首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mode and nature of the binding of chlorpromazine (CPZ), a psychotropic drug, with milk proteins – -lactalbumin (with substantial amounts of -helix, -sheet and random coil), -lactoglobulin (a major -sheeted protein) and s-casein (a random coiled protein) have been studied spectrofluorometrically and spectropolarimetrically. The binding affinity of CPZ for unfolded proteins is comparatively less than that of folded proteins although the number of binding sites is smaller in the latter case, due to the greater extent of binding of CPZ for folded proteins. Thermodynamic analysis reveals that CPZ binds to -lactalbumin and s-casein in an endothermic (Ho is positive) and hydrophobic manner but with -lactoglobulin in an exothermic (Ho is negative) manner. Far UV Circular dichroic studies reveal that CPZ increases the secondary structure of the major -sheeted protein, -lactoglobulin possibly by increasing the relative contact orders (non-local contacts) within the residues. On the other hand, for proteins possessing random coil, it increases the unfolded state of the protein. CPZ does not affect local contacts in a-helix when its interaction is compared with a major -helical protein, myoglobin.  相似文献   

2.
Vanadium was shown to be a contaminant in Sigma-grade serum albumins, fraction V. The levels of vanadium detected by neutron activation analysis were: bovine 16.7, ovine 10.0, rabbit 9.1, porcine 3.9, and human 0.19 micrograms/g protein. According to the ESR spectra, the vanadate form (+5 oxidation state) was strongly suggested as a chemical form present in albumins. Dialysis against a chelating agent was quite effective for removal of the metal ion.  相似文献   

3.
Vanadium compounds are known to stimulate the oxidation of NAD(P)H, but the mechanism remains unclear. This reaction was studied spectrophotometrically and by electron spin resonance spectroscopy (ESR) using vanadium in the reduced state (+4, vanadyl) and the oxidized state (+5, vanadate). In 25 mM sodium phosphate buffer at pH 7.4, vanadyl was slightly more effective in stimulating NADH oxidation than was vanadate. Addition of a superoxide generating system, xanthine/xanthine oxidase, resulted in a marked increase in NADH oxidation by vanadyl, and to a lesser extent, by vanadate. Decreasing the pH with superoxide present increased NADH oxidation for both vanadate and vanadyl. Addition of hydrogen peroxide to the reaction mixture did not change the NADH oxidation by vanadate, regardless of concentration or pH. With vanadyl however, addition of hydrogen peroxide greatly enhanced NADH oxidation which further increased with lower pH. Use of the spin trap DMPO in reaction mixtures containing vanadyl and hydrogen peroxide or a superoxide generating system resulted in the detection by ESR of hydroxyl. In each case, the hydroxyl radical signal intensity increased with vanadium concentration. Catalase was able to inhibit the formation of the DMPO--OH adduct formed by vanadate plus superoxide. These results show that the ability of vanadium to act in a Fenton-type reaction is an important process in the vanadium-stimulated oxidation of NADH.  相似文献   

4.
Oxidation of NADH has been observed in an in vitro system requiring NADH, vanadate, ascorbate, and phosphate. Similar results were observed with NADPH. Ascorbate provides the reducing equivalents necessary to reduce vanadate to vanadyl. Vanadyl autoxidizes producing superoxide which initiates a free radical chain reaction resulting in oxidation of NADH. Oxidation is inhibited by superoxide dismutase but not by catalase or ethanol. Ascorbate functions to initiate the free radical chain reaction but is not required in stoichiometric concentrations. At higher concentrations, ascorbate inhibits NADH oxidation. Inorganic phosphate was required for NADH oxidation. Dialysis of phosphate buffers against solutions containing apoferritin or conalbumin or addition of transition metal cations or chelators to the reaction medium did not alter dependence on phosphate. Phosphate and vanadate were interchangeable in their effects on kinetic parameters of NADH oxidation except that vanadate was 100 times more potent than phosphate. Vanadate participates directly in the initiating and propagating redox reactions of NADH oxidation. Phosphate may be important in lowering the energy of activation for the necessary transfer of hydronium ion and water in the transition state between vanadate anion and vanadyl cation.  相似文献   

