首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three strains of Clostridium sp., 14 (VKM B-2201), 42 (VKM B-2202), and 21 (VKM B-2279), two methanogens, Methanobacterium formicicum MH (VKM B-2198) and Methanosarcina mazei MM (VKM B-2199), and one sulfate-reducing bacterium, Desulfovibrio sp. SR1 (VKM B-2200), were isolated in pure cultures from an anaerobic microbial community capable of degrading p-toluene sulfonate. Strain 14 was able to degrade p-toluene sulfonate in the presence of yeast extract and bactotryptone and, like strain 42, to utilize p-toluene sulfonate as the sole sulfur source with the production of toluene. p-Toluene sulfonate stimulated the growth of Ms. mazei MM on acetate. The sulfate-reducing strain Desulfovibrio sp. SR1 utilized p-toluene sulfonate as an electron acceptor. The putative scheme of p-toluene sulfonate degradation by the anaerobic microbial community is discussed.  相似文献   

2.
2-Nitrodiphenylamine, 4-nitrodiphenylamine, and 2,4-dinitrodiphenylamine were anaerobically metabolized in sediment-water batch enrichments inoculated with mud from the German North Sea coast. The first intermediate in 2,4-dinitrodiphenylamine degradation was 2-amino-4-nitrodiphenylamine, which appeared in large (nearly stoichiometric) amounts before being completely reduced to 2,4-diaminodiphenylamine. Of the second theoretically expected metabolite, 4-amino-2-nitrodiphenylamine, only traces were detected by gas chromatographic-mass spectrometric analysis in highly concentrated extracts. In addition, low levels of 4-nitrodiphenylamine, which may be the product of ortho deamination of intermediately produced 2-amino-4-nitrodiphenylamine, were observed. 2-Nitrodiphenylamine and 4-nitrodiphenylamine were primarily reduced to 2-aminodiphenylamine and 4-aminodiphenylamine, respectively. Diphenylamine was never detected in any experiment as a theoretically possible intermediate. Results from studies with dense cell suspensions of anaerobic, aromatic-compound-mineralizing bacteria confirmed the transformation reactions, which were carried out by microorganisms indigenous to the anaerobic coastal water sediment.  相似文献   

3.
A new, rod-shaped, Gram-negative, non-sporing sulfate reducer (strain Ani1) was enriched and isolated from marine sediment with aniline as sole electron donor and carbon source. The strain degraded aniline completely to CO2 and NH3 with stoichiometric reduction of sulfate to sulfide. Strain Ani1 also degraded aminobenzoates and further aromatic and aliphatic compounds. The strain grew in sulfide-reduced mineral medium supplemented only with vitamin B12 and thiamine. Cells contained cytochromes, carbon monoxide dehydrogenase, and sulfite reductase P582, but no desulfoviridin. Strain Ani1 is described as a new species of the genus Desulfobacterium D. anilini. Marine enrichments with the three dihydroxybenzene isomers led to three different strains of sulfate-reducing bacteria; each of them could grow only with the isomer used for enrichment. Two strains isolated with catechol (strain Cat2) or resorcinol (strain Re10) were studied in detail. Both strains oxidized their substrates completely to CO2, and contained cytochromes, carbon monoxide dehydrogenase, and sulfite reductase P 582. Desulfoviridin was not present. Whereas the rod-shaped catechol oxidizer (strain Cat2) was able to grow on 18 aromatic compounds and several aliphatic substrates, the coccoid resorcinol-degrading bacterium (strain Re10) utilized only resorcinol, 2,4-dihydroxybenzoate and 1,3-cyclohexanedion. These strains could not be affiliated with existing species of sulfate-reducing bacteria. A further coccoid sulfate-reducing bacterium (strain Hy5) was isolated with hydroquinone and identified as a subspecies of Desulfococcus multivorans. Most-probable-number enumerations with catechol, phenol, and resorcinol showed relatively large numbers (10(4)-10(6) per ml) of aryl compound-degrading sulfate reducers in marine sediment samples.  相似文献   

