首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myocardial nucleic acid responses were analysed in New Zealand White rabbits 20 min-1 h and 6-8 h following single subcutaneous injections of soman (20, 30, or 40 micrograms kg-1). Scanning-integrating microdensitometry was used to quantify Azure B-RNA and Feulgen-DNA (F-DNA) levels, and changes in the susceptibility of chromatin to Feulgen acid hydrolysis (F-DNA reactivity) of individual ventricular myocardial cells. With a dosage of 20 micrograms kg-1 soman, no RNA alterations were evidenced at 1 h whereas at 6-8 h myocardial cells exhibited higher RNA levels and an increase in F-DNA reactivity of chromatin. With dosages of 30 and 40 micrograms kg-1 soman there was an augmentation in RNA levels and in the acid hydrolysability of nuclear chromatin at both 20 min-1 h and 6-8 h. It is postulated that the observed cellular transformations represent a compensatory augmentation in myocardial metabolic functioning presumably in response to an increased functional demand on the ventricular myocardium. The absence of cytopathic or cytochemical evidence of impairment in nucleic acid metabolism is inconsistent with the premise that soman exerts direct cytotoxic effects on rabbit myocardium.  相似文献   

2.
Quantitative azure B-RNA cytophotometry was used to monitor metabolic responses of individual neurons within the ventrobasal nuclear complex (VBC) and nucleus reticularis (NR) of the rat thalamus following administration of soman (0.5, 0.9 or 1.5 LD50, sc). A dose-dependent depression in brain acetylcholinesterase (AChE) was evidenced. With respect to thalamic RNA responses, a complex pattern of RNA alterations was evidenced, with these two regions generally exhibiting opposite patterns of dose-related RNA changes. With sub-lethal dosages of soman, RNA accumulation was evidenced in the acetylcholine (ACh) mediated excitatory VBC region and RNA depletion in the ACh mediated inhibitory NR neurons. With a lethal dose, an opposite RNA response pattern observed in both thalamic regions. It is postulated that the observed RNA response pattern with sub-lethal dosages of soman is what one would anticipate with cholinergic brainstem reticular formation activation. The absence of such a response with lethal doses strongly suggests some disruption of functional excitatory cholinergic activity and perhaps also an impairment of inhibitory cholinergic synaptic activity.  相似文献   

3.
A previous study conducted in this laboratory revealed a decrease in total cholinesterase (total ChE) in the cerebral cortex, hippocampus and striatum in aged rats (24 months) of various strains, as compared with young animals (3 months). The purpose of the present experiments was to extend the study to other brain areas (hypothalamus, medulla-pons and cerebellum) and to assess whether this decrease was dependent on the reduction of either specific acetylcholinesterase (AChE) or butyrylcholinesterase (BuChE) or both. By using ultracentrifugation on a sucrose gradient, the molecular forms of AChE were evaluated in all the brain areas of young and aged Sprague-Dawley rats. In young rats the regional distribution of total ChE and AChE varied considerably with respect to BuChE. The age-related loss of total ChE was seen in all areas. Although there was a reduction of AChE and, to somewhat lesser extent, of BuChE in the cerebral cortex, hippocampus, striatum, and hypothalamus (but not in the medulla-pons or the cerebellum), the ratio AChE/BuChE was not substantially modified by age. Two molecular forms of AChE, namely G4 (globular tetrameric) and G1 (monomeric), were detected in all the brain areas. Their distribution, expressed as G4/G1 ratio, varied in young rats from about 7.5 for the striatum to about 2.0 for the medulla-pons and cerebellum. The age-related changes consisted in a significant and selective loss of the enzymatic activity of G4 forms in the cerebral cortex, hippocampus, striatum, and hypothalamus, which resulted in a significant decrease of the G4/G1 ratio. No such changes were found in the medullapons or the cerebellum. Since G4 forms have been proposed to be present presynaptically, their age-related loss in those brain areas where acetylcholine plays an important role in neurotransmission may indicate an impairment of presynaptic mechanisms.  相似文献   

4.
Quantitative azure B cytophotometry was used to monitor ribonucleic acid (RNA) responses of individual neurons within the nucleus cuneiformis (NC) and ventrotegmental nucleus (VTN) of the rat mesencephalic reticular formation following single subcutaneous soman (pinacolyl methylphosphonofluoridate) injections (0.5, 0.9 or 1.5 LD50). The sub-lethal (0.5 LD50) dosage of soman produced RNA accumulation in NC neurons, but VTN-RNA levels were not significantly altered. In contrast, both reticular nuclei exhibited prominent RNA depletion with higher soman dosages, the severity of which was greater with lethal (1.5 LD50) than near-lethal (0.9 LD50) dosages. These data indicate that metabolic correlates of enhanced activation of cholinergic reticular nuclei are present only with sub-lethal dosages, and that higher dosages produce characteristics of impaired activation of ascending cholinergic pathways. At present, mechanisms underlying soman-induced metabolic and neurologic deficits remain speculative.  相似文献   

