首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incubation of bovine adrenal 3 beta-hydroxysteroid dehydrogenase/steroid isomerase with 5'-[p-(fluorosulfonyl)benzoyl]adenosine (5'-FSBA) results in the inactivation of the 3 beta-hydroxysteroid dehydrogenase enzyme activity following pseudo-first-order kinetics. A double-reciprocal plot of 1/kobs versus 1/[5'-FSBA] yields a straight line with a positive y intercept, indicative of reversible binding of the inhibitor prior to an irreversible inactivation reaction. The dissociation constant (Kd) for the initial reversible enzyme-inhibitor complex is estimated at 0.533 mM, with k2 = 0.22 min-1. The irreversible inactivation could be prevented by the presence of NAD+ during the incubation, indicating that 5'-FSBA inactivates the 3 beta-hydroxysteroid dehydrogenase activity by reacting at the NAD+ binding site. Although the enzyme was inactivated by incubation with 5'-FSBA, no incorporation of the inhibitor was found in labeling studies using 5'-[p-(fluorosulfonyl)benzoyl] [14C]adenosine. However, the inactivation of 3 beta-hydroxysteroid dehydrogenase activity caused by incubation with 5'-FSBA could be completely reversed by the addition of dithiothreitol. This indicates the presence of at least two cysteine residues at or in the vicinity of the NAD+ binding site, which may form a disulfide bond catalyzed by the presence of 5'-FSBA. The intramolecular cysteine disulfide bridge was found between the cysteine residues in the peptides 274EWGFCLDSR282 and 18IICLLVEEK26, by comparing the [14C]iodoacetic acid labeling before and after recovering the enzyme activity upon the addition of dithiothreitol.  相似文献   

2.
H S Kim  L Lee  D R Evans 《Biochemistry》1991,30(42):10322-10329
The ATP analogue 5'-[p-(fluorosulfonyl)benzoyl]adenosine (FSBA) was used to chemically modify the ATP binding sites of the carbamyl phosphate synthetase domain of CAD, the multifunctional protein that catalyzes the first steps in mammalian pyrimidine biosynthesis. Reaction of CAD with FSBA resulted in the inactivation of the ammonia- and glutamine-dependent CPSase activities but had no effect on its glutaminase, aspartate transcarbamylase, or dihydroorotase activities. ATP protected CAD against inactivation by FSBA whereas the presence of the allosteric effectors UTP and PRPP afforded little protection, which suggests that the ATP binding sites were specifically labeled. The inactivation exhibited saturation behavior with respect to FSBA with a K1 of 0.93 mM. Of the two ATP-dependent partial activities of carbamyl phosphate synthetase, bicarbonate-dependent ATPase was inactivated more rapidly than the carbamyl phosphate dependent ATP synthetase, which indicates that these partial reactions occur at distinct ATP binding sites. The stoichiometry of [14C]FSBA labeling showed that only 0.4-0.5 mol of FSBA/mol of protein was required for complete inactivation. Incorporation of radiolabeled FSBA into CAD and subsequent proteolysis, gel electrophoresis, and fluorography demonstrated that only the carbamyl phosphate synthetase domain of CAD is labeled. Amino acid sequencing of the principal peaks resulting from tryptic digests of FSBA-modified CAD located the sites of FSBA modification in regions that exhibit high homology to ATP binding sites of other known proteins. Thus CAD has two ATP binding sites, one in each of the two highly homologous halves of the carbamyl phosphate domain which catalyze distinct ATP-dependent partial reactions in carbamyl phosphate synthesis.  相似文献   

