首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Inorganica chimica acta》2001,312(1-2):93-99
The reactions of 2,3-bis(2-pyridyl)quinoxaline (bpq) with CoCl2·6H2O, Ag(CH3CN)4BF4, and PdCl2(C6H5CN)2 produce [CoCl2(bpq)]2·2CHCl3, [Ag(bpq)CH3CN]2(BF4)2·2CH3CN, and [PdCl2(bpq)], respectively. All the products are discrete 1:1 (metal:bpq) adducts, where the chelation mode of the bpq is dependent upon the metal atoms. The structure of [CoCl2(bpq)]2·2CHCl3 is a centrosymmetric Cl-bridged four-membered dimer, [Co2Cl2], in which the bpq is bonded to the cobalt(II) atom in an anisobidentate mode with the nitrogen donors of pyridine and pyrazine rings. For [Ag(bpq)CH3CN]2(BF4)2·2CH3CN, each bpq ligand connects two tetrahedral silver(I) ions in a tridentate mode, resulting in a cationic cyclic dimer. The structure of [PdCl2(bpq)] approximates to a molecular rocking chair with an isobidentate bpq through the nitrogen donors of 2-pyridyl rings. The compounds exhibit significant and characteristic relationships between the structures and their thermal properties. For [CoCl2(bpq)]2·2CHCl3, the solvate chloroform molecules are safely contained up to 144°C, but drastically evaporate above this temperature. The striking feature of [Ag(bpq)CH3CN]2(BF4)2·2CH3CN is that the skeletal cyclic dimer is basically retained after dissociation of the coordinated acetonitriles in the solid state.  相似文献   

2.
《Inorganica chimica acta》1986,123(4):181-187
The compounds [(CH3Hg)AAdH]NO3 (1) and [(CH3Hg)AAd]·4H2O (2) have been isolated from aqueous 1:1 solutions of CH3HgOH and 8-azaadenine (AAdH) at respective pH values of 2 and 5. Their structures have been established by X-ray structural analysis. N9 is the metal binding site in both complexes. Alteration of the metal to ligand ratio to 2:1 at a pH of 5 allows the preparation of [(CH3Hg)2AAd]NO3·H2O (3) in which the base is coordinated at both N3 and N9. The compound [(CH3Hg)3AAdH−1]NO3 (4), in which N1, N6 and N9 function as binding sites for the CH3Hg+ cation, is formed in a 3:1 solution at a pH of 6.5. X-ray structural analyses have been performed on 3 and 4. N8 takes part in weak intermolecular secondary bonds to symmetry related Hg9 atoms in all four complexes. The relevance of the structures to an understanding of the basicities of the nitrogen atoms in 8-azaadenine and their alteration upon metal coordination of N9 and N6 is discussed.  相似文献   

3.
The complexes M(NCS)4·xL (x = 2, M = U, L = Me3CCON(Pri)2(dippva); x = 3, M = Th, L = Me2CHCON(Pri)2(dipiba) and dippva, M = U, L = EtCON(Pr1)2(dippa), dipiba and dippva; x = 4, M = Th, L = MeCON(Pri)2(dipa), dippa and dipiba, M = U, L = dipa, dippa) and the solvates M(NCS)4·4dipa·CH2Cl2 (M = Th, U) have been prepared. Their i.r. and u.v.-visible (M = U only) spectra are reported. The crystal and molecular structure of U(NCS)4(dipa)4· CH2Cl2 has been determined by the heavy-atom method from X-ray diffractometer data and refined by least squares to R 0.029 for 1135 independent reflections. The crystal is tetragonal, space group P421c, with Z = 2, a = 15.663(4) and c = 10.512(3) Å. The coordination geometry about the 8-coordinate uranium atom is dodecahedral with the N atoms of the NCS groups occupying the dodecahedral A sites and the ‘dipa’ O atoms the B sites. The bonding distances of UO and UN are 2.363(8), and 2.444(11) Å respectively.  相似文献   