4.
Differences in methylmercury (CH(3)Hg) production normalized to the sulfate reduction rate (SRR) in various species of sulfate-reducing bacteria (SRB) were quantified in pure cultures and in marine sediment slurries in order to determine if SRB strains which differ phylogenetically methylate mercury (Hg) at similar rates. Cultures representing five genera of the SRB (Desulfovibrio desulfuricans, Desulfobulbus propionicus, Desulfococcus multivorans, Desulfobacter sp. strain BG-8, and Desulfobacterium sp. strain BG-33) were grown in a strictly anoxic, minimal medium that received a dose of inorganic Hg 120 h after inoculation. The mercury methylation rates (MMR) normalized per cell were up to 3 orders of magnitude higher in pure cultures of members of SRB groups capable of acetate utilization (e.g., the family Desulfobacteriaceae) than in pure cultures of members of groups that are not able to use acetate (e.g., the family Desulfovibrionaceae). Little or no Hg methylation was observed in cultures of Desulfobacterium or Desulfovibrio strains in the absence of sulfate, indicating that Hg methylation was coupled to respiration in these strains. Mercury methylation, sulfate reduction, and the identities of sulfate-reducing bacteria in marine sediment slurries were also studied. Sulfate-reducing consortia were identified by using group-specific oligonucleotide probes that targeted the 16S rRNA molecule. Acetate-amended slurries, which were dominated by members of the Desulfobacterium and Desulfobacter groups, exhibited a pronounced ability to methylate Hg when the MMR were normalized to the SRR, while lactate-amended and control slurries had normalized MMR that were not statistically different. Collectively, the results of pure-culture and amended-sediment experiments suggest that members of the family Desulfobacteriaceae have a greater potential to methylate Hg than members of the family Desulfovibrionaceae have when the MMR are normalized to the SRR. Hg methylation potential may be related to genetic composition and/or carbon metabolism in the SRB. Furthermore, we found that in marine sediments that are rich in organic matter and dissolved sulfide rapid CH(3)Hg accumulation is coupled to rapid sulfate reduction. The observations described above have broad implications for understanding the control of CH(3)Hg formation and for developing remediation strategies for Hg-contaminated sediments.  相似文献   

5.
Desulfovibrio africanus strain Walvis Bay is an anaerobic sulfate-reducing bacterium capable of producing methylmercury (MeHg), a potent human neurotoxin. The mechanism of methylation by this and other organisms is unknown. We present the 4.2-Mb genome sequence to provide further insight into microbial mercury methylation and sulfate-reducing bacteria.  相似文献   

6.
Several sulfate-reducing microorganisms were isolated from an anaerobic-purification plant. Four strains were classified as Desulfovibrio desulfuricans, Desulfovibrio sapovorans, Desulfobulbus propionicus, and Desulfovibrio sp. The D. sapovorans strain contained poly-beta-hydroxybutyrate granules and seemed to form extracellular vesicles. A fifth isolate, Desulfovibrio sp. strain EDK82, was a gram-negative, non-spore-forming, nonmotile, curved organism. It was able to oxidize several substrates, including methanol. Sulfate, sulfite, thiosulfate, and sulfur were utilized as electron acceptors. Pyruvate, fumarate, malate, and glycerol could be fermented. Because strain EDK82 could not be ascribed to any of the existing species, a new species, Desulfovibrio carbinolicus, is proposed. The doubling times of the isolates were determined on several substrates. Molecular hydrogen, lactate, propionate, and ethanol yielded the shortest doubling times (3.0 to 6.3 h). Due to the presence of support material in an anaerobic filter system, these species were able to convert sulfate to sulfide very effectively at a hydraulic retention time as short as 0.5 h.  相似文献   

