首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The chronic effect of training on intraerythrocyte cationic concentrations and on red cell Na+,K+-ATPase pump activity was studied by comparing well-trained athletes with sedentary subjects at rest. Also the acute effect of a 50-min cross-country run on these erythrocyte measurements was studied in the athletes. At rest the intraerythrocyte potassium concentration was increased (P less than 0.01) in the athletes compared to that of the control subjects. The intraerythrocyte concentrations of sodium and magnesium and red cell Na+,K+-ATPase pump activity were, however, similar in the trained and the untrained subjects. As compared with the resting condition, the intraerythrocyte potassium concentration was decreased (P less than 0.05) after exercise in the athletes, and this was accompanied by a minor increase in the intraerythrocyte sodium concentration. Red cell Na+,K+-ATPase pump activity was slightly increased (P less than 0.05) after exercise.  相似文献   

2.
[3H]-Ouabain binding to muscle preparations was utilized to estimate the number of Na+,K+-ATPase enzyme units in hindlimbs from 8 week old lean and obese mice. Specific [3H]-ouabain binding per mg particulate protein was 36% lower in obese mice; whereas, the affinity of the binding sites for ouabain was similar in obese and lean mice. Since obese mice had less muscle than lean mice, the number of Na+,K+-ATPase enzyme units in hindlimbs from obese mice was less than half the number observed in lean mice.  相似文献   

3.
AimsThis study examines the effect of chronic ouabain-treatment on renal Na+ handling in 12-week and 52-week old rats.Main methodsWistar Kyoto rats aged 5 weeks or 45 weeks were treated with ouabain or vehicle during 7 weeks. Blood pressure was measured in conscious animals throughout the study. After 7 weeks of treatment urinary electrolyte concentration, Na+,K+-ATPase activity and α1-subunit expression were determined in 12-week and 52-week old rats.Key findingsIn 12-week and 52-week old rats ouabain produced a significant increase in systolic blood pressure. Although no differences were observed in Na+ excretion in these animals, 12-week old ouabain-treated rats had lower Na+,K+-ATPase activity in proximal tubules. However, 12-week old ouabain-treated rats had decreased fractional excretion of Na+. In proximal tubules of 52-week old rats Na+,K+-ATPase activity did not differ between vehicle and ouabain-treated groups.SignificanceOur results show that in Wistar Kyoto rats renal response to ouabain treatment may be age-dependent and that the hypertensive effect of ouabain is independent of the effect on renal Na+,K+-ATPase.  相似文献   

4.
Na(+),K(+)-ATPase is inhibited by cardiac glycosides such as ouabain, and palytoxin, which do not inhibit gastric H(+),K(+)-ATPase. Gastric H(+),K(+)-ATPase is inhibited by SCH28080, which has no effect on Na(+),K(+)-ATPase. The goal of the current study was to identify amino acid sequences of the gastric proton-potassium pump that are involved in recognition of the pump-specific inhibitor SCH 28080. A chimeric polypeptide consisting of the rat sodium pump alpha3 subunit with the peptide Gln(905)-Val(930) of the gastric proton pump alpha subunit substituted in place of the original Asn(886)-Ala(911) sequence was expressed together with the gastric beta subunit in the yeast Saccharomyces cerevisiae. Yeast cells that express this subunit combination are sensitive to palytoxin, which interacts specifically with the sodium pump, and lose intracellular K(+) ions. The palytoxin-induced K(+) efflux is inhibited by the sodium pump-specific inhibitor ouabain and also by the gastric proton pump-specific inhibitor SCH 28080. The IC(50) for SCH 28080 inhibition of palytoxin-induced K(+) efflux is 14.3 +/- 2.4 microm, which is similar to the K(i) for SCH 28080 inhibition of ATP hydrolysis by the gastric H(+),K(+)-ATPase. In contrast, palytoxin-induced K(+) efflux from cells expressing either the native alpha3 and beta1 subunits of the sodium pump or the alpha3 subunit of the sodium pump together with the beta subunit of the gastric proton pump is inhibited by ouabain but not by SCH 28080. The acquisition of SCH 28080 sensitivity by the chimera indicates that the Gln(905)-Val(930) peptide of the gastric proton pump is likely to be involved in the interactions of the gastric proton-potassium pump with SCH 28080.  相似文献   