5.
Abstract

Acetylcholinesterase (AChE) activity of the adenohypophysis, cerebellum, cerebral cortex, hypothalamus, amygdala, hippocampus, midbrain, pons, medulla oblongata and caudate nucleus was determined by a spectro‐photometric method in adult, male rats adapted toan LD 12:12cycle. Results of the study show that AChE activity is highest during the light phase and lowest during the dark phase of the cycle in all the brain areas studied except the adenohypophysis, cerebellum, hippocampus and hypothalamus. These findings expand earlier observations on the circadian variation in rat brain AChE activity and suggests a relationship with reported circadian variation in the acetylcholine levels of rat brain.  相似文献   

6.
Rats were trained to press a lever under a multiple fixed-ratio 25 fixed-interval 50-second (FR25 FI50-sec) schedule of food reinforcement. Soman, 70-90 micrograms/kg, s.c., suppressed response rates in both components, with a slightly greater effect in the FI schedule. The pattern of responding under the FI schedule, however, was maintained until lever-pressing was nearly completely suppressed. At the highest doses, soman occasionally caused tremors or mild tonic seizures with hindlimb abduction. The suppression of response rate was correlated with inhibition of acetylcholinesterase (AChE) in all brain regions examined: cortex, striatum, hippocampus, hypothalamus and brainstem. Cortical AChE was inhibited to the highest degree, while striatal AChE was most resistant to inhibition by soman.  相似文献   

7.
Studies were conducted to investigate relationships among soman (pinacolyl methylphosphonofluoridate) induced seizure activity, central metabolic impairments and lethality in normal vs thyroid-deficient rats. Quantitative cytophotometric measurements of individual cerebrocortical (layer V) and striatal neuron RNA contents were made following dosages of 0.5, 0.9 and 1.5 LD50 soman (LD50 = 135 μg/kg, sc). Hypothyroidism was associated with a marked diminution of overt convulsive activity and reduced susceptibility to lethal actions of soman as indicated by enhanced 24- and 48-h survival rates at 0.9, 1.2 and 1.5 LD50. Hypothyroidism per se produced RNA depletion in both cortical and striatal neurons. Soman treatment diminished cortical RNA to essentially the same extent in thyroid-deficient rats as in euthyroids, whereas there was no further reduction of striatal neuron RNA. It was found that amelioration of convulsive activity and lethal- ity in hypothyroid rats was accompanied by reduced cerebral acetylcholinesterase (AChE, EC 3.1.1.7) inactivation, and that plasma cholinesterase (EC 3.1.1.8) and aliesterase (EC 3.1.1.1) levels were significantly higher in hypothyroid than in euthyroid saline-control rats. The overall data indicate that soman- induced central metabolic impairments can occur independent of paroxysmal neural activity and lethal actions of the agent. Resistance to soman observed with thyroid deficiency may be due in large part to increased binding to plasma enzymes and diminished delivery of soman to AChE in vital cholinergic sites.  相似文献   

8.
Human accelerated region 1 (HAR1) is a short DNA region identified recently to have evolved the most rapidly among highly constrained regions since the divergence from our common ancestor with chimpanzee. It is transcribed as part of a noncoding RNA specifically expressed in the developing human neocortex. Employing a panoply of enzymatic and chemical probes, our analysis of HAR1 RNA proposed a secondary structure model differing from that published. Most surprisingly, we discovered that the substitutions between the chimpanzee and human sequences led the human HAR1 RNA to adopt a cloverleaf-like structure instead of an extended and unstable hairpin in the chimpanzee sequence. Thus, the rapid evolutionary changes resulted in a profound rearrangement of HAR1 RNA structure. Altogether, our results provide a structural context for elucidating HAR1 RNA function.  相似文献   

