首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron is a key element in plant nutrition. Iron deficiency as well as iron overload results in serious metabolic disorders that affect photosynthesis, respiration and general plant fitness with direct consequences on crop production.More than 25% of the cultivable land possesses low iron availability due to high pH (calcareous soils). Plant biologists are challenged by this concern and aimed to find new avenues to ameliorate plant responses and keep iron homeostasis under control even at wide range of iron availability in various soils. For this purpose, detailed knowledge of iron uptake, transport, storage and interactions with cellular compounds will help to construct a more complete picture of its role as essential nutrient. In this review, we summarize and describe the recent findings involving four central players involved in keeping cellular iron homeostasis in plants: nitric oxide, ferritin, frataxin and nitrosyl iron complexes. We attempt to highlight the interactions among these actors in different scenarios occurring under iron deficiency or iron overload, and discuss their counteracting and/or coordinating actions leading to the control of iron homeostasis.  相似文献   

2.
3.
Iron (Fe) is one of the most important microelement required for plant growth and development because of its unique property of catalyzing oxidation/reduction reactions. Iron deficiency impairs fundamental processes which could lead to a decrease in chlorophyll production and pollen fertility, thus influencing crop productivity and quality. However, iron in excess is toxic to the cell and is harmful to the plant. To exactly control the iron content in all tissues, plants have evolved many strategies to regulate iron homeostasis, which refers to 2 successive steps: iron uptake at the root surface, and iron distribution in vivo. In the last decades, a number of transporters and regulatory factors involved in this process have been isolated and identified. To cope with the complicated flexible environmental conditions, plants apply diverse mechanisms to regulate the expression and activity of these components. One of the most important mechanisms is epigenetic regulation of iron homeostasis. This review has been presented to provide an update on the information supporting the involvement of histone modifications in iron homeostasis and possible future course of the field.  相似文献   

4.
A wealth of information on the different aspects of iron homeostasis in plants has been obtained during the last decade. However, there is no clear road-map integrating the relationships between the various components. The principal aim of the current review is to fill this gap. In this context we discuss the lack of low affinity iron uptake mechanisms in plants, the utilization of a different uptake mechanism by graminaceous plants compared to the others, as well as the roles of riboflavin, ferritin isoforms, nitric oxide, nitrosylation, heme, aconitase, and vacuolar pH. Cross-homeostasis between elements is also considered, with a specific emphasis on the relationship between iron homeostasis and phosphorus and copper deficiencies. As the environment is a crucial parameter for modulating plant responses, we also highlight how diurnal fluctuations govern iron metabolism. Evolutionary aspects of iron homeostasis have so far attracted little attention. Looking into the past can inform us on how long-term oxygen and iron-availability fluctuations have influenced the evolution of iron uptake mechanisms. Finally, we evaluate to what extent this homeostastic road map can be used for the development of novel biofortification strategies in order to alleviate iron deficiency in human.  相似文献   

5.
Iron metabolism is a balancing act, and biological systems have evolved exquisite regulatory mechanisms to maintain iron homeostasis. Iron metabolism disorders are widespread health problems on a global scale and range from iron deficiency to iron-overload. Both types of iron disorders are linked to heart failure. Iron play a fundamental role in mitochondrial function and various enzyme functions and iron deficiency has a particular negative impact on mitochondria function. Given the high-energy demand of the heart, iron deficiency has a particularly negative impact on heart function and exacerbates heart failure. Iron-overload can result from excessive gut absorption of iron or frequent use of blood transfusions and is typically seen in patients with congenital anemias, sickle cell anemia and beta-thalassemia major, or in patients with primary hemochromatosis. This review provides an overview of normal iron metabolism, mechanisms underlying development of iron disorders in relation to heart failure, including iron-overload cardiomyopathy, and clinical perspective on the treatment options for iron metabolism disorders.  相似文献   

6.
Iron is an essential nutrient for all organisms but toxic when present in excess. Consequently, plants carefully regulate their iron uptake, dependent on the FRO2 ferric reductase and the IRT1 transporter, to control its homeostasis. Arabidopsis IRT2 gene, whose expression is induced in root epidermis upon iron deprivation, was shown to encode a functional iron/zinc transporter in yeast, and proposed to function in iron acquisition from the soil. In this study, we demonstrate that, unlike its close homolog IRT1, IRT2 is not involved in iron absorption from the soil since overexpression of IRT2 does not rescue the iron uptake defect of irt1-1 mutant and since a null irt2 mutant shows no chlorosis in low iron. Consistently, an IRT2-green fluorescent fusion protein, transiently expressed in culture cells, localizes to intracellular vesicles. However, IRT2 appears strictly co-regulated with FRO2 and IRT1, supporting the view that IRT2 is an integral component of the root response to iron deficiency in root epidermal cells. We propose a model where IRT2 likely prevents toxicity from IRT1-dependent iron fluxes in epidermal cells, through compartmentalization.  相似文献   

