrolysis resulted in the simultaneous disruption of amorphous and crystalline regions, which was indicated by a decrease in lamellar peak intensity, decrease in interhelix peak intensity and no further increase in crystallinity. These results provide new insights into the organization of starch granules.  相似文献   

12.
A combined approach of fluorophore-assisted capillary electrophoresis (FACEL), high-sensitivity differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS), small-angle X-ray scattering (SAXS), and light (LM) and scanning electron microscopy (SEM) was applied to study the effects of changes in amylopectin chain-length distribution on the assembly structures of sweet potato starches with similar amylose levels. It was shown that unlike ordinary sweet potato starch, starch extracted from Quick Sweet cultivar of sweet potato had anomalous high level of amylopectin chains with a degree of polymerization (DP) 6–12. Joint analysis of the obtained data revealed that amylopectin chains with DP 10–24 are, apparently, the dominant material for the formation of supramolecular structures in starch granules. In contrast, amylopectin chains with DP < 10 facilitated the formation of defects within crystalline lamellae. An increase in relative content of amylopectin chains with DP < 10 is accompanied by the correlated structural alterations manifested at all levels of starch granule organization (crystalline lamellae, amylopectin clusters, semi-crystalline growth rings, and granule morphology). Thus, the short amylopectin chains with DP < 10 were considered as an origin of the defectiveness in starch supramolecular structures.  相似文献   

13.
Granular potato starches were methylated in aqueous suspension with dimethyl sulfate to molar substitution (MS) values up to 0.29. Fractions containing mainly amylose or amylopectin were obtained after aqueous leaching of the derivatised starch granules. Amylopectin in these fractions was precipitated with Concanavalin A to separate it from amylose. Amylose remained in solution and was enzymatically converted into D-glucose for quantification, thereby taking into account the decreased digestibility due to the presence of methyl substituents. It was found that the MS of amylose was 1.6-1.9 times higher than that of amylopectin in methylated starch granules. The distributions of methyl substituents in trimers and tetramers, prepared from amylose- or amylopectin-enriched fractions, were determined by FAB mass spectrometry and compared with the outcome of a statistically random distribution. It turned out that substituents in amylopectin were distributed heterogeneously, whereas substitution of amylose was almost random. The results are rationalised on the basis of an organised framework that is built up from amylopectin side chains. The crystalline lamellae are less accessible for substitution than amorphous branching points and amylose.  相似文献   

14.
This work focuses on the effect of annealing and pressure on microstructures of starch, in particular the crystal structure and crystallinity to further explore the mechanisms of annealing and pressure treatment. Cornstarches with different amylose/amylopectin ratios were used as model materials. Since the samples covered both A-type (high amylopectin starch: waxy and maize) and B-type (high amylose starch: G50 and G80) crystals, the results can be used to clarify some previous confusion. The effect of annealing and pressure on the crystallinity and double helices were investigated by X-ray diffraction (XRD) and 13C CP/MAS NMR spectroscopy. The crystal form of various starches remained unchanged after annealing and pressure treatment. XRD detection showed that the relative crystallinity (RC) of high amylopectin starches was increased slightly after annealing, while the RC of high amylose-rich starches remained unchanged. NMR measurement supported the XRD results. The increase can be explained by the chain relaxation. XRD results also indicated that some of the fixed region in crystallinity was susceptible to outside forces. The effect of annealing and pressure on starch gelatinization temperature and enthalpy are used to explore the mechanisms.  相似文献   

15.
Five wheat (Triticum aestivum L.) starches, from the varieties Sunco, Sunsoft, SM1118, and SM1028, with similar amylose content, and a waxy wheat were separated into large (A) and small (B) granules. The unfractionated starches, and isolated A and B granules, were characterized structurally and evaluated for their functional properties. The amylopectin chain length distribution revealed that A granules had a lower proportion of short chains with degree of polymerization (DP) 6-12 and a higher proportion of chains with DP 25-36 than B granules. X-ray diffraction (XRD) patterns showed predominantly A-type crystallinity for all of the starches. No differences in the crystallinity were found between unfractionated, A and B granules. Small-angle X-ray scattering (SAXS) patterns of the starches at 55% hydration showed that the lamellar repeat distance in A granules was larger than that of B granules for all the starches examined. However, the lamellar distances of both A and B granules from the waxy wheat were smaller than those of Sunco, Sunsoft, SM1118 and SM1028 starches. The swelling power of the B granules was greater than that of A granules from all five starches. The kinetics of digestion of A and B granules with α-amylase in vitro were complex, with B granules initially digested to a greater extent than A granules. After 4 h of incubation, A granules showed greater digestibility than B granules, except in the case of waxy starch where unfractionated and fractionated granules had similar in vitro digestibility. Correlations between structural and functional parameters were more significant for the isolated A and B granules than for the unfractionated starches. This study demonstrates that A and B granules differ in structure and functionality, and that some correlations between these properties could be masked in unfractionated starches with bimodal granule size distribution.  相似文献   