5.
Na+-K+-ATPase activity, as measured by erythrocytic 86Rb uptake and number Digoxin Binding Sites were evaluated in 34 obese patients and in 39 control subjects. No differences were found in 86Rb uptake and Digoxin Binding Sites between obese and controls. Likewise no differences were found between obese patients on their spontaneous caloric intake and those studied during various hypocaloric regimens. Finally, no relationship between thyroid hormone serum concentrations and ATPase activity was found in the group of obese patients.  相似文献   

6.
De novo mutations in ATP1A3, the gene encoding the α3-subunit of Na+,K+-ATPase, are associated with the neurodevelopmental disorder Alternating Hemiplegia of Childhood (AHC). The aim of this study was to determine the functional consequences of six ATP1A3 mutations (S137Y, D220N, I274N, D801N, E815K, and G947R) associated with AHC. Wild type and mutant Na+,K+-ATPases were expressed in Sf9 insect cells using the baculovirus expression system. Ouabain binding, ATPase activity, and phosphorylation were absent in mutants I274N, E815K and G947R. Mutants S137Y and D801N were able to bind ouabain, although these mutants lacked ATPase activity, phosphorylation, and the K+/ouabain antagonism indicative of modifications in the cation binding site. Mutant D220N showed similar ouabain binding, ATPase activity, and phosphorylation to wild type Na+,K+-ATPase. Functional impairment of Na+,K+-ATPase in mutants S137Y, I274N, D801N, E815K, and G947R might explain why patients having these mutations suffer from AHC. Moreover, mutant D801N is able to bind ouabain, whereas mutant E815K shows a complete loss of function, possibly explaining the different phenotypes for these mutations.  相似文献   

7.
Experimental data on the ion electrogenic transport by Na+,K+-ATPase available in the literature are analyzed. Special attention is paid to the measurements of unsteady-state electric currents initiated by alternating voltage or rapid introduction of the substrate. In the final part, a physical model of the Na+,K+-ATPase functioning is discussed. According to this model, active transport is carried out by opening and closing of the access channels used for the sodium and potassium exchange between solutions on either side of the membrane. The model explains most of the experimental data, although some details (the channel size, rates of individual transport steps) need further refinement.  相似文献   

8.
W J Ball 《Biochemistry》1986,25(22):7155-7162
The effects of a monoclonal antibody, prepared against the purified lamb kidney Na+,K+-ATPase, on the enzyme's Na+,K+-dependent ATPase activity were analyzed. This antibody, designated M10-P5-C11, is directed against the catalytic subunit of the "native" holoenzyme. It inhibits greater than 90% of the ATPase activity and acts as a noncompetitive or mixed inhibitor with respect to the ATP, Na+, and K+ dependence of enzyme activity. It inhibits the Na+- and Mg2+ATP-dependent phosphoenzyme intermediate formation. In contrast, it has no effect on K+-dependent p-nitrophenylphosphatase (pNPPase) activity, the interconversion of the phosphoenzyme intermediates, and ADP-sensitive or K+-dependent dephosphorylation. It does not alter ATP binding to the enzyme nor the covalent labeling of the enzyme at the presumed ATP site by fluorescein 5'-isothiocyanate (FITC), but it prevents the ATP-induced stimulation in the rate of cardiac glycoside [3H]ouabain binding to the Na+,K+-ATPase. M10-P5-C11 binding appears to inhibit enzyme function by blocking the transfer of the gamma-phosphoryl of ATP to the phosphorylation site after ATP binding to the enzyme has occurred. In the presence of Mg2+ATP, it also prevents the ATP-induced transmembrane conformational change that enhances cardiac glycoside binding. This uncoupling of ATP binding from its stimulation of ouabain binding and enzyme phosphorylation demonstrates the existence of an enzyme-Mg2+ATP transitional intermediate preceding the formation of the Na+-dependent ADP-sensitive phosphoenzyme intermediate. These results are also consistent with a model of the Na+,K+-ATPase active site being composed of two distinct but interacting regions, the ATP binding site and the phosphorylation site.  相似文献   