7.
Iron deficiency is a common micronutrient deficiency associated with metabolic changes in the levels of iron regulatory proteins, hepcidin and ferroportin. Studies have associated dysregulation of iron homeostasis to other secondary and life-threatening diseases including anaemia, neurodegeneration and metabolic diseases. Iron deficiency plays a critical role in epigenetic regulation by affecting the Fe2+/α-ketoglutarate-dependent demethylating enzymes, Ten Eleven Translocase 1–3 (TET 1–3) and Jumonji-C (JmjC) histone demethylase, which are involved in epigenetic erasure of the methylation marks on both DNA and histone tails, respectively. In this review, studies involving epigenetic effects of iron deficiency associated with dysregulation of TET 1–3 and JmjC histone demethylase enzyme activities on hepcidin/ferroportin axis are discussed.  相似文献   

8.
Iron deficiency is one of the major agricultural problems, as 30% of the arable land of the world is too alkaline for optimal crop production, rendering plants short of available iron despite its abundance. To take up apoplasmic precipitated iron, plants secrete phenolics such as protocatechuic acid (PCA) and caffeic acid. The molecular pathways and genes of iron uptake strategies are already characterized, whereas the molecular mechanisms of phenolics synthesis and secretion have not been clarified, and no phenolics efflux transporters have been identified in plants yet. Here we describe the identification of a phenolics efflux transporter in rice. We identified a cadmium-accumulating rice mutant in which the amount of PCA and caffeic acid in the xylem sap was dramatically reduced and hence named it phenolics efflux zero 1 (pez1). PEZ1 localized to the plasma membrane and transported PCA when expressed in Xenopus laevis oocytes. PEZ1 localized mainly in the stele of roots. In the roots of pez1, precipitated apoplasmic iron increased. The growth of PEZ1 overexpression lines was severely restricted, and these lines accumulated more iron as a result of the high solubilization of precipitated apoplasmic iron in the stele. We show that PEZ1 is responsible for an increase of PCA concentration in the xylem sap and is essential for the utilization of apoplasmic precipitated iron in the stele.  相似文献   

9.
With the exception of the grasses, plants rely on a reduction-based iron (Fe) uptake system that is compromised by high soil pH, leading to severe chlorosis and reduced yield in crop plants. We recently reported that iron deficiency triggers the production of secondary metabolites that are beneficial for Fe uptake in particular at high external pH when iron is present but not readily available. The exact function of these metabolites, however, remains enigmatic. Here, we speculate on the mechanism by which secondary metabolites secreted by roots from Fe-deficient plants improve Fe acquisition. We suggest that the production and excretion of Iron Binding Compounds (IBCs) constitute an integrative, pH-insensitive component of the reduction-based iron uptake strategy in plants.  相似文献   

10.
Iron is an important nutrient in N2-fixing legume nodules. The demand for this micronutrient increases during the symbiosis establishment, where the metal is utilized for the synthesis of various iron-containing proteins in both the plant and the bacteroid. Unfortunately, in spite of its importance, iron is poorly available to plant uptake since its solubility is very low when in its oxidized form Fe(III). In the present study, the effect of iron deficiency on the activity of some proteins involved in Strategy I response, such as Fe-chelate reductase (FC-R), H+-ATPase, and phosphoenolpyruvate carboxylase (PEPC) and the protein level of iron regulated transporter (IRT1) and H+-ATPase proteins has been investigated in both roots and nodules of a tolerant (Flamingo) and a susceptible (Coco blanc) cultivar of common bean plants. The main results of this study show that the symbiotic tolerance of Flamingo can be ascribed to a greater increase in the FC-R and H+-ATPase activities in both roots and nodules, leading to a more efficient Fe supply to nodulating tissues. The strong increase in PEPC activity and organic acid content, in the Flamingo root nodules, suggests that under iron deficiency nodules can modify their metabolism in order to sustain those activities necessary to acquire Fe directly from the soil solution.  相似文献   