4.
Disolution of Co(bzt)2(NCS)2 (bzt = benzo 1,3- thiazole) in dimethyl formamide (dmf) produces Co(bzt)2(NCS)2(dmf)2. The stoichionmetry of the complex has been established by a combination of chemical (C, H, N) and thermal analysis. The comlex has an octahedral structure with pairs of ligands in trans configuration as well as a CoN4O2 coordination sphere with CoN distances of 2.185(2) Å (bzt); 2.082(2) Å (NCS) and CoN(dmf) of 2.118(2) Å. The infrared and electronic absorption spectra are consistent with this arrangement.  相似文献   

5.
In CD3CN solutions the kinetic parameters characterising rotation about the CNMe2 and CNH2 bonds in [UO2(1,1-DMU)5]2+ (1,1-DMU = 1,1- dimethylurea) were determined as: k(265 K) = 39.1 ± 0.4 and 2960 ± 60 s?1, ΔH3 = 49.1 ± 0.76 and 61.1 ±0.5 kJ mol?1, ΔS2 = ?28.3 ± 2.7 and 53.1 ± 2.2 J K?1 mol?1 respectively from 1H NMR studies. Resonances arising from the three isomeric 1,3-DMU (= 1,3-dimethylurea) ligands were observed for [UO2(1,3-DMU)5]2+ in CD3CN solution and the kinetic parameters characterising their isomerisations were also determined. The three isomers of 1,3-DMU have not previously been detected in solution and it appears that coordination of 1,3-DMU to UO22+ increases the barrier to rotation about the carbon nitrogen bond, as is also shown to be the case for 1,1-DMU.  相似文献   

6.
The electrochemical oxidation of anodic metal (iron, cobalt, nickel and copper) in an acetonitrile solution of the potentially chelating Schiff base N,N(dithiodiethylenebis-(aminylydenemethylydene)-bis(1,2-phenylene)ditosylamide (H2L) afforded stable complexes of empirical formula [ML]. The compounds obtained have been characterized by microanalysis, IR spectroscopy and ES-MS mass spectrometry. The crystal and molecular structures of [FeL]·CH3CN (1) [CoL]·CH3CN (2), [NiL]·CH3CN (3) and [CuL]·CH3CN (4) have been determined by X-ray diffraction in all complexes, the metal atom is in a distorted tetrahedral environment with the Schiff base acting as a tetradentate N4 donor.  相似文献   

7.
A series of dioxouranium(VI) complexes was synthesised with some Schiff base ligands containing substituent groups at para positions to CHN groups. These molecules were obtained by the condensation of para-nitro, chloro, bromo, hydroxy, methyl and methoxy aniline with salicylaldehyde. The bidentate ligands formed complexes of the type UO2(NCS)2 (X-N-Sal)n·mH2O, where n = 2, m = 3, x = NO2, Cl, Br and OH; n = 3, m = 2, x = CH3 and OCH3.Conductivity measurements indicate that all the complexes are non-electrolytes in nitromethane solution, whereas in DMF they correspond to 1:1 electrolytes.IR spectral data suggest that the molecules and not the anions of the Schiff base are coordinated to the central uranium atom. IR and Raman spectra suggest that the complexes UO2(NCS)2(X-N-Sal)2· 3H2O (X = NO2, Cl, Br) have C2h molecular symmetry, whereas UO2(NCS)2(X-N-Sal)3·2H2O (X = OCH3, CH3) have C2v symmetry.The frequencies of UO2(asym) (IR) and UO2(sym) (R) in the complexes seem to vary with the various substituents of the Schiff base ligand, in the order:NO2 > Cl > Br > OH > CH3 > OCH3  相似文献   