3.
J W Ogilvie 《Biochemistry》1985,24(2):317-321
The smallest enzymatically active form of rabbit muscle phosphofructokinase is a tetramer of four identical or nearly identical monomers. The enzyme is inhibited by ATP, and this inhibition by ATP is relieved by the activating adenine nucleotides adenosine cyclic 3',5'-phosphate, AMP, and ADP. Each monomer contains one binding site specific for the inhibitor ATP and another site specific for the activating adenine nucleotides. The enzyme can also be activated by covalently labeling the activating adenine nucleotide binding sites with the affinity label 5'-[p-(fluorosulfonyl)benzoyl]adenosine. These activator binding sites on the enzyme have been covalently labeled to various degrees, ranging from an average value of less than one label per tetramer to four labels per tetramer, and the free-energy coupling, delta Gxy, between the covalently bound affinity label and ATP binding at the inhibitory site was determined. For enzyme preparations containing four labels per tetramer, delta Gxy is approximately 1 kcal/mol at pH 6.95 and 25 degrees C. A very significant free-energy coupling is observed in those preparations containing an average of one label per tetramer and less, and the change in delta Gxy in going from native tetramers to ones containing an average of two labels per tetramer is twice as great as the change in delta Gxy observed in going from tetramers containing an average of two labels per tetramer to ones containing four labels per tetramer, suggesting that modification of the final two monomers in the tetramer contributes much less to the antagonistic effect on ATP binding than does modification of the first two monomers in the tetramer.  相似文献   

4.
2-[4-(4,6-Diamino-1, 2-dihydro-2, 2-dimethyl-S-triazin-1-yl)phenyl]-4'-(fluorosulfonyl) acetanilide ethane sulfonate salt and 4-(p-tert-butylbenzoyl)-3-methyl-1-phenyl-2-pyrazolin-5-one cause a shift in growing populations of plasmid-bearing Staphylococcus aureus cells to a population of cells lacking the plasmid.  相似文献   

5.
NADPH-oxidase-catalyzed superoxide (O2-) formation in membranes of HL-60 leukemic cells was activated by arachidonic acid in the presence of Mg2+ and HL-60 cytosol. The GTP analogues, guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S] and guanosine 5'-[beta,gamma-imido]triphosphate, being potent activators of guanine-nucleotide-binding proteins (G proteins), stimulated O2- formation up to 3.5-fold. The adenine analogue of GTP[gamma S], adenosine 5'-[gamma-thio]triphosphate (ATP[gamma S]), which can serve as donor of thiophosphoryl groups in kinase-mediated reactions, stimulated O2- formation up to 2.5-fold, whereas the non-phosphorylating adenosine 5'-[beta,gamma-imido]triphosphate was inactive. The effect of ATP[gamma S] was half-maximal at a concentration of 2 microM, was observed in the absence of added GDP and occurred with a lag period two times longer than the one with GTP[gamma S]. HL-60 membranes exhibited nucleoside-diphosphate kinase activity, catalyzing the thiophosphorylation of GDP to GTP[gamma S] by ATP[gamma S]. GTP[gamma S] formation was half-maximal at a concentration of 3-4 microM ATP[gamma S] and was suppressed by removal of GDP by creatine kinase/creatine phosphate (CK/CP). The stimulatory effect of ATP[gamma S] on O2- formation was abolished by the nucleoside-diphosphate kinase inhibitor UDP. Mg2+ chelation with EDTA and removal of endogenous GDP by CK/CP abolished NADPH oxidase activation by ATP[gamma S] and considerably diminished stimulation by GTP[gamma S]. GTP[gamma S] also served as a thiophosphoryl group donor to GDP, with an even higher efficiency than ATP[gamma S]. Transthiophosphorylation of GDP to GTP[gamma S] was only partially inhibited by CK/CP. Our results suggest that NADPH oxidase is regulated by a G protein, which may be activated either by exchange of bound GDP by guanosine triphosphate or by thiophosphoryl group transfer to endogenous GDP by nucleoside-diphosphate kinase.  相似文献   