11.
A specific transporter for iron(III)-phytosiderophore in barley roots   总被引:1,自引:0,他引:1  
Iron acquisition of graminaceous plants is characterized by the synthesis and secretion of the iron-chelating phytosiderophore, mugineic acid (MA), and by a specific uptake system for iron(III)-phytosiderophore complexes. We identified a gene specifically encoding an iron-phytosiderophore transporter (HvYS1) in barley, which is the most tolerant species to iron deficiency among graminaceous plants. HvYS1 was predicted to encode a polypeptide of 678 amino acids and to have 72.7% identity with ZmYS1, a first protein identified as an iron(III)-phytosiderophore transporter in maize. Real-time RT-PCR analysis showed that the HvYS1 gene was mainly expressed in the roots, and its expression was enhanced under iron deficiency. In situ hybridization analysis of iron-deficient barley roots revealed that the mRNA of HvYS1 was localized in epidermal root cells. Furthermore, immunohistological staining with anti-HvYS1 polyclonal antibody showed the same localization as the mRNA. HvYS1 functionally complemented yeast strains defective in iron uptake on media containing iron(III)-MA, but not iron-nicotianamine (NA). Expression of HvYS1 in Xenopus oocytes showed strict specificity for both metals and ligands: HvYS1 transports only iron(III) chelated with phytosiderophore. The localization and substrate specificity of HvYS1 is different from those of ZmYS1, indicating that HvYS1 is a specific transporter for iron(III)-phytosiderophore involved in primary iron acquisition from soil in barley roots.  相似文献   

12.
铁离子是鱼腥蓝细菌PCC7120进行呼吸作用、光合作用和固氮作用中相关酶的重要辅基之一,缺铁将严重影响蓝细菌的生存.富氧的生态环境中铁通常以不溶的Fe3+形式存在,不易被细胞吸收利用.低铁条件下,鱼腥蓝细菌PCC7120分泌能螯合铁离子的嗜铁素,通过外膜上相应的转运体将嗜铁素-铁复合物转运到细胞内.综述了近年来在嗜铁素的种类及其生物合成途径、铁吸收系统的组成和功能等方面的最新进展,分析了铁吸收系统的调控机制,为进一步开展鱼腥蓝细菌铁吸收机制的研究提供依据.  相似文献   

13.
Rice is one of the most important staple crops and efficient iron (Fe) adsorption during growth not only improves rice yield, but also enriches this essential micronutrient in rice grains to address Fe deficiency in humans. In this article, we review updates on research into the molecular mechanisms regulating Fe uptake from soil and its transport from roots to shoots to seeds in rice plants. Understanding the regulation and expression of genes involved in Fe homeostasis will benefit the development of variants with enhanced Fe utilization to improve rice output and quality.  相似文献   

14.
Nitric oxide improves internal iron availability in plants   总被引:18,自引:0,他引:18       下载免费PDF全文
Iron deficiency impairs chlorophyll biosynthesis and chloroplast development. In leaves, most of the iron must cross several biological membranes to reach the chloroplast. The components involved in the complex internal iron transport are largely unknown. Nitric oxide (NO), a bioactive free radical, can react with transition metals to form metal-nitrosyl complexes. Sodium nitroprusside, an NO donor, completely prevented leaf interveinal chlorosis in maize (Zea mays) plants growing with an iron concentration as low as 10 microM Fe-EDTA in the nutrient solution. S-Nitroso-N-acetylpenicillamine, another NO donor, as well as gaseous NO supply in a translucent chamber were also able to revert the iron deficiency symptoms. A specific NO scavenger, 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, blocked the effect of the NO donors. The effect of NO treatment on the photosynthetic apparatus of iron-deficient plants was also studied. Electron micrographs of mesophyll cells from iron-deficient maize plants revealed plastids with few photosynthetic lamellae and rudimentary grana. In contrast, in NO-treated maize plants, mesophyll chloroplast appeared completely developed. NO treatment did not increase iron content in plant organs, when expressed in a fresh matter basis, suggesting that root iron uptake was not enhanced. NO scavengers 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and methylene blue promoted interveinal chlorosis in iron-replete maize plants (growing in 250 microM Fe-EDTA). Even though results support a role for endogenous NO in iron nutrition, experiments did not establish an essential role. NO was also able to revert the chlorotic phenotype of the iron-inefficient maize mutants yellow stripe1 and yellow stripe3, both impaired in the iron uptake mechanisms. All together, these results support a biological action of NO on the availability and/or delivery of metabolically active iron within the plant.  相似文献   

15.