9.
Luteal and interstial cell RNA contents and circulating progesterone (P) and 20α-hydroxypregn-4-ene-3-one (20α-OH P) levels were measured during pseudopregnancy in order to characterize relationships between ovarian 20α-OH P secretion and luteal regression. Functional luteolysis, as manifested in depressed P levels, was not associated with concurrent elevations in 20α-OH P. Rather, augmented 20α-OH P levels were evidenced in periovulatory periods at the onset and termination of pseudopregnancy, subsequent to RNA accumulation in both luteal and interstitial compartments. It is postulated that 20α-OH P, the putative inactive metabolite of P, is produced by both ovarian compartments in a cyclic manner and in response to gonadotrophin released in the preovulatory period.  相似文献   

10.
The effect of hypothyroidism on the lipid composition of synaptosomes, density and affinity of muscarinic receptor sites, and acetylcholinesterase activity in the cerebral cortex of young and aged rats was investigated. The animals were made hypothyroid by adding 0.05% propyl-2-thiouracil to their drinking water for four weeks. This pathological state induced an increase in the relative percentage of sphingomyelin in young rats. In aged rats hypothyroidism induced a decrease of sphingomyelin and glycerophosphocholine and an increase of cholesterol. The effect of hypothyroid state on cerebral cortex resulted in an increase of acethylcholinesterase activity both in young and aged rats and was also reflected in an increase of density of M1-AChRs but only in the former.  相似文献   

11.
The neurotoxic effects of monocrotophos on the brain of the nile tilapia fish (Oreochromis niloticus) were examined, using a static bioassay under laboratory conditions. By probit analysis the 96 h LC50 value of monocrotophos was 4.9 mg/l. After 96 h exposure to acute levels of monocrotophos, the brain acetylcholinesterase (AChE) activity decreased progressively as the concentration of monocrotophos increased. In addition, four weeks following transfer to toxicant-free water after exposure to 1 mg monocrotophos, nile tilapia fish brain regained 95% of control AChE activity. The results indicate that inhibition of AChE activity in fish exposed to monocrotophos may serve as an indicator of hazard due to application of this chemical in the natural environment.Special issue dedicated to Dr. Robert Balazs.  相似文献   

12.
Effects of prior hypoxia acclimation (14-day at 380 mm Hg) on soman (pinacolyl methylphosphonofluoridate) induced brain neuronal RNA and acetylcholinesterase (AChE) depletion and lethality were monitored in rats following their return to ambient oxygenation. Quantitative cytochemical techniques were used to measure RNA and AChE changes in individual cerebrocortical (Layer III) and striatal (caudate plus putamen) neurons. In ambient PO2 controls, soman eventuated in a moderate diminution of neuronal RNA in both brain regions and severe, dosedependent suppression of AChE activity. Hypoxia acclimation per se induced RNA alterations as manifested in cortical RNA depletion and increased variability of striatal neuron RNA contents. In hypoxia acclimated rats, the extent of neuronal RNA depletion following soman injection was attenuated in both brain regions, yet there were no discernible differences in saline control AChE levels or in the extent of soman-induced AChE inhibition in ambient control versus hypoxia acclimated treatment groups. Hypoxia acclimated rats, however, were found to be even more susceptible to lethal actions of soman as assessed using 24- and 48-hour survival following a three-point treatment regimen. These data indicate that while compensatory systemic and central metabolic adjustments associated with 14d acclimation to reduced oxygen availability may retard soman-induced neuronal RNA depletion, resistance to lethal or near-lethal soman exposure is not enhanced. It is postulated that hypoxia acclimation is associated with complex adaptive and maladaptive neurophysiological alterations influencing CNS responsiveness to soman toxication, and that detrimental consequences exceed protection afforded by metabolic adaptation.  相似文献   

13.
We have isolated RNA from sheep brain synaptosomes and mitochondria separated by an aqueous two-phase system composed of dextran and poly(ethylene glycol). RNA was fractionated through oligo(dT)-cellulose columns and analyzed by electrophoresis through agarose slab gels containing methylmercuric hydroxide and stained with ethidium bromide. The electrophoretic patterns of the poly(A)-containing RNA fraction from synaptosomes and mitochondria are very similar although some high molecular weight RNA species, clearly visible in the synaptosomal fraction, are scarcely detected in the mitochondrial preparations. The electrophoretic analysis of a cleaner RNA preparation from digitonin-treated free mitochondria (mitoplasts) showed that all the poly (A)-RNA species of the synaptosomal preparation are also present in mitoplast. These results strongly suggest that all the discrete poly(A)-RNA species identified in brain synaptosomes are of mitochondrial origin.  相似文献   