6.
D C Phelps  Y Hatefi 《Biochemistry》1985,24(14):3503-3507
Membrane-bound and purified mitochondrial energy-linked nicotinamide nucleotide transhydrogenase (TH) was inhibited by incubation with 5'-[p-(fluorosulfonyl)benzoyl]adenosine (FSBA), which is an analogue of TH substrates and their competitive inhibitors, namely, 5'-, 2'-, or 3'-AMP. NAD(H) and analogues, NADP, 5'-AMP, 5'-ADP, and 2'-AMP/3'-AMP mixed isomers protected TH against inhibition by FSBA, but NADPH accelerated the inhibition rate. In the absence of protective ligands or in the presence of NADP, FSBA appeared to modify the NAD(H) binding site of TH, because, unlike unmodified TH, the enzyme modified by FSBA under these conditions did not bind to an NAD-affinity column (NAD-agarose). However, when the NAD(H) binding site of TH was protected in the presence of 5'-AMP or NAD, then FSBA modification resulted in an inhibited enzyme that did bind to NAD-agarose, suggesting FSBA modification of the NADP(H) binding site or an essential residue outside the active site. [3H]FSBA was covalently bound to TH, and complete inhibition corresponded to the binding of about 0.5 mol of [3H]FSBA/mol of TH. Since purified TH is known to be dimeric in the isolated state, this binding stoichiometry suggests half-of-the-sites reactivity. A similar binding stoichiometry was found earlier for complete inhibition of TH by [14C]DCCD [Phelps, D.C., & Hatefi, Y. (1984) Biochemistry 23, 4475-4480]. The active site directed labeling of TH by radioactive FSBA should allow isolation of appropriate peptides for sequence analysis of the NAD(H) and possibly the NADP(H) binding domains.  相似文献   

7.
R Chakravarty  S Ikeda  D H Ives 《Biochemistry》1984,23(25):6235-6240
Base-line separation of two paired deoxynucleoside kinase activities (deoxycytidine/deoxyadenosine and deoxyguanosine/deoxyadenosine kinase), previously resolved as overlapping peaks from Blue Sepharose, has now been achieved. The improved separation and recovery in relatively small volumes were accomplished by eluting Blue Sepharose with a bisubstrate mixture: 0.5 mM dCyd plus 1 mM ATP released dCyd/dAdo kinase, and 1 mM dGuo plus 5 mM ATP eluted dGuo/dAdo kinase. The latter pair of activities showed copurification through UDP-Sepharose affinity chromatography and HPLC anion-exchange chromatography. The HPLC preparation appeared to be homogeneous, on the basis of nondenaturing polyacrylamide gel electrophoresis at several gel concentrations and pH values. Both dGuo and dAdo kinase activities coincided with the protein band. A single band of protein was also observed upon sodium dodecyl sulfate gel electrophoresis. The estimated molecular weight of the denatured protein (56 000) agrees closely with values obtained for native activity by sedimentation equilibrium or gel permeation chromatography. The rate of dAdo phosphorylation was found to be stimulated more than 3-fold by the presence of dGuo, and dGuo kinase was also slightly activated by the presence of dAdo. This mutual activation indicates that dGuo and dAdo kinase activities do not share a common site. Selective chemical inactivation of dGuo kinase by 5'-[p-(fluorosulfonyl)benzoyl]adenosine eliminated the ability of dGuo to stimulate dAdo kinase in parallel with the loss of dGuo kinase activity. These lines of evidence strongly suggest that dGuo and dAdo kinase activities are functions of separate sites on a monomeric polypeptide and that these sites may be in allosteric communication.  相似文献   

