首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nucleolar proteins which link cell proliferation to ribosome biogenesis are regarded to be potentially oncogenic. Here, in order to examine the involvement of an evolutionary conserved nucleolar protein SURF6/Rrp14 in proliferation and ribosome biogenesis in mammalian cells, we established stably transfected mouse NIH/3T3 fibroblasts capable of conditional overexpression of the protein. Cell proliferation was monitored in real-time, and various cell cycle parameters were quantified based on flow cytometry, Br-dU-labeling and conventional microscopy data. We show that overexpression of SURF6 accelerates cell proliferation and promotes transition through all cell cycle phases. The most prominent SURF6 pro-proliferative effects include a significant reduction of the population doubling time, from 19.8 ± 0.7 to 16.2 ± 0.5 hours (t-test, p < 0.001), and of the length of cell division cycle, from 17.6 ± 0.6 to 14.0 ± 0.4 hours (t-test, p < 0.001). The later was due to the shortening of all cell cycle phases but the length of G1 period was reduced most, from 5.7 ± 0.4 to 3.8 ± 0.3 hours, or by ~30%, (t-test, p < 0.05). By Northern blots and qRT-PCR, we further showed that the acceleration of cell proliferation was concomitant with an accumulation of rRNA species along both ribosomal subunit maturation pathways. It is evident, therefore, that like the yeast homologue Rrp14, mammalian SURF6 is involved in various steps of rRNA processing during ribosome biogenesis. We concluded that SURF6 is a novel positive regulator of proliferation and G1/S transition in mammals, implicating that SURF6 is a potential oncogenic protein, which can be further studied as a putative target in anti-cancer therapy.  相似文献   

2.
The nucleolus is a common target of viruses and viral proteins, but for many viruses the functional outcomes and significance of this targeting remains unresolved. Recently, the first intranucleolar function of a protein of a cytoplasmically-replicating negative-sense RNA virus (NSV) was identified, with the finding that the matrix (M) protein of Hendra virus (HeV) (genus Henipavirus, family Paramyxoviridae) interacts with Treacle protein within nucleolar subcompartments and mimics a cellular mechanism of the nucleolar DNA-damage response (DDR) to suppress ribosomal RNA (rRNA) synthesis. Whether other viruses utilise this mechanism has not been examined. We report that sub-nucleolar Treacle targeting and modulation is conserved between M proteins of multiple Henipaviruses, including Nipah virus and other potentially zoonotic viruses. Furthermore, this function is also evident for P3 protein of rabies virus, the prototype virus of a different RNA virus family (Rhabdoviridae), with Treacle depletion in cells also found to impact virus production. These data indicate that unrelated proteins of viruses from different families have independently developed nucleolar/Treacle targeting function, but that modulation of Treacle has distinct effects on infection. Thus, subversion of Treacle may be an important process in infection by diverse NSVs, and so could provide novel targets for antiviral approaches with broad specificity.  相似文献   

3.
The nucleolar protein Nep1 and its human homologue were previously shown to be involved in the maturation of 18S rRNA and to interfere directly or indirectly with a methylation reaction. Here, we report that the loss-of-function mutation Δsnr57 and multicopy expression of the ribosomal 40S subunit protein 19 (Rps19p) can partially suppress the Saccharomyces cerevisiae Δnep1 growth defect. SnR57 mediates 2′-O-ribose-methylation of G1570 in the 18S rRNA. By performing a three-hybrid screen, we isolated several short RNA sequences with strong binding affinity to Nep1p. All isolated RNAs shared a six-nucleotide consensus motif C/UUCAAC. Furthermore, one of the isolated RNAs exactly corresponded to nucleotides 1553–1577 of the 18S rRNA, which includes G1570, the site of snR57-dependent 18S rRNA methylation. From protein–protein crosslink data and the cryo-EM map of the S. cerevisiae small ribosomal subunit, we suggest that Rps19p is localized in close vicinity to the Nep1p 18S rRNA binding site. Our results suggest that Nep1p binds adjacent to helix 47 of the 18S rRNA and possibly supports the association of Rps19p to pre-ribosomal particles.  相似文献   