7.
Desulfovibrio sp. A2 is an anaerobic gram-negative sulfate-reducing bacterium with remarkable tolerance to copper. It was isolated from wastewater effluents of a zinc smelter at the Urals. Here, we report the 4.2-Mb draft genome sequence of Desulfovibrio sp. A2 and identify potential copper resistance mechanisms.  相似文献   

8.
Desulfovibrio desulfuricans strain ND132 is an anaerobic sulfate-reducing bacterium (SRB) capable of producing methylmercury (MeHg), a potent human neurotoxin. The mechanism of methylation by this and other organisms is unknown. We present the 3.8-Mb genome sequence to provide further insight into microbial mercury methylation.  相似文献   

9.
Natural relationships among sulfate-reducing eubacteria   总被引:25,自引:2,他引:23       下载免费PDF全文
Phylogenetic relationships among 20 nonsporeforming and two endospore-forming species of sulfate-reducing eubacteria were inferred from comparative 16S rRNA sequencing. All genera of mesophilic sulfate-reducing eubacteria except the new genus Desulfomicrobium and the gliding Desulfonema species were included. The sporeforming species Desulfotomaculum ruminis and Desulfotomaculum orientis were found to be gram-positive organisms sharing 83% 16S rRNA sequence similarity, indicating that this genus is diverse. The gram-negative nonsporeforming species could be divided into seven natural groups: group 1, Desulfovibrio desulfuricans and other species of this genus that do not degrade fatty acids (this group also included "Desulfomonas" pigra); group 2, the fatty acid-degrading "Desulfovibrio" sapovorans; group 3, Desulfobulbus species; group 4, Desulfobacter species; group 5, Desulfobacterium species and "Desulfococcus" niacini; group 6, Desulfococcus multivorans and Desulfosarcina variabilis; and group 7, the fatty acid-oxidizing "Desulfovibrio" baarsii. (The quotation marks are used to indicate the need for taxonomic revision.) Groups 1 to 3 are incomplete oxidizers that form acetate as an end product; groups 4 to 7 are complete oxidizers. The data were consistent with and refined relationships previously inferred by oligonucleotide catalogs of 16S rRNA. Although the determined relationships are generally consistent with the existing classification based on physiology and other characteristics, the need for some taxonomic revision is indicated.  相似文献   

10.
The different nutritional properties of several Desulfovibrio desulfuricans strains suggest that either the strains are misclassified or there is a high degree of phenotypic diversity within the genus Desulfovibrio. The results of partial 16S rRNA and 23S rRNA sequence determinations demonstrated that Desulfovibrio desulfuricans ATCC 27774 and "Desulfovibrio multispirans" are closely related to the type strain (strain Essex 6) and that strains ATCC 7757, Norway 4, and El Agheila Z are not. Therefore, these latter three strains of Desulfovibrio desulfuricans are apparently misclassified. A comparative analysis of nearly complete 16S rRNA sequences in which we used a least-squares analysis method for evolutionary distances, an unweighted pair group method, a signature analysis method, and maximum parsimony was undertaken to further investigate the phylogeny of Desulfovibrio species. The species analyzed were resolved into two branches with origins deep within the delta subdivision of the purple photosynthetic bacteria. One branch contained five deep lineages, which were represented by (i) Desulfovibrio salexigens and Desulfovibrio desulfuricans El Agheila Z; (ii) Desulfovibrio africanus; (iii) Desulfovibrio desulfuricans ATCC 27774, Desulfomonas pigra, and Desulfovibrio vulgaris; (iv) Desulfovibrio gigas; and (v) Desulfomicrobium baculatus (Desulfovibrio baculatus) and Desulfovibrio desulfuricans Norway 4. A correlation between 16S rRNA sequence similarity and percentage of DNA relatedness showed that these five deep lineages are related at levels below the minimum genus level suggested by Johnson (in Bergey's Manual of Systematic Bacteriology, vol. 1, 1984). We propose that this branch should be grouped into a single family, the Desulfovibrionaceae. The other branch includes other genera of sulfate-reducing bacteria (e.g., Desulfobacter and Desulfococcus) and contains Desulfovibrio sapovorans and Desulfovibrio baarsii as separate, distantly related lineages.  相似文献   