8.
V N Hingorani  L F Chang  Y K Ho 《Biochemistry》1989,28(18):7424-7432
The structure of the GTP-binding site of transducin, a signal-transducing G-protein involved in the visual excitation process, was studied by affinity labeling. Radioactive GTP analogues with reactive groups attached to different moieties of the GTP molecule were obtained and include 8-azido-GTP, P3-(4-azidoanilino)-P1-5'-GTP (AA-GTP), 5'-[p-(fluorosulfonyl)benzoyl]guanosine (FSBG), 3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)-GTP (ANPAP-GTP), the 2',3'-dialdehyde derivative of GTP (oGTP), and a bifunctional cross-linking analogue, 8-azido-P3-(4-azidoanilino)-P1-5'-GTP (8-azido-AA-GTP). With the exception of FSBG, all of the analogues were found to bind to transducin specifically and serve as a cofactor to activate the retinal cGMP cascade or act as a competitive inhibitor for the GTPase activity of transducin. The labeling sites of these analogues were localized by tryptic peptide mapping. ANPAP-GTP and oGTP were unable to covalently modify transducin, suggesting that the 2'- and 3'-hydroxy groups on the ribose ring of GTP are not in direct contact with the protein. AA-GTP only labeled the T alpha subunit of transducin and was localized on the 21-kDa tryptic fragment of T alpha. This indicates that the phosphate moiety of the bound GTP is in direct contact with this peptide. On the other hand, 8-azido-GTP labeled both the T alpha and T beta gamma subunits of transducin. The labeling on T alpha was on the 12-kDa tryptic fragment, suggesting that the guanine ring binding site is composed of a different peptide fragment than the phosphate binding region. Treatment with the bifunctional analogue 8-azido-AA-GTP generated the cross-linked products of T alpha and T beta gamma. This observation implies that the guanine ring of the bound GTP on T alpha could be in close proximity with T beta gamma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Previous studies [Dautry-Varsat, A., Cohen, G. N., & Stadtman, E.R. (1979) J. Biol. Chem. 254, 3124-3128; Lei, M., Aebi, U., Heidner, E. G., & Eisenberg, D. (1979) J. Biol. Chem. 254, 3129-3134] have shown that Escherichia coli glutamine synthetase (GS) can be cleaved by proteases to form a limited digestion species called nicked glutamine synthetase (GS). The present study gives the amino acid sequence of the protease-sensitive region of glutamine synthetase. The present study also shows that GS is enzymatically active, but this activity is low compared to the activity of GS. The apparent Michaelis constant value for glutamate was 90 mM for GS as compared to 3 mM for GS, while the Michaelis constant values for ATP were similar for GS and GS*. The dissociation constant values for ATP, as determined by intrinsic fluorescence measurements, were similar for GS and GS*. Glutamate decreased the dissociation constant value of ATP for GS because of synergism between the two binding sites; glutamate did not decrease the dissociation constant value of ATP for GS*. The glutamate analogue methionine sulfoximine bound very tightly to GS and inactivated the enzyme in the presence of ATP. Methionine sulfoximine did not appear to bind to GS* and did not inactivate GS* in the presence of ATP. The ATP analogue 5'-[p-(fluorosulfonyl)benzoyl]adenosine bound to GS and inactivated the enzyme by forming a covalent bond with it. Glutamate accelerated this inactivation because of the synergism between the ATP and glutamate binding sites of GS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Aldolase contains one tight binding site and one weak binding site per subunit for ATP [Kasprzak, A. and Kochman, M. (1980) Eur. J. Biochem. 104, 443-450]. The reaction of the ATP analog 5'-[p-(fluorosulfonyl)benzoyl]-1,N6-ethenoadenosine with rabbit aldolase A results in linear inactivation of enzyme with respect to covalent linkage of fluorescent label. The enzyme is completely protected against modification in the presence of saturating covalent binding (k2 = 0.033 min-1) is preceded by a fast reversible binding step (Ki = 6.8 mM). Chemical modification of aldolase leads to formation of stable N epsilon (4-carboxybenzenesulfonyl-lysine (Cbs-Lys) and O-(4-carboxybenzenesulfonyl-tyrosine (Cbs-Tyr) derivatives. Almost all Cbs-Lys was found in the N-terminal CNBr peptide (CN-1), whereas Cbs-Tyr was present both in the N-terminal (CN-1) and C-terminal (CN-2) peptide. From carboxypeptidase digestion and tryptic peptide analysis, Cbs-Lys was localized in position 107, a small part of Cbs-Tyr was detected in position 84, and the majority of Cbs-Tyr was found in the C-terminal position Tyr-363. We conclude that the covalent binding of the ATP analog occurs at the mononucleotide tight-binding site of aldolase and is associated with modification of Lys-107 and Tyr-363. This conclusion is based on the measurements of enzymatic activity loss as a function of ATP analog incorporation as well as on previous data. It is postulated that Lys-107, which is the C-6 phosphate binding site for fructose-1,6-P2, is in close proximity to the functionally important Tyr-363. The rather small extent of modification of Tyr-84 (0.15 mol/subunit), is due either to nonspecific protein modification or labeling of the weak mononucleotide binding site.  相似文献   