8.
Bis-Methyl N,N-diethylcarbamylmethylenephosphonato dysprosium thiocyanate, Dy[O2P(OCH3)CH2C(O)N(C2H5)2]2(NCS) was prepared from the combination of ethanolic solutions of Dy(NCS)3·xH2O and (CH3O)2P(O)CH2C(O)N(C2H5)2. The complex was characterized by infrared and NMR spectroscopy, and single crystal X-ray diffraction methods. The crystal structure was determined at 25 °C from 3727 independent reflections by using a standard automated diffractometer. The complex was found to crystallize in the monoclinic space group P21/c with a = 13.282(4) Å, b = 19.168(5) Å, c = 9.648(2) Å, β = 90.09(2)°, Z = 4, V = 2456.4 Å3 and ?cald = 1.72 g cm?3. The structure was solved by standard heavy atom techniques, and blocked least-squares refinement converged with Rf = 4.7% and RwF = 4.9%. The Dy atom is seven coordinate and bonded in a bidentate fashion to two anionic phosphonate ligands [O2P(OCH3)CH2C(O)N(C2H5)2?] through the carbonyl oxygen atoms and one of two phosphonate oxygen atoms. In addition, each Dy atom is coordinated to two phosphonate oxygen atoms from two neighboring complexes and to the nitrogen atom of a thiocyanate ion. This coordination scheme gives rise to a two-dimensional polymeric structure. Some important bond distances include DyNCS 2.433(8) Å, DyO(carbonyl)avg 2.39(2) Å, DyO(equat. phosphoryl)avg 2.303(8) Å, DyO(axial phosphoryl)avg 2.25(2), PO(phosphoryl)avg 1.493(3) Å and CO(carbonyl)avg 1.25(1) Å.  相似文献   

9.
10.
《Inorganica chimica acta》1986,119(2):227-232
Interaction between D-glucuronic acid and hydrated uranyl salts has been studied in aqueous solution and solid complexes of the type UO2(D- glucuronate)X·2H20 and UO2(D-glucuronate)2·2H2O, where X = CI, Br or NO3, are isolated and characterized by means of FT-IR and proton-NMR spectroscopy.On comparison with the structurally identified Ca(D-glucuronate)Br·3H2O compound, it is concluded that the UO22+ cation binds to two D- glucuronate moieties in uranylsugar complexes via O6, O5 oxygen atoms (ionized carboxyl group) of the first and O6′, 04 (non-ionized carboxyl group) of the second sugar moiety, whereas in the UO2(D- glucuronate)2·2H2O salt the uranyl ion is bonded to two sugar anions through O6, O6′ oxygen atoms of the ionized carboxyl group, resulting in a six- coordination geometry around the uranium ion. The strong intermolecular hydrogen bonding network of the free acid is rearranged upon sugar metalation and the sugar moiety showed β-anomer conformation both in the free acid and in these uranylsugar complexes.  相似文献   

11.
The extraction of U(VI)with dicyclohexano-18-crown-6 (mixed isomers or isomer A) from HCl medium is effective and selective, and can be used for separating and analysing uranium and thorium. However, little is known of the properties of the extraction complex of uranium with crown-ether in organic phase. In this paper we report the preparation, characteristic and structure of the crystalline extraction complex IaUO2Cl2HClH2O, Iabeing isomer A of dicyclohexano-18-crown-6.After extracting uranium(VI) from aqueous hydrochloric acid solution with Ia in 1,2-dichloroethane, the crystalline product of the extraction complex was prepared from the organic phase by diluting with a non-polar solvent at 25 °C. The content of uranium, crown-ether and HCl was determined. The IR spectrum of the crystals shows that the strong hydronium-crown ether/oxygen hydrogen bond absorption is found in the region 2300–2400 cm−1. The chemical shift in the range 9–12 ppm was observed. The 1H NMR signal of hydronium protons appears at 9.890 ppm. The results of assay correspond to the formula Ia2·(H3O+)2·UO2Cl42−.Crystal structure of the extraction complex has been determined by X-ray crystallography. Crystals are monoclinic, space group C2/c (No. 15) a=32.464, b=10.203, c=21.616 Å, β=119.73° and Z=4. In the complex each of the two H3O+ cations is anchored in the crown-ether cavity by three stronger hydrogen bonds (distances approximately 2.65 Å), whereas uranium forms UO2Cl42− with Cl as counterion about 8 Å away from the H3O+.  相似文献   