4.
TRAF and TNF receptor-associated protein (TTRAP) is a multifunctional protein that can act in the nucleus as a 5'-tyrosyl DNA phosphodiesterase and in the cytoplasm as a regulator of cell signaling. In this paper we show that in response to proteasome inhibition TTRAP accumulates in nucleolar cavities in a promyelocytic leukemia protein-dependent manner. In the nucleolus, TTRAP contributes to control levels of ribosomal RNA precursor and processing intermediates, and this phenotype is independent from its 5'-tyrosyl DNA phosphodiesterase activity. Our findings suggest a previously unidentified function for TTRAP and nucleolar cavities in ribosome biogenesis under stress.  相似文献   

5.
PES1, the human homolog of zebrafish pescadillo, is a nucleolar protein that is essential for cell proliferation. We report herein that a nucleolar marker protein B23 physically interacts with PES1 and is involved in the nucleolar localization of PES1. In vivo interaction between B23 and PES1 was verified by co-immunopreci- pitation of endogenous B23 and PES1 proteins, and they showed cellular co-localizations under both normal and actinomycin D-induced stress conditions. Furthermore, we mapped their interaction domains via in vitro pull- down assays. When B23 was knocked down by RNA interference, there appeared an increased nucleoplasmic distribution of PES1. Our results support a previous hypothesis that B23 might be a nucleolar hub protein for protein targeting to the nucleolus, and shed light on the nucleolar localization mechanism of PESI. The physical interaction between B23 and PES1 implies that they may participate in ribosome biogenesis in a protein complex.  相似文献   

6.
7.
BACKGROUND INFORMATION: In many cell lines, such as HeLa cells, STxB (Shiga toxin B-subunit) is transported from the plasma membrane to the ER (endoplasmic reticulum), via early/recycling endosomes and the Golgi apparatus, bypassing the late endocytic pathway. In human monocyte-derived macrophages and dendritic cells that are not sensitive to Shiga toxin-induced protein biosynthesis inhibition, STxB is not detectably targeted to the retrograde route and is degraded in late endosomes/lysosomes. RESULTS: We have identified B-subunit interacting proteins in HeLa cells and macrophages. In HeLa cells, the ER-localized chaperone BiP (binding protein) was co-immunoprecipitated with the B-subunit. This interaction was not observed in macrophages, consistent with our previous trafficking results. In both cell types, the B-subunit also interacted with the nucleolar protein B23. Consistently, the B-subunit could be detected on nucleoli, suggesting that it could serve to bring the holotoxin to the site of synthesis of its molecular target, rRNA. The nucleolar localization data are critically discussed. CONCLUSION: The interaction of STxB with BiP, involved in the retrotranslocation process to the cytosol and nucleolar B23, as described in this study, might be of relevance for explaining the efficiency of even low doses of Shiga toxin to inactivate cellular ribosomes, and for the use of STxB as a vector for targeting antigens to cytosolic proteasomes of the MHC I-restricted antigen presentation pathway.  相似文献   

8.
9.
Production of ribosomes is a fundamental process that occurs in all dividing cells. It is a complex process consisting of the coordinated synthesis and assembly of four ribosomal RNAs (rRNA) with about 80 ribosomal proteins (r-proteins) involving more than 150 nonribosomal proteins and other factors. Diamond Blackfan anemia (DBA) is an inherited red cell aplasia caused by mutations in one of several r-proteins. How defects in r-proteins, essential for proliferation in all cells, lead to a human disease with a specific defect in red cell development is unknown. Here, we investigated the role of r-proteins in ribosome biogenesis in order to find out whether those mutated in DBA have any similarities. We depleted HeLa cells using siRNA for several individual r-proteins of the small (RPS6, RPS7, RPS15, RPS16, RPS17, RPS19, RPS24, RPS25, RPS28) or large subunit (RPL5, RPL7, RPL11, RPL14, RPL26, RPL35a) and studied the effect on rRNA processing and ribosome production. Depleting r-proteins in one of the subunits caused, with a few exceptions, a decrease in all r-proteins of the same subunit and a decrease in the corresponding subunit, fully assembled ribosomes, and polysomes. R-protein depletion, with a few exceptions, led to the accumulation of specific rRNA precursors, highlighting their individual roles in rRNA processing. Depletion of r-proteins mutated in DBA always compromised ribosome biogenesis while affecting either subunit and disturbing rRNA processing at different levels, indicating that the rate of ribosome production rather than a specific step in ribosome biogenesis is critical in patients with DBA.  相似文献   