11.
The microbial population structure and function of natural anaerobic communities maintained in laboratory fixed-bed biofilm reactors were tracked before and after a major perturbation, which involved the addition of sulfate to the influent of a reactor that had previously been fed only glucose (methanogenic), while sulfate was withheld from a reactor that had been fed both glucose and sulfate (sulfidogenic). The population structure, determined by using phylogenetically based oligonucleotide probes for methanogens and sulfate-reducing bacteria, was linked to the functional performance of the biofilm reactors. Before the perturbation, the methanogenic reactor contained up to 25% methanogens as well as 15% sulfate-reducing bacteria, even though sulfate was not present in the influent of this reactor. Methanobacteriales and Desulfovibrio spp. were the most abundant methanogens and sulfate-reducing bacteria, respectively. The presence of sulfate-reducing bacteria (primarily Desulfovibrio spp. and Desulfobacterium spp.) in the absence of sulfate may be explained by their ability to function as proton-reducing acetogens and/or fermenters. Sulfate reduction began immediately following the addition of sulfate consistent with the presence of significant levels of sulfate-reducing bacteria in the methanogenic reactor, and levels of sulfate-reducing bacteria increased to a new steady-state level of 30 to 40%; coincidentally, effluent acetate concentrations decreased. Notably, some sulfate-reducing bacteria (Desulfococcus/Desulfosarcina/Desulfobotulus group) were more competitive without sulfate. Methane production decreased immediately following the addition of sulfate; this was later followed by a decrease in the relative concentration of methanogens, which reached a new steady-state level of approximately 8%. The changeover to sulfate-free medium in the sulfidogenic reactor did not cause a rapid shift to methanogenesis. Methane production and a substantial increase in the levels of methanogens were observed only after approximately 50 days following the perturbation.  相似文献   

12.
The effects of temperature and carbon substrate availability on the stimulation of sulfate reduction by indigenous populations of sulfate-reducing prokaryotes (SRP) in permanently ice-covered Lake Fryxell, Antarctica were investigated. Psychrophilic and halotolerant, lactate-degrading SRP showed significant metabolic activity throughout all sampled depths of the water column, suggesting that such organisms, possibly of marine origin, may be key contributors to carbon and sulfur cycling in Lake Fryxell. Planktonic and benthic strains of lactate-oxidizing sulfate-reducing bacteria (SRB) were isolated from samples of various depths of the anoxic water column and from surficial sediments. Phylogenetic analyses of 16S rRNA gene sequences placed the Fryxell sulfate-reducer (FSR) strains within the Deltaproteobacteria and showed them to be most closely related to the Arctic marine species of SRB Desulfovibrio frigidus and Desulfovibrio ferrireducens. Based on phylogenetic and phenotypic differences between the Antarctic FSR strains and related species of the genus Desulfovibrio, strain FSRsT (=DSM 23315T =ATCC BAA-2083T) is proposed as the type strain of a novel species of cold-active SRB, Desulfovibrio lacusfryxellense, sp. nov.  相似文献   

13.
Cadmium resistance (0.1 to 1.0 mM) was studied in four pure and one mixed culture of sulfate-reducing bacteria (SRB). The growth of the bacteria was monitored with respect to carbon source (lactate) oxidation and sulfate reduction in the presence of various concentrations of cadmium chloride. Two strains Desulfovibrio desulfuricans DSM 1926 and Desulfococcus multivorans DSM 2059 showed the highest resistance to cadmium (0.5 mM). Transmission electron microscopy of the two strains showed intracellular and periplasmic accumulation of cadmium. Dot blot DNA hybridization using the probes for the smtAB, cadAC, and cadD genes indicated the presence of similar genetic determinants of heavy metal resistance in the SRB tested. DNA sequencing of the amplified DNA showed strong nucleotide homology in all the SRB strains with the known smtAB genes encoding synechococcal metallothioneins. Protein homology with the known heavy metal-translocating ATPases was also detected in the cloned amplified DNA of Desulfomicrobium norvegicum I1 and Desulfovibrio desulfuricans DSM 1926, suggesting the presence of multiple genetic mechanisms of metal resistance in the two strains.  相似文献   