11.
Epidermal growth factor (EGF), after binding to its receptor, activates a tyrosine-specific protein kinase which phosphorylates several substrates, including the EGF receptor itself. The effects of a photoaffinity analogue of ATP, 3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)adenosine 5'-triphosphate (arylazido-beta-alanyl-ATP) on the EGF-dependent protein kinase in A431 human tumour cell plasma membrane vesicles was investigated. This analogue was capable of inactivating the EGF-receptor kinase in a photodependent manner. Partial inactivation occurred at an analogue concentration of 1 microM and complete inactivation occurred at 10 microM when a 2 min light exposure was used. Arylazido-beta-alanine at 100 microM and ATP at 100 microM were incapable of inactivating the enzyme with 2 min of light exposure. The photodependent inactivation of the enzyme by the analogue could be partially blocked by 20 mM-ATP and more effectively blocked by either 20 mM-adenosine 5'-[beta gamma-imido]triphosphate or 20 mM-guanosine 5'-[beta gamma-imido]triphosphate, indicating nucleotide-binding site specificity. Arylazido-beta-alanyl-[alpha-32P]ATP was capable of labelling membrane proteins in a photodependent manner. Numerous proteins were labelled, the most prominent of which ran with an apparent Mr of 53000 on polyacrylamide-gel electrophoresis. A band of minor intensity was seen of Mr corresponding to the EGF receptor (170000). Immunoprecipitation of affinity-labelled and solubilized membranes with an anti-(EGF receptor) monoclonal antibody demonstrated that the Mr 170000 receptor protein was photoaffinity labelled by the analogue. The Mr 53000 peptide was not specifically bound by the anti-receptor antibody. The affinity labelling of the receptor was not enhanced by EGF, suggesting that EGF stimulation of the kinase activity does not result from changes in the affinity of the kinase for ATP. These studies demonstrate that arylazido-beta-alanyl-ATP interacts with the ATP-binding site of the EGF-receptor kinase with apparent high affinity and that this analogue is an effective photoaffinity label for the kinase. Furthermore, these studies demonstrate that the EGF receptor, identified by using monoclonal antibodies, contains an ATP-binding site, providing further confirmation that the EGF receptor and EGF-dependent protein kinase are domains of the Mr 170000 protein.  相似文献   

12.
T Nishino  T Nishino 《Biochemistry》1987,26(11):3068-3072
Xanthine-NAD and NADH-methylene blue oxidoreductase activities of chicken liver xanthine dehydrogenase were inactivated by incubation with 5'-[p-(fluorosulfonyl)benzoyl]adenosine (5'-FSBA), an active site directed reagent for nucleotide binding sites. The inactivation reaction displayed pseudo-first-order kinetics. A double-reciprocal plot of inactivation velocity vs. 5'-FSBA concentration showed that 5'-FSBA and enzyme formed a complex prior to inactivation. NAD protected the enzyme from inactivation by 5'-FSBA in a competitive fashion. The modified enzyme had the same xanthine-dichlorophenolindophenol and xanthine-O2 oxidoreductase activities as the native enzyme, and on addition of xanthine to the modified enzyme, bleaching of the spectrum occurred in the visible region. The amount of radioactivity incorporated into the enzyme by incubation with [14C]-5'-FSBA was parallel to the loss of xanthine-NAD oxidoreductase activity, and the stoichiometry was 1 mol/mol of enzyme-bound FAD for complete inactivation. These results indicated that 5'-FSBA modified specifically the binding site for NAD of chicken liver xanthine dehydrogenase. The incorporated radioactivity was released slowly from 14C-labeled enzyme by incubation with dithiothreitol with concomitant restoration of catalytic activity. The modified residue responsible for inactivation was identified as a tyrosine.  相似文献   

13.
The stereochemical course of the phosphoryl transfer reaction catalyzed by T4 polynucleotide kinase has been determined using the chiral ATP analog, (Sp)-adenosine-5'-(3-thio-3-[18O]triphosphate). T4 polynucleotide kinase catalyzes the transfer of the gamma-thiophosphoryl group of (Sp)-adenosine-5'-(3-thio-3-[18O]triphosphate) to the 5'-hydroxyl group of ApA to give the thiophosphorylated dinucleotide adenyl-5'-[18O]phosphorothioate-(3'-5')adenosine. A sample of adenyl-5'-[18O]phosphorothioate-(3'-5')adenosine was subjected to venom phosphodiesterase digestion. The resulting adenosine-5'-[18O]phosphorothioate was shown to have the Rp configuration, thus indicating that the thiophosphoryl transfer reaction occurs with overall inversion of configuration of phosphorus.  相似文献   