10.
11.
Proteomic analyses in yeast have identified a large number of proteins that are associated with preribosomal particles. However, the product of the yeast ORF YJL010C, herein designated as Nop9, failed to be identified in any previous physical or genetic analysis of preribosomes. Here we report that Nop9 is a nucleolar protein, which is associated with 90S and 40S preribosomes. In cells depleted of Nop9p, early cleavages of the 35S pre-rRNA are inhibited, resulting in the nucleolar retention of accumulated precursors and a failure to synthesize 18S rRNA. Nop9 contains multiple pumilio-like putative RNA binding repeats and displays robust in vitro RNA binding activity. The identification of Nop9p as a novel, essential factor in the nuclear maturation of 90S and pre-40S ribosomal subunits shows that the complement of ribosome synthesis factors remains incomplete.  相似文献   

12.
Tartaglia GG  Caflisch A 《Proteins》2007,68(1):273-278
Protein sequences have evolved to optimize biological function that usually requires a well-defined three-dimensional structure and a monomeric (or oligomeric) state. These two requirements may be in conflict as the propensity for beta-sheet structure, which is one of the two most common regular conformations of the polypeptide chain in folded proteins, favors also the formation of ordered aggregates of multiple copies of the same protein (fibril, i.e., polymeric state). Such beta-aggregation is typical of amyloid diseases that include Alzheimer's, Parkinson's, and type II diabetes as well as the spongiform encephalopathies. Here, an analytical model previously developed for evaluating the amyloidogenic potential of polypeptides is applied to the proteome of the budding yeast (Saccharomyces cerevisiae). The model is based on the physicochemical properties that are relevant for beta-aggregation and requires only the protein sequence as input. It is shown that beta-aggregation prone proteins in yeast are accrued in molecular transport, protein biosynthesis, and cell wall organization processes while they are underrepresented in ribosome biogenesis, RNA metabolism, and vitamin metabolism. Furthermore, beta-aggregation prone proteins are much more abundant in the cell wall, endoplasmic reticulum, and plasma membrane than in the nucleolus, ribosome, and nucleus. Thus, this study indicates that evolution has not only prevented the selection of amyloidogenic sequences in cellular compartments characterized by a high concentration of unfolded proteins but also tried to exploit the beta-aggregated state for certain functions (e.g. molecular transport) and in well-confined cellular environments or organelles to protect the rest of the cell from toxic (pre-)fibrillar species.  相似文献   

13.
14.
15.
We generated knockout (KO) mice of Nepro, which has been shown to be necessary to maintain neural progenitor cells downstream of Notch in the mouse developing neocortex by using knockdown experiments, to explore its function in embryogenesis. Nepro KO embryos were morphologically indistinguishable from wild type (WT) embryos until the morula stage but failed in blastocyst formation, and many cells of the KO embryos resulted in apoptosis. We found that Nepro was localized in the nucleolus at the blastocyst stage. The number of nucleolus precursor bodies (NPBs) and nucleoli per nucleus was significantly higher in Nepro KO embryos compared with WT embryos later than the 2‐cell stage. Furthermore, at the morula stage, whereas 18S rRNA and ribosomal protein S6 (rpS6), which are components of the ribosome, were distributed to the cytoplasm in WT embryos, they were mainly localized in the nucleoli in Nepro KO embryos. In addition, in Nepro KO embryos, the amount of the mitochondria‐associated p53 protein increased, and Cytochrome c was distributed in the cytoplasm. These findings indicate that Nepro is a nucleolus‐associated protein, and its loss leads to the apoptosis before blastocyst formation in mice.  相似文献   

16.
Ribosome biogenesis is an energy consuming process which takes place mainly in the nucleolus. By producing ribosomes to fuel protein synthesis, it is tightly connected with cell growth and cell cycle control. Perturbation of ribosome biogenesis leads to the activation of p53 tumor suppressor protein promoting processes like cell cycle arrest, apoptosis or senescence. This ribosome biogenesis stress pathway activates p53 through sequestration of MDM2 by a subset of ribosomal proteins (RPs), thereby stabilizing p53. Here, we identify human HEATR1, as a nucleolar protein which positively regulates ribosomal RNA (rRNA) synthesis. Downregulation of HEATR1 resulted in cell cycle arrest in a manner dependent on p53. Moreover, depletion of HEATR1 also caused disruption of nucleolar structure and activated the ribosomal biogenesis stress pathway – RPL5 / RPL11 dependent stabilization and activation of p53. These findings reveal an important role for HEATR1 in ribosome biogenesis and further support the concept that perturbation of ribosome biosynthesis results in p53-dependent cell cycle checkpoint activation, with implications for human pathologies including cancer.  相似文献   