5.
In this paper, we analyze a group of amino acids containing sulfur, either as thiols or as disulfides and sulfides (l-cysteine, l-cystine, S-carboxymethyl-l-cysteine, N-acetyl-l-cysteine, reduced and oxidized l-glutathione) for their interaction with superoxide ion in protic and aprotic media. Superoxide ion was electrochemically generated by reduction of oxygen molecules dissolved in the solutions. concentration changes due to the presence of interacting species and was easily monitored under mild and controlled experimental conditions, in the presence or in the absence of the selected substrate, in protic and aprotic media. The reactions were followed by cyclic (CV) or linear (LSV) voltammetry, depending on the medium and the electrochemical techniques widely used to study the antioxidant capacity of biological and chemical systems. According to the experimental results, it was concluded that substrates having a free thiol group react with ion giving disulfides and can be considered as antioxidants for the superoxide ion in the following decreasing order: N-acetyl-l-cysteine > l-cysteine > reduced glutathione. Compounds having protected sulfur (l-cystine, S-carboxymethyl-l-cysteine, oxidized glutathione) do not react with the superoxide ion and do not form compounds with a superior S oxidation number, such as sulfoxide and sulfone.  相似文献   

6.
We report crystal structures of ternary complexes of maltodextrin phosphorylase with natural oligosaccharide and phosphate mimicking anions: nitrate, sulphate and vanadate. Electron density maps obtained from crystals grown in presence of Al(NO3)3 show a nitrate ion instead of the expected in the catalytic site. The trigonal is coplanar with the Arg569 guanidinium group and mimics three of the four oxygen atoms of phosphate. The ternary complex with sulphate shows a partial occupancy of the anionic site. The low affinity of the sulphate ion, observed when the α-glucosyl substrate is present in the catalytic channel, is ascribed to restricted space for the anion. Even lower occupancy is observed for the larger vanadate anion. The Malp/G5/ structure shows the partial occupancy of the oligosaccharide and the dislocation of the 380’s loop. This has been attributed to the formation of oligosaccharide vanadate derivatives (confirmed by capillary electrophoresis) that reduces their effective concentration. The difficulty to trap a ternary complex mimicking the ground state has been correlated to the apparent lower affinity that natural substrates show regarding the intermediates of the enzymatic reaction.  相似文献   

7.
  • 1.1. Treatment of isolated rat liver mitochondria with methyl methacrylate (MM) produced membrane disruption as evidenced by the release of citrate synthase, and changes in the ultrastructure of mitochondria.
  • 2.2. At concentration 0.1%, MM uncoupled oxidative phosphorylation as evidenced by stimulation of state 4 respiration supported either by pyruvate plus malate or succinate (+rotenone) and ATP-ase activity in intact mitochondria.
  • 3.3. At concentration 1% MM stimulated ATP-ase activity in intact mitochondria and succinate (+rotenone) oxidation at state 4 and was without effect on this substrate oxidation at state 3.
  • 4.4. MM inhibited pyruvate plus malate oxidation either at state 3 or in the presence of uncoupling agents.
  • 5.5. MM inhibited the NADH oxidase of electron transport particles at a concentration which failed to inhibit either succinic oxidase or the NADH-ferricyanide reductase activity.
  • 6.6. The data presented suggest that in the isolated mitochondria MM inhibits NADH oxidation in the vicinity of the rotenone sensitive site of complex I.
  • 7.7. The general conclusion is that MM may block an electron transport and to uncouple oxidative phosphorylation in rat liver mitochondria. The overall in vitro effect would be to prevent ATP synthesis which could result in cell death under in vivo conditions.
  相似文献   

8.
《Inorganica chimica acta》1988,152(3):177-180
ESR spectra due to the vanadyl ion (VO2+, +4 oxidation state) was detected in the branchial basket of Ascidia ahodori, which is reported to contain vanadium in high amounts. The branchial basket, washed with a medium containing 1 mM EDTA, and the supernatant showed different types of vanadyl ESR spectra. On further treatment with 100 mM EDTA the branchial basket gave a characteristic ESR spectrum, indicating that the vanadyl ion binds to a high molecular weight matrix, such as proteins, which makes up the branchial basket. Judging from the relationship of the ESR parameters, g versus A, the vanadyl ion is assumed to ligate with moieties such as deprotonated hydroxyl, or nitrogenous or thiolato groups from oxy- or thiolamino acid residues. The branchial basket was shown to have the ability to reduce added vanadate ion (+5 oxidation state) to the vanadyl form. On the basis of these observations, participation of the branchial basket in vanadium-accumulation by ascidians from seawater is suggested.  相似文献   