9.
Ouabain-inhibitable rubidium influxes, intracellular sodium content (Nai), and alpha 1-subunit abundance have been studied in human blood lymphocytes, stimulated by phytohemagglutinin (PHA) or by the phorbol 12,13-dibutyrate (PDBu), and calcium ionophore--ionomycin. It is shown that at early stages of PHA-induced activation, the Na/K pump expression (as determined by Wesrn blots of alpha 1 protein in membrane fractions of total cell lysates) does not change, and the increase in Rb influx is due to the increase in Nai and results from the enhanced transport activity of Na/K pumps present in plasma membrane. During the late stages of G0-->G1-->S transit (16-48 h), the increase in Rb influx occurs without changes in Nai, and monensin increases both Nai, and the Rb influx via the Na/K pump. To the end of the first day of mitogen activation, the alpha 1 protein content was found to increase by 5-7 times. A correlation was revealed between changes in ouabain-inhibitable Rb influxes, alpha 1 protein abundance, and the proliferation rate. It is concluded that blasttransformathion of normal human lymphocytes is accompanied by the increase in membrane-associated pool of alpha 1-subunit of Na+,K(+)-ATPase, and the enhanced activity of sodium pump during the G0-->G1-->S progression is provided by increased number of Na+,K(+)-ATPase pumps in plasma membrane.  相似文献   

10.
Healthy male volunteers were infused for three hours with either a dopamine hydrochloride solution at a rate of 4 ug/kg/min or with normal saline. Plasma amine oxidase and platelet MAO activity towards benzylamine both increased in response to intravenous dopamine. There was no increase in enzyme activity when dopamine was added to the platelet and plasma enzymes in vitro. This heretofore unreported increase in the oxidative deaminating capacity of the human organism may represent an adaptive physiologic response to the high circulating levels of dopamine and provides further evidence for a possible functional significance of these enzymes in man.  相似文献   

11.
Effects of long-term, subtotal inhibition of Na+-K+ transport, either by growth of cells in sublethal concentrations of ouabain or in low-K+ medium, are described for HeLa cells. After prolonged growth in 2 × 10?8 M ouabain, the total number of ouabain molecules bound per cell increases by as much as a factor of three, mostly due to internalization of the drug. There is only about a 20% increase in ouabain-binding sites on the plasma membrane, representing amodest induction of Na+, K+-ATPase. In contrast, after long-term growth in low K+ there can be a twofold or greater increase in ouabain binding per cell, and in this case the additional sites are located in the plasma membrane. The increase is reversible. To assess the corresponding transport changes, we have separately estimated the contributions of increased intracellular [Na+] and of transport capacity (number of transport sites) to transport regulation. During both induction and reversal, short-term regulation is achieved primarily by changes in [Na+]i. More slowly, long-term regulation is achieved by changes in the number of functional transporters in the plasma membrane as assessed by ouabain binding, Vmax for transport, and specific phosphorylation. Parallel exposure of cryptic Na+, K+-ATPase activity with sodium dodecyl sulfate in the plasma membranes of both induced and control cells showed that the induction cannot be accounted for by an exposure of preexisting Na+, K+-ATPase in the plasma membrane. Analysis of the kinetics of reversal indicates that it may be due to a post-translational event.  相似文献   