17.
Electroporation of exponentially growing human larynx epidermoid carcinoma cells (HEp-2) with a serum against nucleolin, one of the most abundant non-histone nuclear proteins, has shown, 24 h after electroporation, a significant increase in the size of the nucleolus of these cells compared with normal HEp-2 cells (non-electroporated) and electroporated HEp-2 cells in the absence of antinucleolin serum (P < 0.01). Image analysis evaluation of the different nucleolar components proved a major contribution of the dense fibrillar component to the total nucleolar size in cells electroporated with anti-nucleolin antibodies, more than that corresponding to the dense fibrillar component in cells from any of the control groups (P < 0.01), indicating that the reported increase in nucleolar size was due to a marked enlargement of the dense fibrillar regions. These results, in agreement with previous biochemical and molecular biology studies, suggest a pivotal role for nucleolin in pre-rRNA processing and constitute morphological evidence supporting this role. Following nucleolin inhibition, impaired pre-rRNA processing might result in an accumulation of this molecular species in the dense fibrillar component of the nucleolus, where pre-rRNA is first present.  相似文献   

18.
Abstract Four plasmids were constructed by associating Escherichia coli and yeast selection markers and replication origins to a structural gene coding for aminoglycoside phosphotransferase (APH(3')) controlled by different flanking sequences. We used the two bacterial genes of Tn5 (APH(3')II) and Tn903 (APH(3')I) as such and the chimeric pSVneo (APH(3')II) and pNOSneo (APH(3')II) constructs, functional in mammalian and plant cells, respectively. Yeast clones resistant to G418 were obtained with all plasmids except with that bearing the bacterial APH(3')II gene. The three plasmids harbouring the functional APH genes, however, conferred different levels of G418 resistance to yeast.  相似文献   

19.
We present here the characterization of SPB1, an essential yeast gene that is required for ribosome synthesis. A cold-sensitive allele for that gene (referred to here as spb1-1) had been previously isolated as a suppressor of a mutation affecting the poly(A)-binding protein gene (PAB1) and a thermosensitive allele (referred to here as spb1-2) was isolated in a search for essential genes required for gene silencing in Saccharomyces cerevisiae. The two mutants are able to suppress the deletion of PAB1, and they both present a strong reduction in their 60S ribosomal subunit content. In an spb1-2 strain grown at the restrictive temperature, processing of the 27S pre-rRNA into mature 25S rRNA and 5.8S is completely abolished and production of mature 18S is reduced, while the abnormal 23S species is accumulated. Spb1p is a 96.5-kDa protein that is localized to the nucleolus. Coimmunoprecipitation experiments show that Spb1p is associated in vivo with the nucleolar proteins Nop1p and Nop5/58p. Protein sequence analysis reveals that Spb1p possesses a putative S-adenosyl-L-methionine (AdoMet)-binding domain, which is common to the AdoMet-dependent methyltransferases. We show here that Spb1p is able to bind [(3)H]AdoMet in vitro, suggesting that it is a novel methylase, whose possible substrates will be discussed.  相似文献   

20.
RNA-protein crosslinks were introduced into the 40S ribosomal subunits from Saccharomyces cerevisiae by mild UV treatment. Proteins crosslinked to the 18S rRNA molecule were separated from free proteins by repeated extraction of the treated subunits and centrifugation in glycerol gradients. After digestion with RNase to remove the RNA molecules, proteins were radio-labeled with 125I and identified by electrophoresis on two-dimensional polyacrylamide gels with carrier total 40S ribosomal proteins and autoradiography. Proteins S2, S7, S13, S14, S17/22/27, and S18 were linked to the 18S rRNA. A shorter period of irradiation resulted in crosslinking of S2 and S17/22/27 only. Several of these proteins were previously demonstrated to be present in ribosomal core particles or early assembled proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号