9.
Electron paramagnetic resonance spectroscopy and density functional theory calculations have been used to investigate the redox properties of the green tea polyphenols (GTPs) (?)-epigallocatechin gallate (EGCG), (?)-epigallocatechin (EGC), and (?)-epicatechin gallate (ECG). Aqueous extracts of green tea and these individual phenols were autoxidized at alkaline pH and oxidized by superoxide anion (O2?) radicals in dimethyl sulfoxide. Several new aspects of the free radical chemistry of GTPs were revealed. EGCG can be oxidized on both the B and the D ring. The B ring was the main oxidation site during autoxidation, but the D ring was the preferred site for O2? oxidation. Oxidation of the D ring was followed by structural degradation, leading to generation of a radical identical to that of oxidized gallic acid. Alkaline autoxidation of green tea extracts produced four radicals that were related to products of the oxidation of EGCG, EGC, ECG, and gallic acid, whereas the spectra from O2? oxidation could be explained solely by radicals generated from EGCG. Assignments of hyperfine coupling constants were made by DFT calculations, allowing the identities of the radicals observed to be confirmed.  相似文献   

10.
Recently, D.J. Hall et al. reported that ethidium (E+) is formed as a major product of hydroethidine (HE) or dihydroethidium reaction with superoxide (O2) in intact animals with low tissue oxygen levels (J. Cereb. Blood Flow Metab. 32:23–32, 2012). The authors concluded that measurement of E+ is an indicator of O2 formation in intact brains of animals. This finding is in stark contrast to previous reports using in vitro systems showing that 2-hydroxyethidium, not ethidium, is formed from the reaction between O2 and HE. Published in vivo results support the in vitro findings. In this study, we performed additional experiments in which HE oxidation products were monitored under different fluxes of O2. Results from these experiments further reaffirm our earlier findings (H. Zhao et al., Free Radic. Biol. Med. 34:1359, 2003). We conclude that whether in vitro or in vivo, E+ measured by HPLC or by fluorescence lifetime imaging is not a diagnostic marker product for O2 reaction with HE.  相似文献   

11.
UDP-glucose:(1,3)-β-glucan (callose) synthase (CS) from storage tissue of red beet (Beta vulgaris L.) was strongly inhibited by the phenothiazine drug chlorpromazine (CPZ). In the absence of ultraviolet irradiation, CPZ was a noncompetitive inhibitor with 50% inhibitory concentration values for plasma membrane and solubilized CS of 100 and 90 μm, respectively. Both the Ca2+- and Mg2+- stimulated components of CS activity were affected. CPZ inhibition was partially alleviated at saturating levels of Ca2+, but not Mg2+, suggesting that CPZ interferes with the Ca2+-binding site of CS. Binding experiments with [14C]CPZ, however, showed strong non-specific partitioning of CPZ into the plasma membrane, providing evidence that perturbation of the membrane environment is probably the predominant mode of inhibition. Ultraviolet irradiation at 254 nm markedly enhanced CPZ inhibition, with complete activity loss following exposure to 4 μm CPZ for 2 min. Inhibition followed a pseudo-first order mechanism with at least three CPZ binding sites per CS complex. Under these conditions, [3H]CPZ was covalently incorporated into plasma membrane preparations by a free radical mechanism; however, polypeptide labeling profiles showed labeling to be largely nonspecific, with many polypeptides labeled even at [3H]CPZ levels as low as 1 μm, and with boiled membranes. Although CPZ is one of the most potent known inhibitors of CS, its use as a photolabel will require a homogeneous CS complex or establishment of conditions that protect against the interaction of CPZ with specific binding sites located on various polypeptide components of the CS complex.  相似文献   

12.
The oxidation of chlorpromazine by methemoglobin plus H2O2 has been studied. The transient formation of the chlorpromazine radical cation in this reaction has been demonstrated by light absorption measurements. Under the experimental conditions complete conversion of chlorpromazine yields approximately 60% chlorpromazine sulfoxide. From studies with 3H-labeled chlorpromazine it appears that the remaining 40% is covalently bound to apohemoglobin. Upon reaction of methemoglobin with H2O2 a stable ferrylhemoglobin is formed. This ferrylhemoglobin is not the reactive species, which accepts the chlorpromazine electron, as its presence is not sufficient to induce chlorpromazine oxidation. For this the presence of H2O2 is a prerequisite. This indicates that a transient species in the formation of the stable ferrylhemoglobin is involved, whether this is a compound I analogue or a ferrylhemoglobin with a free radical on one of the apoprotein residues. Exposition of methemoglobin to H2O2 denatures hemoglobin and induces protein-heme crosslinks, as appears from changes in the visible absorption spectrum and heme retention by the protein after methyl ethyl ketone extraction. Reaction with CPZ partly protects against denaturation and crosslinking.  相似文献   