12.
In this paper we report the erythrocyte sodium concentration and Na+, K(+)-ATPase activity in 86 untreated hypertensives and their 77 first degree relatives and also in sex and age matched controls. There was significant increase in erythrocyte sodium both in the hypertensives and their first degree relatives (p < 0.01), whereas Na+, K(+)-ATPase activity was significantly reduced in the study group when compared with controls. The possibility of using these parameters as genetic markers is suggested.  相似文献   

13.
14.
Na(+),K(+)-ATPase, a basolateral transporter responsible for tubular reabsorption of Na(+) and for providing the driving force for vectorial transport of various solutes and ions, can also act as a signal transducer in response to the interaction with steroid hormones. At nanomolar concentrations ouabain binding to Na(+),K(+)-ATPase activates a signaling cascade that ultimately regulates several membrane transporters including Na(+),K(+)-ATPase. The present study evaluated the long-term effect of ouabain on Na(+),K(+)-ATPase activity (Na(+) transepithelial flux) and expression in opossum kidney (OK) cells with low (40) and high (80) number of passages in culture, which are known to overexpress Na(+),K(+)-ATPase (Silva et al., 2006, J Membr Biol 212, 163-175). Activation of a signal cascade was evaluated by quantification of ERK1/2 phosphorylation by Western blot. Na(+),K(+)-ATPase activity was determined by electrophysiological techniques and expression by Western blot. Incubation of cells with ouabain induced activation of ERK1/2. Long-term incubation with ouabain induced an increase in Na(+) transepithelial flux and Na(+),K(+)-ATPase expression only in OK cells with 80 passages in culture. This increase was prevented by incubation with inhibitors of MEK1/2 and PI-3K. In conclusion, ouabain-activated signaling cascade mediated by both MEK1/2 and PI-3K is responsible for long-term regulation of Na(+) transepithelial flux in epithelial renal cells. OK cell line with high number of passages is suggested to constitute a particular useful model for the understanding of ouabain-mediated regulation of Na(+) transport.  相似文献   

15.
Chronic hypertension is characterized by a persistent increase in vascular tone. Sodium-rich diets promote hypertension; however, the underlying molecular mechanisms are not fully understood. Variations in the sodium content of the diet, through hormonal mediators such as dopamine and angiotensin II, modulate renal tubule Na+,K+-ATPase activity. Stimulation of Na+,K+-ATPase activity increases sodium transport across the renal proximal tubule epithelia, promoting Na+ retention, whereas inhibited Na+,K+-ATPase activity decreases sodium transport, and thereby natriuresis. Diets rich in sodium also enhance the release of adrenal endogenous ouabain-like compounds (OLC), which inhibit Na+,K+-ATPase activity, resulting in increased intracellular Na+ and Ca2+ concentrations in vascular smooth muscle cells, thus increasing the vascular tone, with a corresponding increase in blood pressure. The mechanisms by which these homeostatic processes are integrated in response to salt intake are complex and not completely elucidated. However, recent scientific findings provide new insights that may offer additional avenues to further explore molecular mechanisms related to normal physiology and pathophysiology of various forms of hypertension (i.e. salt-induced). Consequently, new strategies for the development of improved therapeutics and medical management of hypertension are anticipated.  相似文献   