14.
Of 36 pure isomers (chlorine numbers 1 to 5) of polychlorinated biphenyls examined, 23 compounds were metabolized by Alcaligenes sp. strain Y42, and 33 compounds were metabolized by Acinetobacter sp. strain P6. The major pathway of many polychlorinated biphenyl isomers examined was considered to proceed through 2',3'-dihydro-2',3'-diol compounds, concomitant dehydrogenated 2',3'-dihydroxy compounds, subsequently the 1',2'-meta-cleavage compounds (chlorinated derivatives of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acids), and then chlorobenzoic acids. The meta-cleavage products were usually converted to chlorobenzoic acids upon further incubation in many polychlorinated biphenyls, but they accumulated specifically in the metabolism of 2,4'-, 2,4,4'-, and 2,5,4'-chlorobiphenyls, which are all chlorinated at the 2,4'-position in the molecules in common. Dihydroxy compounds accumulated mainly in the metabolism of 2,6-, 2,3,6-, 2,4,2',5'-, 2,5,2',5'-, and 2,4,5,2',5'-chlorobiphenyls by Acinetobacter sp. P6. The 2,3,2',3'-, 2,3,2',5'-, and 2,4,5,2',3'-chlorobiphenyls, which are chlorinated at the 2,3-position of one of the rings, were metabolized in a different fashion. Two major metabolites of a chlorobenzoic acid and an unknown compound accumulated always in the metabolism of this group of polychlorinated biphenyls. 2,4,6-Trichlorobiphenyl was metabolized quite differently between the two organisms. Alcaligenes sp. Y42 metabolized this compound very slowly to trichlorobenzoic acid by the major oxidative route. In contrast, Acinetobacter sp. P6 metabolized it to a trihydroxy compound via a dihydroxy compound.  相似文献   

15.
Seven strains of sulfate-reducing bacteria (SRB) were tested for the accumulation of polyhydroxyalkanoates (PHAs). During growth with benzoate Desulfonema magnum accumulated large amounts of poly(3-hydroxybutyrate) [poly(3HB)]. Desulfosarcina variabilis (during growth with benzoate), Desulfobotulus sapovorans (during growth with caproate), and Desulfobacterium autotrophicum (during growth with caproate) accumulated poly(3HB) that accounted for 20 to 43% of cell dry matter. Desulfobotulus sapovorans and Desulfobacterium autotrophicum also synthesized copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyvalerate when valerate was used as the growth substrate. Desulfovibrio vulgaris and Desulfotalea psychrophila were the only SRB tested in which PHAs were not detected. When total DNA isolated from Desulfococcus multivorans and specific primers deduced from highly conserved regions of known PHA synthases (PhaC) were used, a PCR product homologous to the central region of class III PHA synthases was obtained. The complete pha locus of Desulfococcus multivorans was subsequently obtained by inverse PCR, and it contained adjacent phaE(Dm) and phaC(Dm) genes. PhaC(Dm) and PhaE(Dm) were composed of 371 and 306 amino acid residues and showed up to 49 or 23% amino acid identity to the corresponding subunits of other class III PHA synthases. Constructs of phaC(Dm) alone (pBBRMCS-2::phaC(Dm)) and of phaE(Dm)C(Dm) (pBBRMCS-2::phaE(Dm)C(Dm)) in various vectors were obtained and transferred to several strains of Escherichia coli, as well as to the PHA-negative mutants PHB(-)4 and GPp104 of Ralstonia eutropha and Pseudomonas putida, respectively. In cells of the recombinant strains harboring phaE(Dm)C(Dm) small but significant amounts (up to 1.7% of cell dry matter) of poly(3HB) and of PHA synthase activity (up to 1.5 U/mg protein) were detected. This indicated that the cloned genes encode functionally active proteins. Hybrid synthases consisting of PhaC(Dm) and PhaE of Thiococcus pfennigii or Synechocystis sp. strain PCC 6308 were also constructed and were shown to be functionally active.  相似文献   