14.
A new bifunctional affinity label, 5'-p-(fluorosulfonyl)benzoyl-8-azidoadenosine (5'-FSBAzA), has been synthesized by condensation of p-(fluorosulfonyl)benzoyl chloride with 8-azidoadenosine. 5'-FSBAzA has been characterized by elemental analysis, thin-layer chromatography, and ultraviolet and 1H NMR spectroscopy. The affinity label contains both an electrophilic fluorosulfonyl moiety and a photoactivatable azido group which are capable of reacting with several classes of amino acids found in enzymes. 5'-FSBAzA reacts with bovine liver glutamate dehydrogenase in a two-step process: a dark reaction yielding about 0.5 mol of the sulfonylbenzoyl-8-azidoadenosine (SBAzA) group bound/mol enzyme subunit by reaction of the enzyme at the fluorosulfonyl group, followed by photolysis in which 25% of the covalently bound SBAzA becomes crosslinked to the enzyme. 5'-FSBAzA-modified glutamate dehydrogenase, both before and after photolysis, retains full catalytic activity but is less sensitive to allosteric inhibition by GTP, to activation by ADP, and to inhibition by 1 mM NADH. These results suggest the modification in the dark reaction of a regulatory nucleotide binding site. Photoactivation of the covalently bound reagent may have general applicability in relating modified amino acids which are close to each other in the region of the purine nucleotide binding sites of glutamate dehydrogenase and other proteins.  相似文献   

15.
Bovine liver glutamate dehydrogenase reacts with the bifunctional affinity label 5'-(p-(fluorosulfonyl)benzoyl)-8-azidoadenosine (5'-FSBAzA) in a two-step process: a dark reaction yielding about 0.5 mol of -SBAzA/mol of subunit by reaction through the fluorosulfonyl moiety, followed by photoactivation of the azido group whereby covalently bound -SBAzA becomes cross-linked to the enzyme [Dombrowski, K. E., & Colman, R. F. (1989) Arch. Biochem. Biophys. 275, 302-308]. We now report that the rate constant for the dark reaction is not reduced by ADP or GTP, but it is decreased 7-fold by 2 mM NADH and 40-fold by 2 mM NADH + 0.2 mM GTP, suggesting that 5'-FSBAzA reacts at the GTP-dependent NADH inhibitory site. The amino acid residues modified in each phase of the reaction have been identified. Modified enzyme was isolated after each reaction phase, carboxymethylated, and digested with trypsin, chymotrypsin, or thermolysin. The digests were fractionated by chromatography on a phenylboronate agarose column followed by HPLC. Gas-phase sequencing of the labeled peptides identified Tyr190 as the major amino acid which reacts with the fluorosulfonyl group; Lys143 was also modified but to a lesser extent. The predominant cross-link formed during photolysis is between modified Tyr190 and the peptide Leu475-Asp476-Leu477-Arg478, which is located near the C-terminus of the enzyme. Thus, 5'-FSBAzA is effective in identifying critical residues distant in the linear sequence, but close within the regulatory nucleotide site of glutamate dehydrogenase.  相似文献   

16.
Canine renal Na,K-ATPase was treated with ATP dialdehyde, "oxATP" (20 microM), as described by G. Ponzio, B. Rossi, and M. Lazdunski (1983, J. Biol. Chem. 258, 8201-8205). In this system, a by-product, formaldehyde, was the inactivator. We modified the system to minimize such inhibition and to speed up the reaction. oxATP itself inactivated the enzyme at a rate that was slow at first and later speeded up. We fitted a precursor-product model to the data. Labeling with [3H]oxATP indicated about three sites per alpha beta protomer at complete inactivation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the labeled enzyme showed radioactivity in many components, in the alpha and beta subunits and in small molecules at the tracker dye region. ATP (20 mM) prevented all labeling and inactivation. Ponzio et al. concluded that oxATP labels covalently an ATP binding site. Our experiments did not support this conclusion. Ouabain did not affect labeling. Sodium stimulated both inhibition and labeling more than potassium did, indicating a high-affinity ATP binding site, if any. But nucleotide specificity for preventing or producing inhibition did not correspond to nucleotide specificity for binding of ATP to the native enzyme. Blocking the ATP binding center with fluorescein isothiocyanate or fluorosulfonyl benzoyl adenosine had no effect on [3H]oxATP labeling. ATP also prevented [3H]oxATP labeling of bovine serum albumin or of integral-membrane proteins.  相似文献   