14.
Concentrations of proenkephalin B (PENK B) mRNA in porcine brain, pituitary, spinal cord, and peripheral tissues were measured using RNA blotting and solution hybridization. A single hybridizing species of approximately 2,800 bases in size was present in the CNS, with the highest concentration in the caudate nucleus, followed by hypothalamus and hippocampus. The abundance of PENK B mRNA ranged from 22 pg/micrograms of poly(A)-rich RNA in caudate nucleus to less than 0.1 pg/microgram in cerebellum. Concentrations of immunoreactive PENK B-derived peptides showed a similar distribution, with the exception of the hypothalamus, which had lower PENK B mRNA levels than expected from peptide concentrations. PENK B mRNA of the same size as in the brain was also found in the anterior lobe of the pituitary and in the heart ventricle, whereas in intestine, lung, and kidney, smaller mRNA species of 1,800 bases became apparent by RNA blot analysis. An intermediate size of 2,200 bases was found in heart atrium. As revealed by S1 mapping, however, these smaller mRNAs are not completely homologous with PENK B mRNA, but rather may represent closely related mRNAs from a different gene(s).  相似文献   

15.
1. We investigated the content of S100B protein by ELISA in three brain regions (hippocampus, cerebral cortex, and cerebellum) and in cerebrospinal fluid of rats during postnatal development as well as the content and secretion of S100B in pre- and postconfluent primary astrocyte cultures.2. An accumulation of S100B occurred in all brain regions with similar ontogenetic pattern between second and fourth postnatal weeks. However, we observed a decrease in the cerebrospinal fluid S100B after the critical period for synaptogenesis in rodents.3. A similar profile of cell accumulation and decrease in basal secretion was also observed during aging of astrocyte cultures.4. These data contribute to the proposal that S100B is an important glial-derived protein during brain development and that changes in extracellular levels of S100B may be related to glial proliferation and synaptogenesis.  相似文献   

16.
17.
Abstract

Rapid irreversible inhibition of enzymes constitutes a difficult problem and demands sophisticated techniques to meet contemporary expectations of accuracy and precision. Modern computerized, analytical techniques now allow inhibition to be measured in the presence of a chromogenic substrate, the decomposition product of which can be followed by a conventional method and in a continuous mode. This article has been written to fulfill a need for guidelines to aid the designer of experiments for the irreversible inhibition of enzymes. Thus the scope and limitations of the continuous competitive method for the irreversible inhibition of enzymes is examined here. Examples of acetylcholinesterase inhibition by two diagonally different phosphonate inhibitors are used for illustrating accuracy and precision of the competitive irreversible inhibition technique at different levels of enzyme saturation with inhibitor and substrate.  相似文献   

18.
本文在大鼠双侧颈总动脉闭塞的不完全性脑缺血模型上,观察了尼莫地平在脑缺血中对一氧化氮( N O) 和自由基的影响。发现尼莫地平显著降低脑缺血大鼠血清中乳酸脱氢酶( L D H) 活性,丙二醛( M D A)含量,增加 N O 含量。结果提示:尼莫地平对脑缺血大鼠的保护作用可能与其抗脂质过氧化及增加 N O 有关。  相似文献   

19.
Vaughan R  Fan B  You JS  Kao CC 《RNA (New York, N.Y.)》2012,18(8):1541-1552
Understanding how the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) interacts with nascent RNA would provide valuable insight into the virus's mechanism for RNA synthesis. Using a peptide mass fingerprinting method and affinity capture of peptides reversibly cross-linked to an alkyn-labeled nascent RNA, we identified a region below the Δ1 loop in the fingers domain of the HCV RdRp that contacts the nascent RNA. A modification protection assay was used to confirm the assignment. Several mutations within the putative nascent RNA binding region were generated and analyzed for RNA synthesis in vitro and in the HCV subgenomic replicon. All mutations tested within this region showed a decrease in primer-dependent RNA synthesis and decreased stabilization of the ternary complex. The results from this study advance our understanding of the structure and function of the HCV RdRp and the requirements for HCV RNA synthesis. In addition, a model of nascent RNA interaction is compared with results from structural studies.  相似文献   

20.
RNA干扰(RNAinterference,RNAi)是指由21~23个核苷酸组成的双链RNA(dsRNA)所引发的生物细胞内同源基因转录后沉默的现象,是生物体在进化过程中普遍存在的一种基因调控机制。目前对由乙型肝炎病毒(HBV)引起的病毒性肝炎尚无令人满意的治疗效果,而RNA干扰技术的出现为各类慢性HBV感染的治疗开辟了新的途径。本文对RNA干扰抑制HBV复制及基因表达的研究现状、存在问题及应用前景进行了综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号