13.
A dihydroxybenzenes(DHB)-driven Fenton reaction was found to be more efficient than a simple Fenton reaction based on OH radical and activated species production. The reason for this enhanced reactivity by [Fe DHB] complexes is not well understood, but results suggest that it may be explained by the formation of oxidation species different from those formed during the classic Fenton reactions. In previous work, greater concentrations, and more sustained production of OH over time were observed in DHB driven Fenton reactions versus neat Fenton and Fenton-like reactions. In this work, chemiluminescence (CL) was monitored, and compared to OH production kinetics. The CL of the DHB-driven Fenton reaction was shorter than that for sustained production of OH. CL appears to have been caused by excited Fe(IV) species stabilized by the DHB ligands initially formed in the reaction. Formation of this species would have to have occurred by the reaction between OH and Fe(III) in a DHB complex.  相似文献   

14.
Human polymorphonuclear leukocytes (PMNs) have been stimulated with either phorbol 12-myristate 13-acetate (PMA), calcium ionophore A23187 or a combination of both to induce the respiratory burst and myeloperoxidase (MPO) release. Chlorpromazine (CPZ) but not chlorpromazine sulfoxide (CPZSO) inhibited the respiratory burst as measured with lucigenin chemiluminescence. The inhibition was due to interference with processes in the cell leading to the respiratory burst and not to scavenging of produced oxygen radicals that provoke the luminescence. CPZ was metabolized by stimulated PMNs. HPLC analysis revealed formation of CPZSO and an unidentified product. Both products result from decay of chlorpromazine radical cation (CPZ+.), indicating formation of this radical intermediate in CPZSO oxidation by stimulated PMNs. CPZ conversion correlated with H2O2 production and MPO release. The largest CPZ conversion was observed with phorbol ester plus A23187 stimulation. The conversion was reduced by catalase and sodium azide, an inhibitor of MPO, with 70% and 40%, respectively. This indicates only partial involvement of extracellularly released MPO in CPZ metabolism by PMNs. Considerable covalent binding of [3H]CPZ to nucleic acids and proteins of intact stimulated PMNs was observed. This binding was larger upon co-stimulation with phorbol ester and A23187. Azide did not reduce covalent binding. This indicates that covalent binding is not mediated by extracellularly released MPO and that CPZ is probably activated intracellularly. Activation of PMNs and production of H2O2 is a prerequisite for both CPZ conversion and covalent binding. This study demonstrates that phagocytic cells might contribute to drug metabolism and drug-induced toxicity.  相似文献   

15.
Purified laccase from Coriolopsis gallica UAMH8260 oxidized carbazole, N-ethylcarbazole, fluorene, and dibenzothiophene in the presence of 1-hydroxybenzotriazole and 2,2-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) as free radical mediators. Susceptibility to laccase oxidation appears related to the ionization potential (IP) of the substrate: compounds with an IP above 8.52, dibenzofuran (IP = 8.77) and benzothiophene (IP = 8.73) were not attacked. Carbazole (IP = 7.68) was the most sensitive to oxidation with >99% transformed with 10 milliunits of laccase after 1 h, though most reactions were carried out for 18 h. 9-Fluorenone was identified as the product of fluorene (IP = 8.52) oxidation, and dibenzothiophene sulfone from dibenzothiophene (IP = 8.44). Although carbazole and N-ethylcarbazole were both completely removed within 18 h, no oxidation or condensation metabolites were detected. This investigation is the first to report the oxidation of dibenzothiophene, carbazole, and N-ethylcarbazole by laccase.  相似文献   

16.
Oxidation of NADH by decavanadate, a polymeric form vanadate with a cage-like structure, in presence of rat liver microsomes followed a biphasic pattern. An initial slow phase involved a small rate of oxygen uptake and reduction of 3 of the 10 vanadium atoms. This was followed by a second rapid phase in which the rates of NADH oxidation and oxygen uptake increased several-fold with a stoichiometry of NADH: O2 of 11. The burst of NADH oxidation and oxygen uptake which occurs in phosphate, but not in Tris buffer, was prevented by SOD, catalase, histidine, EDTA, MnCl2 and CuSO4, but not by the hydroxyl radical quenchers, ethanol, methanol, formate and mannitol. The burst reaction is of a novel type that requires the polymeric structure of decavanadate for reduction of vanadium which, in presence of traces of H2O2, provides a reactive intermediate that promotes transfer of electrons from NADH to oxygen.  相似文献   