16.
Rice flour (18-25% moisture) and potato starch (20% moisture) were heated with continuous recording of the X-ray scattering during gelatinization. Rice flours displayed A-type crystallinity, which gradually decreased during gelatinization. The development of the characteristic 9 nm small-angle X-ray scattering (SAXS) peak during heating at sub-gelatinization temperatures indicated the gradual evolution into a stacked lamellar system. At higher temperatures, the crystalline and lamellar order was progressively lost. For potato starch (B-type crystallinity), no 9 nm SAXS peak was observed at ambient temperatures. Following the development of lamellar structures at sub-gelatinization temperatures, B-type crystallinity and lamellar order was lost during gelatinization. On cooling of partially gelatinized potato starch, A-type crystallinity steadily increased, but no formation of stacked lamellar structures was observed. Results were interpreted in terms of a high-temperature B- to A-type recrystallization, in which the lateral movement of double helices was accompanied by a shift along their helical axis. The latter is responsible for the inherent frustration of the lamellar stacks.  相似文献   

17.
Y. Song  J. Jane   《Carbohydrate polymers》2000,41(4):365-377
Four varieties of barley starches, W.B. Merlin, glacier, high amylose glacier, and high amylose hull-less glacier, were isolated from barley seeds. Apparent and absolute amylose contents, molecular size distributions of amylose and amylopectin, amylopectin branch-chain-length distributions, and Naegeli dextrin structures of the starches were analyzed. W.B. Merlin amylopectin had the longest detectable chain length of DP 67, whereas glacier, high amylose glacier and high amylose hull-less glacier amylopectins had the longest detectable chain length of DP 82, 79, and 78, respectively. All the four starches displayed a substantially reduced proportion of chains at DP 18–21. Amylopectins of high amylose varieties did not show significantly larger proportions of long chains than that of normal and waxy barley starch. Onset gelatinization temperatures of all four barley starches ranged from 55.0 to 56.5°C. Absolute amylose contents of W.B. Merlin, glacier, high amylose glacier, and high amylose hull-less glacier were 9.1, 29.5, 44.7, and 43.4%, respectively; phospholipid contents were 0.36, 0.78, 0.79, and 0.97%, respectively.  相似文献   

18.
Amyloses of uniform length were obtained by phosphorlytic synthesis (DP 20–35) and by preparative g.p.c. fractionation by an α-amylolytic digest of amylose on Bio-Gel P-4 (DP 3–20). Crystalline precipitates formed from pure aqueous solution on standing at ambient or lower temperatures gave the A-type X-ray pattern for malto-oligomers of DP 10–12 and the B-type pattern for DP 13 and all longer chains. With these carefully purified samples a mixture of the A- and B-amylose pattern was not observed. Malto-oligomers shorter than DP 10 did not crystallize. The findings support recent studies, indicating that the average chain length of amylopectin and the X-ray type of various starches are closely related. The reason for an influence of chain length on crystalline packing remains to be resolved.  相似文献   

19.
The effects of amylose content on the extent of oxidation and the distribution of carboxyl groups in hypochlorite-oxidized corn starches were investigated. Corn starches including waxy corn starch (WC), common corn starch (CC), and 50% and 70% high-amylose corn starches (AMC) were oxidized with NaOCl at three concentrations (0.8%, 2%, and 5%). Carboxyl and carbonyl content of oxidized starches increased with increasing NaOCl concentration. High-AMC (70%) had slightly higher carboxyl and carbonyl contents at 0.8% NaOCl, whereas WC had significantly higher carboxyl and carbonyl contents at 2% and 5% NaOCl levels. Carbohydrate profiles by high-performance size-exclusion chromatography indicate that amylose was more susceptible to depolymerization than amylopectin. Degradation of amylopectin long chains (DP >24) was more pronounced in WC and CC than in AMCs. The crystalline lamellae of WC started to degrade at 2% NaOCl, but those of the other corn starches remained intact even at 5% NaOCl level according to X-ray crystallinity. By using anion-exchange chromatography for separation and size-exclusion chromatography for characterization, carboxyl groups were found to be more concentrated on amylopectin than on amylose, particularly in AMCs. Oxidation decreased gelatinization temperature and enthalpy with WC showing the most decrease and 70% AMC showing the least. The gelatinization enthalpy of 50% AMC decreased significantly faster than those of CC and 70% AMC after 0.8% oxidation. Retrogradation of amylopectin slightly increased after oxidation with increasing oxidation level. The peak viscosities of oxidized WC and CC were higher than those of their native counterparts at 0.8% NaOCl, but this increase was not observed in AMCs. The setback viscosities of 2% NaOCl-oxidized 50% and 70% AMCs were much higher than those of the unmodified counterparts. The extent of oxidation and physicochemical properties of oxidized starches varied greatly with the amylase:amylopectin ratio of corn starches. Amylose was suggested to play an important role in controlling the oxidation efficiency.  相似文献   

20.
Starch defines a semicrystalline polymer made of two different polysaccharide fractions. The A- and B-type crystalline lattices define the distinct structures reported in cereal and tuber starches, respectively. Amylopectin, the major fraction of starch, is thought to be chiefly responsible for this semicrystalline organization while amylose is generally considered as an amorphous polymer with little or no impact on the overall crystalline organization. STA2 represents a Chlamydomonas reinhardtii gene required for both amylose biosynthesis and the presence of significant granule-bound starch synthase I (GBSSI) activity. We show that this locus encodes a 69 kDa starch synthase and report the organization of the corresponding STA2 locus. This enzyme displays a specific activity an order of magnitude higher than those reported for most vascular plants. This property enables us to report a detailed characterization of amylose synthesis both in vivo and in vitro. We show that GBSSI is capable of synthesizing a significant number of crystalline structures within starch. Quantifications of amount and type of crystals synthesized under these conditions show that GBSSI induces the formation of B-type crystals either in close association with pre-existing amorphous amylopectin or by crystallization of entirely de novo synthesized material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号