12.
Benzoylhydrazones and semicarbazones derived from 2,6-diacetylpyridine react with common dioxouranium(VI) compounds such as uranyl nitrate or [NBu4]2[UO2Cl4] to form air-stable complexes. 2,6-Diacetylpyridinebis(benzoylhydrazone) (H2L1), 2,6-diacetylpyridinebis(N4-phenylsemicarbazone) (H2L2) and the asymmetric proligand 2,6-diacetylpyridine(benzoylhydrazone)(N4-phenylsemicarbazone) (H2L3) give yellow products of the composition [UO2(L)]. The neutral compounds contain doubly deprotonated ligands and possess uranium atoms with distorted pentagonal-bipyramidal coordination spheres. The equatorial coordination spheres of the metal atoms can be extended by the addition of a monodentate ligand such as pyridine or DMSO. The uranium atoms in the resulting complexes have hexagonal-bipyramidal coordination environments with the oxo ligands in axial positions.X-ray diffraction studies on [UO2(L1)(DMSO)], [UO2(L2)], [UO2(L2)(DMSO)] and [UO2(L3)] show relatively short U-O bonds to the benzoylic oxygen atoms between 2.273(6) and 2.368(5) Å. This suggests a preference of these donor sites of the ligands over their imino and amine functionalities (U-N bond lengths: 2.502(7)-2.671(7) Å). The addition of a sixth ligand to the equatorial coordination sphere results in a lengthening of the metal-pyridine bonds.  相似文献   

13.
《Inorganica chimica acta》1986,111(2):163-166
Tri- and di-organosilicon O,O-alkylenedithiophosphates, R4−nSi[S2PO2G]n (where R = Ph, Me, G = −C(CH3)2·C(CH3)2−, −CH2C(CH3)2CH2−, −CH-CH3CH2C(CH3)2−, n = 1,2) were synthesized by treatment of organosilicon(IV) chlorides with ammonium O,O-alkylenedithiophosphates in benzene. The compounds are volatile, yellow oily liquids, miscible with common organic solvents and monomeric in refluxing benzene. Like dialkyldithiophosphate derivatives of organosilicon(IV), these cyclic chain derivatives appear to be tetrahedral, the ligand behaving as unidentate.  相似文献   

14.
《Inorganica chimica acta》1986,114(2):211-214
Low temperature 31P and 15N NMR spectroscopy was used to investigate the species forming in the organic layer following the extraction of uranium from nitric acid solutions with the synergistic mixture, TBP-DEHPA. It was found that the complex formed during extraction was a mixed nitrato complex UO2(NO3)A·TBP. Although the existence of the complex UO2A2·χTBP may be demonstrated in model systems, the complex does not form under actual extraction conditions.  相似文献   

15.
《Inorganica chimica acta》1988,141(1):139-144
The infrared and Raman spectra of [UO2(salen)(H2O)] and [UO2(salen)(CH3OH)] (salen=N,N′-ethylenebis(salicylideneimine) have been recorded. Assignments for the fundamental vibrations are proposed on the basis of C2v symmetry for the former species and Cs for the latter. The calculated values of the stretching force constant of the uranyl group, FUO, are 6.87 and 6.63 mdyn Å−1 for [UO2(salen)(H2O)] and [UO2(salen)(CH3OH)], respectively. The corresponding values of the UO bond lengths calculated as 1.738 and 1.745 Å.  相似文献   

16.
It has been recently shown that enantiomers of the helicoidal paddlewheel complex [Co3(dpa)4(CH3CN)2]2+ (dpa = the anion of 2,2′-dipyridylamine) can be resolved using the chiral [As2(tartrate)2]2− anion (AsT) and that these complexes demonstrate a strong chiroptical response in the ultraviolet-visible and X-ray energy regions. Here we report that the nickel congener, [Ni3(dpa)4(CH3CN)2]2+, can likewise be resolved using AsT. Depending on the stereochemistry of the enantiopure AsT anion, one or the other of the trinickel enantiomers crystallize from CH3CN and diethyl ether in space group P4212 as the (NBu4)2[Ni3(dpa)4(CH3CN)2](AsT)2·[solvent] salt. After resolution, the AsT salts were converted into the PF6 salts by anion exchange, with retention of the chirality of the trinickel complex. The enantiopure [Ni3(dpa)4(CH3CN)2](PF6)2·2CH3CN and [Co3(dpa)4(CH3CN)2](PF6)2·CH3CN·C4H10O compounds crystallize in space groups C2 and P21, respectively. Both the Ni(II) and Co(II) complex cations are stable towards racemization in CH3CN. Vibrational circular dichroism (VCD) data obtained in CD3CN demonstrate the expected mirror image spectra for the enantiomers, the observed peaks arising from the dpa ligand. The VCD response is significant, with Δε values up to 6 Lmol−1 cm−1 and vibrational dissymmetry factors on the order of 10−3. Density functional theory calculations well reproduce the experimental spectra, showing little difference between the peak position, sign, and intensity in the VCD for the cobalt and nickel complexes. These results suggest that VCD enhancement of these peaks is unlikely, and their remarkable intensity may be due to their rigid helicoidal structure.  相似文献   