17.
A simplified method is described for the enzymatic synthesis and purification of [alpha-32P]ribo- and deoxyribonucleoside triphosphates. The products are obtained at greater than 97% radiochemical purity with yields of 50--70% (relative to 32Pi) by a two-step elution from DEAE-Sephadex. All reactions are done in one vessel as there is no need for intermediate product purifications. This method is therefore suitable for the synthesis of these radioactive compounds on a relatively large scale. The sequential steps of the method involve first the synthesis of [gamma-32P]ATP and the subsequent phosphorylation of nucleoside 3' monophosphate with T4 polynucleotide kinase to yield nucleoside 3', [5'-32P]diphosphate. Hexokinase is used after the T4 reaction to remove any remaining [gamma-32P]ATP. Nucleoside 3',[5'-32P]diphosphate is treated with nuclease P-1 to produce the nucleoside [5'-32P]monophosphate which is phosphorylated to the [alpha-32P]nucleoside triphosphate with pyruvate kinase and nucleoside monophosphate kinase. Adenosine triphosphate used as the phosphate donor for [alpha-32P]deoxynucleoside triphosphate syntheses is readily removed in a second purification step involving affinity chromatography on boronate-polyacrylamide. [alpha-32P]Ribonucleoside triphosphates can be similarly purified when deoxyadenosine triphosphate is used as the phosphate donor.  相似文献   

18.
Imaging the progression of Alzheimer's disease would greatly facilitate the discovery of therapeutics, and a wide range of ligands are currently under development for the detection of beta-amyloid peptide (Abeta)-containing plaques by using positron emission tomography. Here we report an in-depth characterization of the binding of seven previously described ligands to in vitro generated Abeta-(1-40) polymers. All of the compounds were derived from the benzothiazole compound thioflavin T and include 2-[4'-(methylamino)phenyl]benzothiazole and 2-(4'-dimethylamino-)phenyl-imidazo[1,2-a]-pyridine derivatives, 2-[4'-(dimethylamino)phenyl]-6-iodobenzothiazole and 2-[4'-(4'-methylpiperazin-1-yl)phenyl]-6-iodobenzothiazole, and a benzofuran compound (5-bromo-2-(4-dimethylaminophenyl)benzofuran). By using a range of fluorescent and radioligand binding assays, we find that these compounds display a more complex binding pattern than described previously and are consistent with three classes of binding sites on the Abeta fibrils. All of the compounds bound with very high affinity (low nm K(d)) to a low capacity site (BS3) (1 ligand-binding site per approximately 300 Abeta-(1-40) monomers) consistent with the previously recognized binding site for these compounds on the fibrils. However, the compounds also bound with high affinity (K(d) approximately 100 nm) to either one of two additional binding sites on the Abeta-(1-40) polymer. The properties of these sites, BS1 and BS2, suggest they are adjacent or partially overlapping and have a higher capacity than BS3, occurring every approximately 35 or every approximately 4 monomers of Abeta-(1-40)-peptide, respectively. Compounds appear to display selectivity for BS2 based on the presence of a halogen substitution (2-[4'-(dimethylamino)phenyl]-6-iodobenzothiazole, 2-[4'-(4'-methylpiperazin-1-yl)phenyl]-6-iodobenzothiazole, and 5-bromo-2-(4-dimethylaminophenyl)benzofuran) on their aromatic ring system. The presence of additional ligand-binding sites presents potential new targets for ligand development and may allow a more complete modeling of the current positron emission tomography data.  相似文献   