16.
Of 36 pure isomers (chlorine numbers 1 to 5) of polychlorinated biphenyls examined, 23 compounds were metabolized by Alcaligenes sp. strain Y42, and 33 compounds were metabolized by Acinetobacter sp. strain P6. The major pathway of many polychlorinated biphenyl isomers examined was considered to proceed through 2',3'-dihydro-2',3'-diol compounds, concomitant dehydrogenated 2',3'-dihydroxy compounds, subsequently the 1',2'-meta-cleavage compounds (chlorinated derivatives of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acids), and then chlorobenzoic acids. The meta-cleavage products were usually converted to chlorobenzoic acids upon further incubation in many polychlorinated biphenyls, but they accumulated specifically in the metabolism of 2,4'-, 2,4,4'-, and 2,5,4'-chlorobiphenyls, which are all chlorinated at the 2,4'-position in the molecules in common. Dihydroxy compounds accumulated mainly in the metabolism of 2,6-, 2,3,6-, 2,4,2',5'-, 2,5,2',5'-, and 2,4,5,2',5'-chlorobiphenyls by Acinetobacter sp. P6. The 2,3,2',3'-, 2,3,2',5'-, and 2,4,5,2',3'-chlorobiphenyls, which are chlorinated at the 2,3-position of one of the rings, were metabolized in a different fashion. Two major metabolites of a chlorobenzoic acid and an unknown compound accumulated always in the metabolism of this group of polychlorinated biphenyls. 2,4,6-Trichlorobiphenyl was metabolized quite differently between the two organisms. Alcaligenes sp. Y42 metabolized this compound very slowly to trichlorobenzoic acid by the major oxidative route. In contrast, Acinetobacter sp. P6 metabolized it to a trihydroxy compound via a dihydroxy compound.  相似文献   

17.
Krumholz LR  Suflita JM 《Anaerobe》1997,3(6):399-403
We evaluated the susceptibility of 2,4-dinitrophenol (2,4-DNP) and 2,4-diaminophenol to anaerobic biodegradation in aquifer slurries. Aquifer microorganisms depleted 2,4-DNP at rates of 25, 9 and 0.4 microM/day under methanogenic, sulfate-reducing and nitrate-reducing conditions, respectively. Rates of abiotic, 2,4-DNP loss in autoclaved control incubations were 7.2, 6.2 and 0.95 microM/day respectively. Abiotic, 2,4-DNP reduction was especially important as the first step in its transformation. 2-Amino-4-nitrophenol was produced by this process, but this compound was further metabolized in methanogenic and sulfate-reducing aquifer slurries. This partially reduced compound persisted in autoclaved controls and in the nitrate-reducing aquifer slurries. Aquifer slurries incubated with either 2,4-DNP or 2,4-diaminophenol produced methane when incubated with no other electron acceptor suggesting that mineralization had occurred under these conditions. In parallel experiments, aquifer slurries amended with 2,6-dinitrophenol or picric acid did not produce methane at levels above the substrate unamended controls.  相似文献   