17.
Reactions of salicyl- and 3,5-dichlorosalicylaldehyde-S-propyl-thiosemicarbazones with salicyl- and 3,5-dichlorosalicylaldehyde in the presence of UO2(CH3COO)2 in different alcohols yielded stable solid complexes corresponding to the general formula [UO2(L)ROH] (R: propyl-, butyl-, pentyl-, and octyl-). The complexes were characterized by means of elemental analysis, IR and 1H NMR spectroscopies. The thermal stabilities of the alcohol solvated complexes were investigated in air and nitrogen atm., and determined their decomposition phases. In the crystal structure of the [UO2(L)(C4H9OH)], the U(VI) centre is seven-coordinated in a distorted pentagonal bipyramidal geometry involving O,O,N,N atoms of two phenolic and two imine groups and one oxygen atom of alcohol molecule in basal plane and two O atoms of dioxo group in apical positions. The title structure is stabilized by one intramolecular interaction of types C-H?Cl and by two intermolecular interactions of types O-H?O and C-H?π (benzene) leading to the molecular chain along the [0 1 0] direction.  相似文献   

18.
Tetraalloxygermanium(IV), (CH2·CH·CH2·O)4Ge, has been synthesized from germanium tetrachloride, allyl alcohol, and ammonia. The alloxides [(CH2·CH· CH2·O)4Ti]2and[(CH2·CH·CH2O)5M]2 (M = Nb and Ta) have been synthesized by reactions of the corresponding metal isopropoxides with allyl alcohol followed by removal of the isopropanol by azeotropic distillation with benzene. These four metal alloxides can be purified by distillation under reduced pressure. The spectroscopic properties of these new compounds are discussed.  相似文献   

19.
In this study are reported the syntheses of three bis(diarylhydrazonecarbonyl)methylene derivatives [{ArPhCNNH C(O)}2CH2] [Ar = 2 C5H4N (5), C6H5 (6), and 2‐C4H3S (7)], obtained by condensation of corresponding hydrazones with carbon suboxide, C3O2. The solid‐state self‐assembly of these carbonyl derivatives, giving rise to polymeric and dimeric networks, is described. In the formation of these structural features, in addition to N—H· · ·OC intermolecular hydrogen bonds, stabilizing intramolecular NH· · · π (systems) and intermolecular CO· · ·π (systems) interactions also seem to play an important role. Solution 1H‐nmr data of compounds 5–7 indicate that the polymeric and dimeric structures are not maintained in solution and show the occurrence of keto‐enolic equilibria. © 1999 John Wiley & Sons, Inc. Biopoly 49: 541–549, 1999  相似文献   

20.
The acetate-bridged complex, LPd2(CH3CO2), in which L3? is a binucleating ligand, reacts with 2-vinylpyridine in the presence of methanol or ethanol to generate the 3 atom N,C bridged complexes LPd2(2-C5H4N·CH·CH2OR) (R = Me or Et) whose 1H and 13C nmr spectra indicate the presence in solution of two slowly interconverting forms at room temperature. The 1H and 13C nmr spectra of two closely related pairs of 3 atom N,C bridged complexes of the form LPd2(2-C5H4N·CH·X) and LPd2 (HN = C(CH3)·CH·X) (where X = COCH3 or COOCH3) show that the complexes with pyridine-containing bridges exist in solution at room temperature in two distinguishable forms whilst the corresponding imine-bridged complexes behave as single species. The existence of two forms of the complexes with pyridine-containing 3 atom N,C bridges, the natures of which are discussed in this paper, appears to be a consequence of steric interaction between the pyridine α hydrogen atom and the closely adjacent oxygen donor of L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号