19.
The regulation of Cl- conductance by cytoplasmic nucleotides was investigated in pancreatic and parotid zymogen granules. Cl- conductance was assayed by measuring the rate of cation-ionophore-induced osmotic lysis of granules suspended in iso-osmotic salt solutions. Both inhibition and stimulation were observed, depending on the type and concentration of nucleotide. Under optimal conditions, the average inhibition measured in different preparations was 1.6-fold, whereas the average stimulation was 4.4-fold. ATP was inhibitory at 1-10 microM but stimulated Cl- conductance above 50 microM. Stimulation by ATP was more pronounced in granules with low endogenous Cl- conductance. The potency of nucleotides in terms of inhibition was ATP greater than adenosine 5'-[gamma-thio]triphosphate (ATP[S]) greater than UTP much greater than or equal to CTP much greater than or equal to GTP much greater than or equal to guanosine 5'-[gamma-thio]triphosphate (GTP[S]) much greater than or equal to ITP. The potency with respect to stimulation had the following order: adenosine 5'-[beta gamma-methylene]triphosphate (App[CH2]p) greater than ATP greater than guanosine 5'-[beta-thio]diphosphate (GDP[S]). Adenosine 5'-[beta gamma-imido]triphosphate (App[NH]p) was also stimulatory, and was more potent than ATP in the parotid granules, but less potent in the pancreatic granules. Aluminium fluoride stimulated Cl- conductance maximally at 15-30 microM-Al3+ and 10-15 mM-F. F was less effective at higher concentrations. Protein phosphorylation by kinases was apparently not involved, since the nucleotide effects (1) could be mimicked by non-hydrolysable analogues of ATP and GTP, (2) showed reversibility, and (3) were not abolished by the protein kinase inhibitors 1-(5-isoquinolinesulphonyl)-2-methylpiperazine (H-7) or staurosporine. The data suggest the presence of at least two binding sites for nucleotides, whereby occupancy of one induces inhibition and occupancy of the other induces stimulation.  相似文献   

20.
1. We have studied the metabolism of Ins(1,3,4,5)P4 (inositol 1,3,4,5-tetrakisphosphate) by rat liver homogenates incubated in a medium resembling intracellular ionic strength and pH. 2. Ins(1,3,4,5)P4 was dephosphorylated to a single inositol trisphosphate product, Ins(1,3,4)P3 (inositol 1,3,4-trisphosphate), the identity of which was confirmed by periodate degradation, followed by reduction and dephosphorylation to yield altritol. 3. The major InsP2 (inositol bisphosphate) product was inositol 3,4-bisphosphate [Shears, Storey, Morris, Cubitt, Parry, Michell & Kirk (1987) Biochem. J. 242, 393-402]. Small quantities of a second InsP2 product was also detected in some experiments, but its isomeric configuration was not identified. 4. The Ins(1,3,4,5)P4 5-phosphatase activity was primarily associated with plasma membranes. 5. ATP (5 mM) decreased the membrane-associated Ins(1,4,5)P3 5-phosphatase and Ins(1,3,4,5)P4 5-phosphatase activities by 40-50%. This inhibition was imitated by AMP, adenosine 5'-[beta gamma-imido]triphosphate, adenosine 5'-[gamma-thio]triphosphate or PPi, but not by adenosine or Pi. A decrease in [ATP] from 7 to 3 mM halved the inhibition of Ins(1,3,4,5)P4 5-phosphatase activity, but the extent of inhibition was not further decreased unless [ATP] less than 0.1 mM. 6. Ins(1,3,4,5)P4 5-phosphatase was insensitive to 50 mM-Li+, but was inhibited by 5 mM-2,3-bisphosphoglycerate. 7. The Ins(1,3,4,5)P4 5-phosphatase activity was unchanged by cyclic AMP, GTP, guanosine 5'-[beta gamma-imido]triphosphate or guanosine 5'-[gamma-thio]triphosphate, or by increasing [Ca2+] from 0.1 to 1 microM. 8. Ins(1,3,4)P3 was phosphorylated in an ATP-dependent manner to an isomer of InsP4 that was partially separable on h.p.l.c. from Ins(1,3,4,5)P4. The novel InsP4 appears to be Ins(1,3,4,6)P4. Its metabolic fate and function are not known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号