18.
Abstract The survival after oxygen stress was studied with eight species of sulfate-reducing bacteria. In the absence of sulfide all species tolerated 6 min of aeration without loss of viability. Even after 3 h of aeration the viability of four species ( Desulfovibrio vulgaris, D. desulfuricans, D. salexigens and Desulfobacter postgatei ) was not impaired. Four other species were sensitive to 3 h of aeration: the surviving fractions of Desulfotomaculum ruminis, D. nigrificans and Desulfococcus multivorans were about 1%, that of Desulfotomaculum orientis about 0.01%. Formation of spores resulted in oxygen resistance of D. orientis . Reducing agents did not protect the vegetative cells of this strain against oxygen toxicity. In contrast, sulfhydryl group-containing agents increased the oxygen sensitivity considerably.
Growth of sulfate- and sulfur-reducing bacteria in oxygen-sulfide gradients in agar tubes was studied. In the gradients these strictly anaerobic bacteria revealed oxygen-dependent growth in sulfate- and sulfur-free medium. Three sulfate-reducing bacteria that could not use thiosulfate or sulfur as electron acceptor failed to grow in oxygen-sulfide gradients. Obviously, not directly molecular oxygen, but oxidation products of sulfide, such as thiosulfate or sulfur, were used as electron acceptors and were continuously regenerated in a cycling process from sulfide by autoxidation. The conceivable ecological significance of a short sulfur cycle driven by autoxidation of sulfide is discussed.  相似文献   

19.
A sulfate-reducing bacterium, Desulfovibrio sp. (B strain) isolated from an anaerobic reactor treating furfural-containing waste-water was studied for its ability to metabolize trinitrotoluene (TNT). The result showed that this isolate could transform 100 ppm TNT within 7 to 10 days of incubation at 37°C, when grown with 30 mm pyruvate as the primary carbon source and 20 mm sulfate as electron acceptor. Under these conditions, the main intermediate produced was 2,4-diamino-6-nitrotoluene. Under culture conditions where TNT served as the sole source of nitrogen for growth with pyruvate as electron donor and sulfate as electron acceptor, TNT was first converted to 2,4-diamino-6-nitrotoluene within 10 days of incubation. This intermediate was further converted to toluene by a reductive deamination process via triaminotoluene. Apart from pyruvate, various other carbon sources such as ethanol, lactate, formate and H2 + CO2 were also studied as potential electron donors for TNT metabolism. The rate of TNT biotransformation by Desulfovibrio sp. (B strain) was compared with other sulfate-reducing bacteria and the results were evaluated. This new strain may be useful in decontaminating TNT-contaminated soil and water under anaerobic conditions in conjunction with toluene-degrading denitrifiers (Pseudomonas spp.) or toluene-degrading sulfate reducers in a mixed culture system. Correspondence to: R. Boopathy  相似文献   

20.
Various alkylbenzenes were depleted during growth of an anaerobic, sulfate-reducing enrichment culture with crude oil as the only source of organic substrates. From this culture, two new types of mesophilic, rod-shaped sulfate-reducing bacteria, strains oXyS1 and mXyS1, were isolated with o-xylene and m-xylene, respectively, as organic substrates. Sequence analyses of 16S rRNA genes revealed that the isolates affiliated with known completely oxidizing sulfate-reducing bacteria of the delta subclass of the class Proteobacteria. Strain oXyS1 showed the highest similarities to Desulfobacterium cetonicum and Desulfosarcina variabilis (similarity values, 98.4 and 98.7%, respectively). Strain mXyS1 was less closely related to known species, the closest relative being Desulfococcus multivorans (similarity value, 86.9%). Complete mineralization of o-xylene and m-xylene was demonstrated in quantitative growth experiments. Strain oXyS1 was able to utilize toluene, o-ethyltoluene, benzoate, and o-methylbenzoate in addition to o-xylene. Strain mXyS1 oxidized toluene, m-ethyltoluene, m-isoproyltoluene, benzoate, and m-methylbenzoate in addition to m-xylene. Strain oXyS1 did not utilize m-alkyltoluenes, whereas strain mXyS1 did not utilize o-alkyltoluenes. Like the enrichment culture, both isolates grew anaerobically on crude oil with concomitant reduction of sulfate to sulfide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号