17.
We tested whether pre-treatments of roots with H2O2 (10 mM for 8 h) or sodium nitroprusside (SNP; 100 μM for 48 h), a donor of NO, could induce prime antioxidant defense responses in the leaves of citrus plants grown in the absence or presence of 150 mM NaCl for 16 d. Both root pre-treatments increased leaf superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) activities, and induced related-isoform(s) expression under non-NaCl-stress conditions. When followed by salinity, certain enzymatic activities also exhibited an up-regulation in response to H2O2 or SNP pre-exposure. An NaCl-stress-provoked decrease in the ascorbate redox state was partially prevented by both pre-treatments, whereas the glutathione redox state under normal and NaCl-stress conditions was increased by SNP. Real-time imaging of NO production was found in vascular tissues and epidermal cells. Furthermore, NaCl-induced inhibition in OH scavenging activity and promotion of OH-mediated DNA strand cleavage was partially prevented by SNP. Moreover, NaCl-dependent protein oxidation (carbonylation) was totally reversed by both pre-treatments as revealed by quantitative assay and protein blotting analysis. These results provide strong evidence that H2O2 and NO elicit long-lasting systemic primer-like antioxidant activity in citrus plants under physiological and NaCl-stress conditions.  相似文献   

18.
Vanadyl ion (+4 oxidation state) has been shown to be an effective agent for chemoprotection of cancers in animals. For understanding the mechanism, distribution of vanadium was studied. More vanadium was found to accumulate in the nuclei of the liver of rats when it was given as vanadyl sulfate than when it was given as sodium vanadate (+5 oxidation state). The reactivity of vanadyl ion with DNA was investigated by the DNA cleavage technique and the reaction mechanism by ESR spectroscopy. Incubation of double-strand DNA with vanadyl ion and hydrogen peroxide resulted in marked concentration- and pH-dependent DNA cleavage. Studies by the ESR spin-trap method demonstrated that hydroxyl radicals are generated during the reactions of vanadyl ion with hydrogen peroxide. Thus the antineoplastic action of vanadyl ion is proposed to be due to DNA cleavage by hydroxyl radicals generated in the cells.  相似文献   

19.
The irreversible binding of chlorpromazine radical cation (CPZ+·) and photoactivated chlorpromazine (CPZ) to calf thymus DNA in vitro and bacterial macromolecules in intact bacterium cells was investigated. CPZ+· may be formed in vivo metabolically and photochemically. CPZ+· and photoactivated CPZ bind covalently to double- and single-strand DNA. The conformation of the DNA appeared to be important for the CPZ+· reactivity: though CPZ+· is less stabilized by complex formation with single-strand DNA, the reaction rate and the binding capacity of DNA-complexed CPZ+· with single-strand DNA is larger than with double-strand DNA. Photoactivated CPZ binds considerably to proteins, DNA and RNA in the intact bacterium cells. In spite of the relatively short lifetime of CPZ+· in the presence of the cells CPZ+· also binds irreversibly to bacterial DNA, RNA and proteins. The consequences of covalent binding for the cytotoxicity and genotoxicity of CPZ+· and photoactivated CPZ and the possible role for CPZ+· as an intermediate in the photobinding of CPZ is discussed.  相似文献   

20.
Han Bao  Keisuke Kawakami  Jian-Ren Shen 《BBA》2008,1777(9):1109-1115
In intact PSII, both the secondary electron donor (TyrZ) and side-path electron donors (Car/ChlZ/Cytb559) can be oxidized by P680+ at cryogenic temperatures. In this paper, the effects of acceptor side, especially the redox state of the non-heme iron, on the donor side electron transfer induced by visible light at cryogenic temperatures were studied by EPR spectroscopy. We found that the formation and decay of the S1TyrZ EPR signal were independent of the treatment of K3Fe(CN)6, whereas formation and decay of the Car+/ChlZ+ EPR signal correlated with the reduction and recovery of the Fe3+ EPR signal of the non-heme iron in K3Fe(CN)6 pre-treated PSII, respectively. Based on the observed correlation between Car/ChlZ oxidation and Fe3+ reduction, the oxidation of non-heme iron by K3Fe(CN)6 at 0 °C was quantified, which showed that around 50-60% fractions of the reaction centers gave rise to the Fe3+ EPR signal. In addition, we found that the presence of phenyl-p-benzoquinone significantly enhanced the yield of TyrZ oxidation. These results indicate that the electron transfer at the donor side can be significantly modified by changes at the acceptor side, and indicate that two types of reaction centers are present in intact PSII, namely, one contains unoxidizable non-heme iron and another one contains oxidizable non-heme iron. TyrZ oxidation and side-path reaction occur separately in these two types of reaction centers, instead of competition with each other in the same reaction centers. In addition, our results show that the non-heme iron has different properties in active and inactive PSII. The oxidation of non-heme iron by K3Fe(CN)6 takes place only in inactive PSII, which implies that the Fe3+ state is probably not the intermediate species for the turnover of quinone reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号