Background  

Iron deficiency induces in Strategy I plants physiological, biochemical and molecular modifications capable to increase iron uptake from the rhizosphere. This effort needs a reorganization of metabolic pathways to efficiently sustain activities linked to the acquisition of iron; in fact, carbohydrates and the energetic metabolism has been shown to be involved in these responses. The aim of this work was to find both a confirmation of the already expected change in the enzyme concentrations induced in cucumber root tissue in response to iron deficiency as well as to find new insights on the involvement of other pathways.  相似文献   

16.
Iron is a fundamental element for humans as it represents an essential component of many proteins and enzymes. However, this element can also be toxic when present in excess because of its ability to generate reactive oxygen species. This dual nature imposes a tight regulation of iron concentration in the body. In humans, systemic iron homeostasis is mainly regulated at the level of intestinal absorption and, until now, no regulated pathways for the excretion of iron have been found. The regulation and maintenance of systemic iron homeostasis is critical to human health. Excessive iron absorption leads to iron-overload in parenchyma, while low iron absorption leads to plasma iron deficiency, which manifests as hypoferremia (iron deficiency, ID) and ID anaemia (IDA). ID and IDA are still a major health problem in pregnant women. To cure ID and IDA, iron supplements are routinely prescribed. The preferred treatment of ID/IDA, consisting in oral administration of iron as ferrous sulphate, often fails to exert significant effects on hypoferremia and may also cause adverse effects. Lactoferrin (Lf), an iron-binding glycoprotein abundantly found in exocrine secretions of mammals, is emerging as an important regulator of systemic iron homeostasis. Recent data suggest that this natural compound, capable of interacting with the most important components of iron homeostasis, may represent a valuable alternative to iron supplements in the prevention and cure of pregnancy-associated ID and IDA. In this review, recent advances in the molecular circuits involved in the complex cellular and systemic iron homeostasis will be summarised. The role of Lf in curing ID and IDA in pregnancy and in the maintenance of iron homeostasis will also be discussed. Understanding these mechanisms will provide the rationale for the development of novel therapeutic alternatives to ferrous sulphate oral administration in the prevention and cure of ID and IDA.  相似文献   

17.
18.
Paz Y  Shimoni E  Weiss M  Pick U 《Plant physiology》2007,144(3):1407-1415
Uptake of iron in the halotolerant alga Dunaliella salina is mediated by a transferrin-like protein (TTf), which binds and internalizes Fe(3+) ions. Recently, we found that iron deficiency induces a large enhancement of iron binding, which is associated with accumulation of three other plasma membrane proteins that associate with TTf. In this study, we characterized the kinetic properties of iron binding and internalization and identified the site of iron internalization. Iron deficiency induces a 4-fold increase in Fe binding, but only 50% enhancement in the rate of iron uptake and also increases the affinity for iron and bicarbonate, a coligand for iron binding. These results indicate that iron deprivation leads to accumulation and modification of iron-binding sites. Iron uptake in iron-sufficient cells is preceded by an apparent time lag, resulting from prebound iron, which can be eliminated by unloading iron-binding sites. Iron is tightly bound to surface-exposed sites and hardly exchanges with medium iron. All bound iron is subsequently internalized. Accumulation of iron inhibits further iron binding and internalization. The vacuolar inhibitor bafilomycin inhibits iron uptake and internalization. Internalized iron was localized by electron microscopy within vacuolar structures that were identified as acidic vacuoles. Iron internalization is accompanied by endocytosis of surface proteins into these acidic vacuoles. A novel kinetic mechanism for iron uptake is proposed, which includes two pools of bound/compartmentalized iron separated by a rate-limiting internalization stage. The major parameter that is modulated by iron deficiency is the iron-binding capacity. We propose that excessive iron binding in iron-deficient cells serves as a temporary reservoir for iron that is subsequently internalized. This mechanism is particularly suitable for organisms that are exposed to large fluctuations in iron availability.  相似文献   

19.
20.
The effects of iron deficiency on the composition of the xylem sap and leaf apoplastic fluid have been characterized in sugar beet (Beta vulgaris Monohil hybrid). pH was estimated from direct measurements in apoplastic fluid and xylem sap obtained by centrifugation and by fluorescence of leaves incubated with 5-carboxyfluorescein and fluorescein isothiocyanate-dextran. Iron deficiency caused a slight decrease in the pH of the leaf apoplast (from 6.3 down to 5.9) and xylem sap (from 6.0 down to 5.7) of sugar beet. Major organic acids found in leaf apoplastic fluid and xylem sap were malate and citrate. Total organic acid concentration in control plants was 4.3 mM in apoplastic fluid and 9.4 mM in xylem sap and increased to 12.2 and 50.4 mM, respectively, in iron-deficient plants. Inorganic cation and anion concentrations also changed with iron deficiency both in apoplastic fluid and xylem sap. Iron decreased with iron deficiency from 5.5 to 2.5 microM in apoplastic fluid and xylem sap. Major predicted iron species in both compartments were [FeCitOH](-1) in the controls and [FeCit(2)](-3) in the iron-deficient plants. Data suggest the existence of an influx of organic acids from the roots to the leaves via xylem, probably associated to an anaplerotic carbon dioxide fixation by roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号