16.
17.
18.
Na+,K+-ATPase is an ubiquitous membrane enzyme that allows the extrusion of three sodium ions from the cell and two potassium ions from the extracellular fluid. Its activity is decreased in many tissues of streptozotocin-induced diabetic animals. This impairment could be at least partly responsible for the development of diabetic complications. Na+,K+-ATPase activity is decreased in the red blood cell membranes of type 1 diabetic individuals, irrespective of the degree of diabetic control. It is less impaired or even normal in those of type 2 diabetic patients. The authors have shown that in the red blood cells of type 2 diabetic patients, Na+,K+-ATPase activity was strongly related to blood C-peptide levels in non–insulin-treated patients (in whom C-peptide concentration reflects that of insulin) as well as in insulin-treated patients. Furthermore, a gene-environment relationship has been observed. The alpha-1 isoform of the enzyme predominant in red blood cells and nerve tissue is encoded by the ATP1A1 gene.Apolymorphism in the intron 1 of this gene is associated with lower enzyme activity in patients with C-peptide deficiency either with type 1 or type 2 diabetes, but not in normal individuals. There are several lines of evidence for a low C-peptide level being responsible for low Na+,K+-ATPase activity in the red blood cells. Short-term C-peptide infusion to type 1 diabetic patients restores normal Na+,K+-ATPase activity. Islet transplantation, which restores endogenous C-peptide secretion, enhances Na+,K+-ATPase activity proportionally to the rise in C-peptide. This C-peptide effect is not indirect. In fact, incubation of diabetic red blood cells with C-peptide at physiological concentration leads to an increase of Na+,K+-ATPase activity. In isolated proximal tubules of rats or in the medullary thick ascending limb of the kidney, C-peptide stimulates in a dose-dependent manner Na+,K+-ATPase activity. This impairment in Na+,K+-ATPase activity, mainly secondary to the lack of C-peptide, plays probably a role in the development of diabetic complications. Arguments have been developed showing that the diabetesinduced decrease in Na+,K+-ATPase activity compromises microvascular blood flow by two mechanisms: by affecting microvascular regulation and by decreasing red blood cell deformability, which leads to an increase in blood viscosity. C-peptide infusion restores red blood cell deformability and microvascular blood flow concomitantly with Na+,K+-ATPase activity. The defect in ATPase is strongly related to diabetic neuropathy. Patients with neuropathy have lower ATPase activity than those without. The diabetes-induced impairment in Na+,K+-ATPase activity is identical in red blood cells and neural tissue. Red blood cell ATPase activity is related to nerve conduction velocity in the peroneal and the tibial nerve of diabetic patients. C-peptide infusion to diabetic rats increases endoneural ATPase activity in rat. Because the defect in Na+,K+-ATPase activity is also probably involved in the development of diabetic nephropathy and cardiomyopathy, physiological C-peptide infusion could be beneficial for the prevention of diabetic complications.  相似文献   

19.
People with "primary obesity" may be hypertensive because they have lost their ability to compensate for the effect of low Na+-K+-ATPase levels on blood pressure. In obese patients receiving hypertensive medication (n = 13), but not in normotensive nonmedicated patients (n = 42), diastolic blood pressure was inversely correlated with erythrocyte ouabain binding (P less than 0.02) and directly correlated with intracellular Na+ concentration (P less than 0.01). Moreover, there was a stronger inverse relationship between ouabain binding and intracellular Na+ in patients receiving medication for hypertension (P less than 0.01) than in normotensive patients (P less than 0.05). These data suggest that patients receiving hypertensive medication may be less able to compensate than normotensive patients, (a) for the potential effect of Na+-K+-ATPase levels on intracellular Na+ and (b) for the potential effect of intracellular Na+ concentration on diastolic blood pressure. We propose that obese people with low levels of ouabain binding (primary obesity) may have an increased risk of developing hypertension if their compensatory mechanisms fail.  相似文献   

20.
To evaluate the enzyme functional changes the Na+,K+-ATPase activity in membrane fraction of human colorectal adenocarcinoma at II and III cancer stages (according to TNM classification) of varying degrees of differentiation has been investigated. The decrease of the Na+,K+-ATPase activity in comparison with conditionally normal tissue of macroscopically unchanged mucosa was revealed in the tumor membrane preparations. Such changes of the Na+,K+-ATPase activity were higher at low differentiation grade and were less pronounced in moderately and highly differentiated adenocarcinomas. At the same time the changes in Na+,K+-ATPase activity have not been revealed between tumor membrane preparations at studied cancer stages when the degree of differentiation was not taken into account. It is supposed that Na+,K+-ATPase functional specificity occurs in colorectal adenocarcinomas and it is associated with tumor differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号